Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (20): 4150-4158.doi: 10.3864/j.issn.0578-1752.2011.20.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Analysis of A Glutathione-S-transferase Gene in The Latex of Hevea brasiliensis (para rubber tree)

 FAN  Yu-Jie, LIN  Fei-Peng, AN  Ze-Wei, TANG  Chao-Rong   

  1. 1.海南大学农学院
    2.中国热带农业科学院橡胶研究所
  • Received:2011-04-11 Online:2011-10-15 Published:2011-05-19

Abstract: 【Objcetive】The objective of this study is to clone the cDNA and genomic clone of a glutathione-S-transferase (GST) from rubber tree, and characterize its structural and phylogenetic characteristics, investigate its expression patterns under various abiotic stresses and hormone treatments. 【Method】Combined with the latex EST database, RT-PCR and PCR were used to clone the full length cDNA and genomic DNA of a Hevea GST, respectively. On-line bioinformatics tools were used to predict the conserved functional domains and subcellular localization. Clustal X was used to construct the phylogenetic tree. Real-time RT-PCR (qRT-PCR) was used to characterize the expression patterns of the Hevea GST gene under various treatments (tapping, wounding, chilling, hormone and tapping panel dryness). 【Result】The full-length cDNA (793 bp) encoding a 25.4 kD (219 aa) Tau GST protein was firstly cloned from the latex of H. brasiliensis, named HbGSTU1 and deposited in GenBank (JF729318). The genomic DNA (1 313 bp) of HbGSTU1 was also cloned, which contains one intron (520 bp) and two exons. HbGSTU1 protein contained the Tau GST-specific N-terminal domain (G site) and the C-terminal domain (H site). HbGSTU1 was predicted to be a cytoplasmic protein, which shared the highest amino acid identity (85%) with a GST from Ricinus communis. The qRT-PCR results show that HbGSTU1 expression was regulated by tapping, wounding, 4℃ chilling, 2,4-D and Ethrel, but not by the three hormones JA, SA and ABA. 【Conclusion】HbGSTU1 is a typical Tau GST protein, and is implicated in stress-responses in Hevea tree, which may serve as a target gene for Hevea molecular breeding.

Key words:

[1]Gong H B, Hu W W, Jiao Y X, Pua E C. Molecular characterization of a Phi-class mustard (Brassica juncea) glutathione-S-transferase gene in Arabidopsis thaliana by 5’-deletion analysis of its promoter. Plant Cell Reports, 2005, 24(7): 439-447.

[2]Wilce M C, Parker M W. Structure and function of glutathione- S-transferases. Biochimica et Biophysica Acta-Biomembranes, 1994, 1205(1): 1-18.

[3]Edwards R, Dixon D P. The role of glutathione transferases in herbicide metabolism. Herbicides and Their Mechanisms of Action. Sheffield: Sheffield Academic Press, 2000: 38-71.

[4]Moons A. Regulatory and functional interactions of plant growth regulators and plant glutathione-S-transferases (GSTs). Vitamins and Hormones, 2005, 72: 155-202.

[5]Marrs K A. The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47(1): 127-158.

[6]Droog F. Plant glutathione S-transferases, a tale of theta and Tau. Journal of Plant Growth Regulation, 1997, 16(2): 95-107.

[7]Dixon D P, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biology, 2002, 3(3): 3004. 1-3004.10.

[8]Basantani M, Srivastava A. Plant glutathione transferases: A decade falls short. Canadian Journal of Botany, 2007, 85(5): 443-456.

[9]Chronopoulou E G, Labrou N E. Glutathione transferases: Emerging multidisciplinary tools in red and green biotechnology. Recent Patents on Biotechnology, 2009, 3(3): 211-223.

[10]Conn S, Curtin C, Bézier A, Franco C, Zhang W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany, 2008, 59(13): 3621-3634.

[11]Sappl P G, Carroll A J, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh K B. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. The Plant Journal, 2009, 58(1): 53-68.

[12]Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family. Molecular Genetics and Genomics, 2004, 271(5): 511-521.

[13]Lan T, Yang Z L, Yang X, Liu Y J, Wang X R, Zeng Q Y. Extensive functional diversification of the Populus glutathione S-transferase supergene family. The Plant Cell, 2009, 21(12): 3749-3766.

[14]Dixon D P, Cummins I, Cole D J, Edwards R. Glutathione-mediated detoxification systems in plants. Current Opinion in Plant Biology, 1998, 1(3): 258-266.

[15]Nutricati E, Miceli A, Blando F, De Bellis L. Characterization of two Arabidopsis thaliana glutathione-S-transferases. Plant Cell Reports, 2006, 25(9): 997-1005.

[16]Wagner U, Edwards R, Dixon D P, Mauch F. Probing the diversity of the Arabidopsis glutathione-S-transferase gene family. Plant Molecular Biology, 2002, 49(5): 515-532. 

[17]Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. The Journal of Biological Chemistry, 2002, 277(34): 30859-30869.

[18]Cottingham C K, Hatzios K K, Meredith S. Influence of chemical treatments on glutathione-S-transferases of maize with activity towards metolachlor and cinnamic acid. Zeitschrift fur Naturforschung C: Journal of Biosciences, 1998, 53(11/12): 973-979.

[19]Vollenweider S, Weber H, Stolz S, Chételat A, Farmer E E. Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. The Plant Journal, 2000, 24(4): 467-476.

[20]Seppänen M M, Cardi T, Borg Hyökki M, Pehu E. Characterisation and expression of cold induced glutathione S-transferase in   freezing tolerant Solanum commersonii, sensitive S. tuberosum and their interspecific somatic hybrids. Plant Science, 2000, 153(2): 125-133.

[21]Zhou J M, Goldsbrough P B. An Arabidopsis gene with homology to glutathione S-transferases is regulated by ethylene. Plant Molecular Biology, 1993, 22(3): 517-523.

[22]Chen W Q, Singh K B. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. The Plant Journal, 1999, 19(6): 667-677.

[23]Chen W Q, Chao G, Singh K B. The promoter of a H2O2-  inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. The Plant Journal, 1996, 10(6): 955-966.

[24]安泽伟, 陈根辉, 程  汉, 赵彦宏, 谢黎黎, 黄华孙. 橡胶树冷应答转录组cDNA-AFLP分析. 林业科学, 2010, 46(3): 62-67.

An Z W, Chen G H, Cheng H, Zhao Y H, Xie L L, Huang H S. cDNA-AFLP Analysis on transcriptomics of Hevea brasiliensis induced by cold stress. Scientia Silvae Sinicae, 2010, 46(3): 62-67. (in Chinese)

[25]Tang C R, Qi J Y, Li H P, Zhang C L, Wang Y K. A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Journal of Biochemical and Biophysical Methods, 2007, 70(5): 749-754.

[26]Kiefer E, Heller W, Ernst D. A simple and efficient protocol       for isolation of functional RNA from plant tissues rich in    secondary metabolites. Plant Molecular Biology Reporter, 2000, 18(1): 33-39.

[27]Tang C R, Huang D B, Yang J H, Liu S J, Sakr S, Li H P, Zhou Y H, Qin Y X. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant Cell and Environment, 2010, 33(10): 1708-1720.

[28]Moons A. Osgstu3 and osgtu4, encoding tau class glutathione- S-transferases, are heavy metal- and hypoxic-stress induced and differentially salt stress-responsive in rice roots. Federation of European Biochemical Societies, 2003, 553(3): 427-432.

[29]Polidoros A N, Scandaios J G. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione-S-transferase gene expression in maize (Zea mays L.). Physiologia Plantarum, 1999, 106(1): 112-120.

[30]许闻献, 校现周. 橡胶死皮树过氧化物酶同工酶和超氧化物歧化酶同工酶的研究. 热带作物学报, 1988, 9(1): 31-36.

Xu W X, Xiao X Z. Studies on peroxidase and superoxidase dimutase isozymes in dry rubber trees. Chinese Journal of Tropical Crops, 1988, 9(1): 31-36. (in Chinese)

[31]Darussamin A, Suharyanto S, Chaidamsari T. Changes in the chemical compositions and electrophoretic profile of latex and bark proteins related to tapping panel dryness incidence in Hevea brasiliensis. Menara Perkebunan, 1995, 63(2): 52-59.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[3] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[4] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[5] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[6] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[7] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[8] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[9] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[10] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[11] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[12] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[13] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[14] SU Qian,DU WenXuan,MA Lin,XIA YaYing,LI Xue,QI Zhi,PANG YongZhen. Cloning and Functional Analyses of MsCIPK2 in Medicago sativa [J]. Scientia Agricultura Sinica, 2022, 55(19): 3697-3709.
[15] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!