Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (20): 4142-4149.doi: 10.3864/j.issn.0578-1752.2011.20.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Research on Heat and Drought Tolerance in Rice (Oryza sativa L.) by Overexpressing Transcription Factor OsbZIP60

 YU  Xu, NIU  Xiang-Li, YANG  Sheng-Hui, LI  Yu-Xiang, LIU  Liang-Liang, TANG  Wei, LIU  Yong-Sheng   

  1. 1.四川大学生命科学学院/生物资源与生态环境教育部重点实验室
    2.重庆大学农学及生命科学研究院
  • Received:2011-04-08 Online:2011-10-15 Published:2011-05-13

Abstract: 【Objective】Dissect biological function of transcription factor OsbZIP60 by transgenic technology, making preparation for developing stress tolerance rice to reduce the hazard caused by heat and drought stresses.【Method】The overexpression vector containing the full-length coding region of OsbZIP60 gene was constructed and introduced into rice cv. Nipponbare by Agrobacterium-mediated genetic transformation. The biological function of OsbZIP60 was analyzed by observing the phenotypes of transgenic and wild type plants under stress conditions. The expression pattern of OsbZIP60 and its expression level in transgenic line was analyzed by semi-quantitative RT-PCR and real-time quantitative PCR.【Result】The expression level of OsbZIP60 in overexpression transgenic lines is distinctly increased compared to that of WT plants. OsbZIP60 can be induced by heat, and it’s further up-regulated in transgenic lines under stress condition. OsbZIP60 is constitutively expressed in rice and has the highest abundance in leaves. Transgenic plants showed significant enhanced stress tolerance. Detached aerial parts of transgenic plants also showed a slower water loss rate compared to that of WT plants.【Conclusion】Transcription factor OsbZIP60 plays an important role in response to heat and drought. Overexpression of OsbZIP60 might be utilized in genetic improvement of heat and drought tolerance in rice.

Key words: OryzasativaL., bZIP, transcriptionfactor, heattolerance, droughttolerance

[1]Wollenweber B, Porter J R, Schellberg J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in Wheat. Journal of Agronomy and Crop Science, 2003, 189(3): 142-150.

[2]Ciais P, Reichstein M, Viovy N, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J F, Sanz M J, Schulze E D, Vesala T, Valentini R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437(7058): 529-533.

[3]Mittler R. Abiotic stress, the field environment and stress combination. Trends in Plant Science, 2006, 11(1): 15-19.

[4]Niggeweg R, Thurow C, Kegler C, Gatz C. Tobacco transcription factor TGA2.2 is the main component of as1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as1-containing target promoters. Journal of Biological Chemistry, 2000, 275(26): 19897-19905.

[5]Thurow C, Schiermeyer A, Krawczyk S, Butterbrodt T, Nickolov K, Gatz C. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. The Plant Journal, 2005, 44(1): 100-113.

[6]Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell, 2005, 17(12): 3470-3488.

[7]Baniwal S K, Bharti K, Chan K Y, Fauth M, Ganguli A, Kotak S, von Koskull-Döring P. Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. Journal of Biosciences, 2004, 29(4): 471-487.

[8]Li S, Zhou X, Chen L, Huang W, Yu D. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Molecules and Cells, 2010, 29: 475-483.

[9]Wu X L, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 2009, 28: 21-30.

[10]Sakuma Y , Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 2006, 18(5): 1292-1309.

[11]Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. The Plant Journal, 2008, 53(2): 264-274.

[12]Gao H, Brandizzi F, Benning C, Larkin R M. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the USA, 2008, 105(42): 16398-16403.

[13]Chern M S, Eiben H G, Bustos M M. The developmentally regulated bZIP factor ROM1 modulates transcription from lectin and storage protein genes in bean embryos. The Plant Journal, 1996, 10(1): 135-148.

[14]Strathmann A, Kuhlmann M, Heinekamp T, Droge-Laser W. BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. The Plant Journal, 2001, 28(4): 397-408.

[15]Osterlund M T, Hardtke C S, Wei N, Deng X W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 2000, 405(6785): 462-466.

[16]Holm M, Ma L G, Qu L J, Deng X W. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes and Development, 2002, 16(10): 1247-1259.

[17]Zhang Y, Tessaro M J, Lassner M, Li X. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. The Plant Cell, 2003, 15(11): 2647-2653.

[18]Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology, 2008, 148(4): 1938-1952.

[19]Lu G, Gao C, Zheng X, Han B. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 2009, 229(3): 605-615.

[20]Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology, 2008, 146(2): 333-350.

[21]Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 1994, 6(2): 271-282. 

[22]曹明霞, 卫志明, 黄健秋. 根癌农杆菌介导的水稻遗传转化. 植物生理学通讯, 2002, 38(5): 423-427.  

Cao M X, Wei Z M, Huang J Q. Progress on transformation of rice mediated by Agrobacterium tumefaciens. Plant Physiology Communications, 2002, 38(5): 423-427. (in Chinese)

[23]高永峰, 刘继恺, 范  晶, 彭  奕, 黄  科, 张敦房, 刘永胜. 水稻穗发芽调控基因OsVP1的RNA干涉载体构及遗传转化研究. 中国农业科学, 2010, 43(7): 1321-1327.

Gao Y F, Liu J K, Fan J, Peng Y, Huang K, Zhang D F, Liu Y S. Construction and transformation of RNAi vector of OsVP1 for a regulatory gene of pre-harvest sprouting in Oryza sativa. Scientia Agricultura Sinica, 2010, 43(7): 1321-1327. (in Chinese)

[24]田  洁, 罗  科. 水稻总DNA的快速制备. 应用与环境生物学报, 2004, 10(2): 143-145. 

Tian J, Luo K. Fast and reliable extraction processes of total DNAs from rice. Chinese Journal of Applied and Environmental Biology, 2004, 10(2): 143-145. (in Chinese)

[25]Lee D G, Ahsan N, Lee S, Kang K Y, Bahk J D, Lee I, Lee B. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics, 2007, 7: 3369-3383.

[26]陶龙兴, 谈惠娟, 王  熹, 曹立勇, 程式华. 超级杂交稻国稻6号对开花结实期高温热害的反应. 中国水稻科学, 2007, 21(5): 518-524.

Tao L X, Tan H J, Wang X, Cao L Y, Cheng S H. Effects of high temperature stress on super hybrid rice guodao 6 during flowering and filling phases. Chinese Journal of Rice Science, 2007, 21(5): 518-524. (in Chinese)

[27]Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Yaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology, 2006, 47(1): 141-153.

[28]Oono Y, Wakasa Y, Hirose S, Yang L, Sakuta C, Takaiwa F. Analysis of ER stress in developing rice endosperm accumulating β-amyloid peptide. Plant Biotechnology Journal, 2010, 8(6): 691-718.
[1] YE FangTing,PAN XinFeng,MAO ZhiJun,LI ZhaoWei,FAN Kai. Molecular Evolution and Function Analysis of bZIP Family in Nymphaea colorata [J]. Scientia Agricultura Sinica, 2021, 54(21): 4694-4708.
[2] DOU WanFu,QI JingJing,HU AnHua,CHEN ShanChun,PENG AiHong,XU LanZhen,LEI TianGang,YAO LiXiao,HE YongRui,LI Qiang. Screening of Interacting Proteins of Anti-Canker Transcription Factor CsBZIP40 in Citrus by GST Pull-Down Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2019, 52(13): 2243-2255.
[3] ZHAO WanYing, YU TaiFei, YANG JunFeng, LIU Pei, CHEN Jun, CHEN Ming, ZHOU YongBin, MA YouZhi, XU ZhaoShi, MIN DongHong. Verification and Analyses of Soybean GmbZIP16 Gene Resistance to Drought [J]. Scientia Agricultura Sinica, 2018, 51(15): 2835-2845.
[4] HE QingYun, LIU XiaoWei, JIAO YuBing, YU FangFei, SHEN LiLi, YANG JinGuang, WANG FengLong . Targeted Mutagenesis of NbbZIP28 and Its Stress Response to Virus Infection in Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2018, 51(14): 2689-2699.
[5] JIA RuiRui, ZHOU PengFei, BAI XiaoJing, CHEN ShanChun, XU LanZhen, PENG AiHong, LEI TianGang, YAO LiXiao, CHEN Min, HE YongRui, LI Qiang. Gene Cloning and Expression Analysis of Canker-Related Transcription Factor CsBZIP40 in Citrus [J]. Scientia Agricultura Sinica, 2017, 50(13): 2488-2497.
[6] SUN Ming-yue, ZHOU Jun, TAN Qiu-ping, FU Xi-ling, CHEN Xiu-de, LI Ling, GAO Dong-sheng. Analysis of Basic Leucine Zipper Genes and Their Expression During Bud Dormancy in Apple (Malus×domestica) [J]. Scientia Agricultura Sinica, 2016, 49(7): 1325-1345.
[7] QIN Yu-hai, ZHANG Xiao-hong, FENG Lu, LI Wei-wei, XU Zhao-shi, LI Lian-cheng, ZHOU Yong-bin, MA You-zhi, DIAO Xian-min, JIA Guan-qing, CHEN Ming, MIN Dong-hong. Response of Millet Transcription Factor Gene SibZIP42 to High Salt and ABA Treatment in Transgenic Arabidopsis [J]. Scientia Agricultura Sinica, 2016, 49(17): 3276-3286.
[8] LI Hui-feng, WANG Xiao-fei, RAN Kun, HE Ping, WANG Hai-bo, LI Lin-guang. Expression and Protein Interaction Analysis of Light Responsive bZIP Transcription Factor MdHY5 [J]. Scientia Agricultura Sinica, 2014, 47(21): 4318-4327.
[9] ZHOU Jing-Hua, JIE Yu-Cheng, XING Hu-Cheng, ZHONG Ying-Li, YU Wei-Lin. Cloning and Characterization of the BnbZIP1 Transcription Factor Gene from Ramie (Boehmeria nivea L.) [J]. Scientia Agricultura Sinica, 2013, 46(7): 1314-1322.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!