Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (10): 2022-2028.doi: 10.3864/j.issn.0578-1752.2011.10.007

• PLANT PROTECTION • Previous Articles     Next Articles

SSR Mapping of Leaf Rust Resistance Gene LrY192 in Aegilops tauschii Y192

 HU  Ya-Ya, FENG  Li-Na, JI  Hong-Liu, SUN  Yi, ZHANG  Na, WEI  Xue-Jun, YANG  Wen-Xiang, LIU  Da-Qun, JIA  Ji-Zeng   

  1. 1.河北农业大学植物保护学院/河北省农作物病虫害生物防治工程技术研究中心/国家北方山区农业工程技术研究中心, 河北保定071001
    2.中国农业科学院作物科学研究所/农业部作物种质资源与生物技术重点开放实验室, 北京 100081
  • Received:2010-11-24 Online:2011-05-15 Published:2011-02-23

Abstract: 【Objective】 The objective of this study is to find new leaf rust resistance gene in Aegilops tauschii, and provide valuable information and germplasm for wheat leaf rust resistance breeding.【Method】 Hybridization between Ae. tauschii Y192 (resistant) and Ae. tauschii Y2272 (susceptible) was carried out and the resistance of F2 population was evaluated by inoculated Puccinia triticina for investigating the resistance genes in Y192. Bulk segregation analysis and microsatellite markers on chromosome D were used to tag the resistance gene in Y192. The genetic distance was calculated by MapChart software. Gene postulation and MAS were also used to identify the resistance genes in Y192. 【Result】 F1 population derived from the crossing Y192 and Y2272 were resistant, and the ratio of resistance/susceptible was 3:1 in F2 generation. This indicated that a dominant wheat leaf rust resistance gene was presented in Y192. The gene was temporarily designated as LrY192.Three microsatellite markers Wmc245, Xgwm296 and Xgwm261 were acquired from SSR markers and linked to LrY192 with genetic distance of 4.1, 18.9, and 26.2 cM, respectively. According to the locations of the linked markers, the resistance gene was located on chromosome 2D. 【Conclusion】 Based on the chromosomal location and the resistance pattern of the gene, it is concluded that LrY192 is a novel leaf rust resistance gene, and could be selected by Wmc245.

Key words: Aegilops tauschii, wheat leaf rust, resistance gene, SSR

[1]Denissen C J M. Influence of race and post infection temperature on two components of partial resistance to wheat leaf rust in seedlings of wheat. Euphytica, 1991, 58: 13-20.

[2]贾继增. 小麦的抗叶锈基因及其抗源. 麦类作物, 1990, 2: 32-34.

Jia J Z. Wheat leaf rust resistance gene and antigen. Triticeae Crops, 1990, 2: 32-34. (in Chinese)

[3]Kolmer J A. Genetics of resistance to wheat leaf rust. Annual Review of Phytopathology, 1996, 34: 435-455.

[4]杨武云, 余  毅, 胡晓蓉, 杨家秀, 颜  济, 杨俊良, 郑有良. 节节麦及其在小麦生物技术育种的研究与应用. 西南农业学报, 1999, 12: 19-25.

Yang W Y, Yu Y, Hu X R, Yang J X, Yan J, Yang J L, Zheng Y L. Exploring useful genes in Aegilops tauschii for modern commercial wheat improvement by biotechnology. Southwest China Journal of Agricultural Sciences, 1999, 12: 19-25. (in Chinese)

[5]孔令让, 董玉琛. 粗山羊草 (Aegilops tauschii) 有效利用的研究进展. 山东农业大学学报, 1998, 29(4): 543-548.

Kong L R, Dong Y S. Progress in effective utilization of Aegilops tauschii (Coss.) Schmal.. Journal of Shandong Agricultural University, 1998, 29(4): 543-548. (in Chinese)

[6]Gill B S, Sharma H C, Raupp W J, Browder L E, Hatchett J H, Harvey T L, Moseman J G, Waines J G. Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, hessian fly, and greenbug. Plant Disease, 1985, 69(4): 314-316.

[7]Huang L, Gill B S. An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theoretical and Applied Genetics, 2001, 103: 1007-1013.

[8]Hiebert C W, Thomas J B, Somers D J, McCallum B D, Fox S L. Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theoretical and Applied Genetics, 2007, 115: 877-884.

[9]Kerber E R. Resistance to leaf rust in hexaploid wheat: Lr32, a third gene derived from Triticum tauschii. Crop Science, 1987, 27: 204-206.

[10]Raupp W J, Singh S, Brown-Guedira G L, Gill B S. Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theoretical and Applied Genetics, 2001, 102: 347-352.

[11]Cox T S, Raupp W J, Gill B S. Leaf rust-resistance genes Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Science, 1994, 34: 339-343.

[12]McIntosh R A, Lagudah E S. Cytogenetical studies in wheat. XVIII. Gene Yr24 for resistance to stripe rust. Plant Breeding, 2000, 119: 81-83.

[13]Singh R P, Nelson J C, Sorrells M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 2000, 40: 1148-1155.

[14]张海泉, 符晓棠, 郝晨阳, 张宝石. 小麦白粉病抗性基因的研究进展. 沈阳农业大学学报, 2003, 34(1): 68-71.

Zhang H Q, Fu X T, Hao C Y, Zhang B S. Progress of studies on powdery mildew resistance genes in wheat. Journal of Shenyang Agricultural University, 2003, 34(1): 68-71. (in Chinese)

[15]Miranda L M, Murphy J P, Marshall D, Leath S. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L). Theoretical and Applied Genetics, 2006, 113: 1497-1504.

[16]Miranda L M, Murphy J P, Marshall D, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 114: 1451-1456.

[17]孔令让, 董玉琛, 贾继增. 普通小麦与粗山羊草属间杂种的染色体构型及后代的育性特征. 实验生物学报, 1997, 30(1): 35-43.

Kong L R, Dong Y S, Jia J Z. Chromosome configurations and fertility characteristics of hybrids between Triticum aestivum L. and Aegilops tauschii (coss.) schmal. Acta Biologiae Experimentalis Sinica, 1997, 30(1): 35-43. (in Chinese)  

[18]张 娜, 杨文香, 王海燕, 郄艳敏, 贾继增, 刘大群. 23 个二倍体小麦材料抗叶锈性的分子鉴定. 麦类作物学报, 2008, 28(4): 691-696.

Zhang N, Yang W X, Wang H Y, Qie Y M, Jia J Z, Liu D Q. Molecular identification of leaf rust resistance in 23 diploid wild relatives of wheat. Journal of Triticeae Crops, 2008, 28(4): 691-696. (in Chinese)

[19]冯丽娜, 刘常红, 杨文香, 刘大群, 贾继增. 粗山羊草苗期抗叶  锈性鉴定及抗叶锈基因推导. 河北农业大学学报, 2008, 31(5): 75-80.

Feng L N, Liu C H, Yang W X, Liu D Q, Jia J Z. Resistance surveying of wheat leaf rust and postulation of resistant genes in Aegilops tauschii. Journal of Agricultural University of Hebei, 2008, 31(5): 75-80. (in Chinese)

[20]Roelfs A P, Singh R P, Saari E E. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico: D.F. ClMMYT, 1992: 7-14.

[21]Gill K S, Lubbers E L, Gill B S, Raupp W J, Cox T S. A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome, 1991, 34: 362-374.

[22]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88: 9828-9832.

[23]Dubin H J, Johnson R. Postulated genes for resistance to strip rust in selected CIMMYT and related wheats. Plant Disease, 1989, 73: 472-475.

[24]Singh S, Franks C D, Huang L, Brown-Guedira G L, Marshall D S, Gill B S, Fritz A. Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theoretical and Applied Genetics, 2004, 108: 586-591.

[25]McIntosh R A, Dubcovsky J, Rogers W J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat: 2010 supplement. Annual Wheat Newsletter, 2010: www. shigen.nig.ac.jp/wheat/komugi/genes/ macgene/supplement 2010.

[26]Boyko E V, Gill K S, Mickelson-Young L, Nasuda S, Raupp W J, Ziegle J N, Singh S, Hassawi D S, Fritz A K, Namuth D, Lapitan N L V, Gill B S. A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat. Theoretical and Applied Genetics, 1999, 99: 16-26.
[1] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[2] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[3] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[4] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[5] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[6] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[7] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[8] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[9] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[10] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[11] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[12] XingXiang GAO,Jian LI,Shuai ZHANG,YueLi ZHANG,Feng FANG,Mei LI,LianYang BAI,ShuangYing ZHANG. Spread and Resistance Level of Aegilops tauschii to Mesosulfuron- Methyl in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 969-979.
[13] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[14] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[15] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!