Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (3): 602-612.doi: 10.3864/j.issn.0578-1752.2022.03.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin

TANG ZiYun(),HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing()   

  1. College of Veterinary Medicine, South China Agricultural University/Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation/Guangdong Laboratory for Lingnan Modern Agriculture/National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642
  • Received:2020-12-10 Accepted:2021-07-08 Online:2022-02-01 Published:2022-02-11
  • Contact: ZhenLing ZENG E-mail:1598387644@qq.com;zlzeng@scau.edu.cn

Abstract:

【Objective】 The aim of this study was to investigate the epidemiological characteristics of Staphylococcus aureus (S. aureus) in the biofilm producing strains and to explore the correlation between biofilm forming ability and molecular typing, so as to provide the theoretical basis for the treatment of S. aureus infection. 【Method】 The biofilm producing ability of all strains of S. aureus was determined by crystal violet semi-quantitative method. The minimum inhibitory concentrations of 22 common antibiotics were determined by the membrane producing strains. Molecular typing was conducted by three common typing methods of S. aureus, including spa typing, MLST typing and PFGE typing, and the correlation between membrane production capacity and molecular typing was analyzed. Finally, whole genome sequencing technology was used to analyze the antibiotics resistance gene and virulence genes in the biofilm producing strains. 【Result】 The semi-quantitative results of crystalline violet showed that a total of 23 strains (23.47%) of 98 S. aureus strains were able to produce biofilm, including 22 strains (25.29%, 22/87) from cow milk source, 14 strains (60.87%, 14/22) from Zhejiang dairy farms, 8 strains (39.13%, 8/22) from Fujian dairy farms, and 1 strain from pig source (9.10%, 1/11) from Guangdong slaughterhouse, indicating that the film-producing potential of S. aureus from cow's milk source was higher than that of pig source, 22 strains (95.65%) of which were from cow's milk source and 1 strain (4.35%) was from pig source. The film-producing ability was classified into strong, medium and weak, and among the 23 film-producing strains, 2 strains (8.70%, 2/23) were strong film-producing strains, 9 strains (39.13%, 9/23) were medium, and 12 strains (52.17%, 12/23) were weak. The results of the drug sensitivity test showed that the bovine milk-derived membrane- producing strains were sensitive to all the tested antibacterial drugs, while the pig-derived membrane-producing strains showed resistance to 13 antibacterial drugs, including penicillin, amoxicillin, ceftiofur, cefoxitin, enrofloxacin, ciprofloxacin, clindamycin, doxycycline, erythromycin, flupenthixol, cotrimoxazole, tiamulin, and tilmicosin. The spa typing results showed that 98 strains of S. aureus obtained 8 spa types, and 23 strains of film-producing S. aureus accounted for 3 of them: 1 strain t2922 from porcine origin in Guangdong, 14 strains t2119 from Zhejiang cow milk source, and 8 strains t189 from Fujian cow milk source. MLST typing results showed that 98 strains were classified into 9 ST types, of which 6 ST types did not have the ability to produce biofilm, namely ST398, ST522, ST705, ST1651, ST479 and ST151, and only 3 strains of ST type had biofilm production ability, namely ST9, ST7 and ST188. It was found that the molecular types of strong film-producing strains were mainly ST7-t2119, the medium film-producing strains were mainly ST7-t2119 and ST188-t189, and the weak film-producing strains were ST9-t2922, ST7-t2119 and ST188-t189. The ST type of weak film-producing strains could be well distinguished from the medium and strong film-producing strains, and only the specific ST type of S. aureus had the ability to produce biofilm. 23 film-producing strains PFGE typing all successful PFGE typing results showed that the results show that each strain of film-producing bacteria in Guangdong, Fujian and Zhejiang provinces were divided into 3 PFGE types, and there were geographical distribution characteristics of PFGE types; the strains isolating from the same region had clonal transmission, and the strains in the province were clonal to each other, but there were significant differences in biofilm production ability between clones.; the whole genome sequencing results showed that the drug resistance genes and virulence genes in the film-producing strains were diverse according to the molecular type. 【Conclusion】 S. aureus from different sources had different potential to produce biofilm and all carried different film-producing genes. The film-producing potential of S. aureus from bovine milk source was much higher than that of porcine source, and all carrid different film-producing genes. Whether strains could produce film or not may be strongly correlated with ST type, and the specific ST types, such as ST9, ST7 and ST188, were more likely to produce biofilm; however, at the same time, the strains with the same molecular type had different abilities to produce biofilm.

Key words: Staphylococcus aureus, biofilm, antibiotics resistance gene, molecular typing, virulence genes

Table 1

Strains information in this study"

采样地区
Location
采样时间(年-月)
Date(year-month)
样品类型
Type
样品来源
Source
样品数量
Number
广东Guangdong 2019-09 猪鼻拭子 Pig nasal swabs 屠宰场Slaughter house 11
浙江Zhejiang 2019-09 牛乳Milk 奶牛场Dairy farm 55
福建Fujian 2019-08 牛乳Milk 奶牛场Dairy farm 32
总计Total - - - 98

Table 2

Primers of spa-typing"

引物名称Primer 引物序列(5′ to 3′)
Primer sequence (5′ to 3′)
Tm
(℃)
参考文献 Reference
spa F:TAAAGACGATCCTTCGGTGAGC
R:CAGCAGTAGTGCCGTTTGCTT
60 [16]

Table 3

Primers of MLST-typing"

引物
名称
Primer
引物序列(5′ to 3′)
Primer sequence(5′ to 3′)
大小Target length (bp) 参考文献
Reference
arcC F:TTGATTCACCAGCGCGTATTGTC
R:AGGTATCTGCTTCAATCAGCG
456 [17]
aroE F:ATCGGAAATCCTATTTCACATTC
R:GGTGTTGTATTAATAACGATATC
456 [17]
glpF F:CTAGGAACTGCAATCTTAATCC
R:TGGTAAAATCGCATGTCCAATTC
456 [17]
gmk F:ATCGTTTTATCGGGACCATC
R:TCATTAACTACAACGTAATCGTA
429 [17]
pta F:GTTAAAATCGTATTACCTGAAGG
R:GACCCTTTTGTTGAAAAGCTTAA
474 [17]
tpi F:TCGTTCATTCTGAACGTCGTGAA
R:TTTGCACCTTCTAACAATTGTAC
402 [17]
yqiL F:CAGCATACAGGACACCTATTGGC
R:CGTTGAGGAATCGATACTGGAAC
512 [17]

Table 4

Molecular typing and antibiotic phenotype of BF strains"

菌株名称
Strains
采样地区
Location
样品类型
Type
来源
Source
spa MLST PFGE 耐药表型
Antibiotic phenotype
GDE9P-69A 广东
Guangdong
猪鼻拭子
Pig nasal swabs
屠宰场
Slaughter house
2922 9 II AMO/CEF/CIP/CLI/DOX/ENR/ERY/FFC/FOX/PEN/SXT/TIA/TIM
FJH9M-4A 福建Fujian 牛乳Milk 奶牛场Dairy farm 189 188 III NT
FJH9M-11A 福建Fujian 牛乳Milk 奶牛场Dairy farm 189 188 III NT
FJH9M-16A 福建Fujian 牛乳Milk 奶牛场Dairy farm 189 188 III NT
FJH9M-17A 福建Fujian 牛乳Milk 奶牛场Dairy farm 189 188 III NT
FJH9M-32A 福建Fujian 牛乳Milk 奶牛场Dairy farm 189 188 III NT
FJH9M-47A 福建Fujian 牛乳Milk 奶牛场Dairy farm 189 188 III NT
FJH9M-48A 福建Fujian 牛乳Milk 奶牛场Dairy farm 189 188 III NT
FJH9M-50A 福建Fujian 牛乳Milk 奶牛场Dairy farm 189 188 III NT
ZJG9M-2A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-5A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-6A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-8A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-10A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-11A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-15A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-16A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-18A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-28A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-30A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-31A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-33A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT
ZJG9M-45A 浙江Zhejiang 牛乳Milk 奶牛场Dairy farm 2119 7 I NT

Fig. 1

Relationship between BF producing capacity and ST typing"

Fig. 2

Distribution of ST type in BF producing strains"

Fig. 3

Results of PFGE typing"

Table 5

Characteristics of S. aureus spa typing"

采样地区Location 样本类型Type Spa 组合Combination 数量 Total
广东Guangdong 猪鼻拭子 Pig nasal swabs t2922 07-16-23-34 1
浙江Zhejiang 牛乳Milk t2119 07-23-12-12-23-02-12-23 14
福建Fujian 牛乳Milk t189 07-23-12-21-17-34 8

Fig. 4

Diversity of drug-resistant genes, virulence genes and BF producing genes in BF strains"

[1] NEAMAH A J, AYYEZ H N, KLAIF S F, KHUDHAIR Y I, HUSSAIN M H. Molecular and phylogenetic study of Staphylococcus aureus isolated from human and cattle of Al-Qadisiyah Governorate, Iraq. Veterinary World, 2019, 12(9):1378-1382. doi: 10.14202/ vetworld.2019.1378-1382
doi: 10.14202/ vetworld.2019.1378-1382
[2] 苏洋, 蒲万霞, 陈智华, 邓海平. 牛源金黄色葡萄球菌的耐药性及耐甲氧西林金黄色葡萄球菌的检测. 中国农业科学, 2012, 45(17):3602-3607.
SU Y, PU W X, CHEN Z H, DENG H P. Antimicrobial resistance analysis and detection of methicillin-resistant Staphylococcus aureus (MRSA) among Staphylococcus aureus strains isolated from bovine mastitis. Scientia Agricultura Sinica, 2012, 45(17):3602-3607. (in Chinese)
[3] LI H, ANDERSEN P S, STEGGER M, SIEBER R N, INGMER H, STAUBRAND N, DALSGAARD A, LEISNER J J. Antimicrobial resistance and virulence gene profiles of methicillin-resistant and- susceptible Staphylococcus aureus from food products in Denmark. Frontiers in Microbiology, 2019, 10:2681. doi: 10.3389/fmicb.2019. 02681.
doi: 10.3389/fmicb.2019. 02681
[4] 王璇, 王娉, 葛毅强, 陈颖. 食品中金黄色葡萄球菌致病性研究进展. 中国人兽共患病学报, 2017, 33(6):553-558. doi: 10.3969/j.issn. 1002-2694. 2017.06.016.
doi: 10.3969/j.issn. 1002-2694. 2017.06.016
WANG X, WANG P, GE Y Q, CHEN Y. Review on pathogenicity of Staphylococcus aureus in food. Chinese Journal of Zoonoses, 2017, 33(6):553-558. doi: 10.3969/j.issn.1002-2694.2017.06.016. (in Chinese)
doi: 10.3969/j.issn. 1002-2694. 2017.06.016
[5] FANG R D, CUI J C, CUI T T, GUO H Y, ONO H K, PARK C H, OKAMURA M, NAKANE A, HU D L. Staphylococcal enterotoxin C is an important virulence factor for mastitis. Toxins, 2019, 11(3):141. doi: 10.3390/toxins11030141.
doi: 10.3390/toxins11030141
[6] JAVDAN S, NARIMANI T, ABADI M S S, GHOLIPOUR A. Agr typing of Staphylococcus aureus species isolated from clinical samples in training hospitals of Isfahan and Shahrekord. BMC Research Notes, 2019, 12(1):363. doi: 10.1186/s13104-019-4396-8.
doi: 10.1186/s13104-019-4396-8
[7] SONESSON A, PRZYBYSZEWSKA K, ERIKSSON S, MÖRGELIN M, KJELLSTRÖM S, DAVIES J, POTEMPA J, SCHMIDTCHEN A. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Scientific Reports, 2017, 7:8689. doi: 10.1038/ s41598-017-08046-2.
doi: 10.1038/ s41598-017-08046-2
[8] OTTO M. Staphylococcal biofilms. Microbiology Spectrum, 2018, 6(4). doi: 10.1128/microbiolspec.GPP3-0023-2018.
doi: 10.1128/microbiolspec.GPP3-0023-2018
[9] BASANISI M G, BELLA G L, NOBILI G, FRANCONIERI I, SALANDRA G L. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiology, 2017, 62:141-146. doi: 10.1016/j.fm.2016.10.020.
doi: 10.1016/j.fm.2016.10.020
[10] LI X L, ZHOU Y, ZHAN X L, HUANG W C, WANG X. Breast milk is a potential reservoir for livestock-associated Staphylococcus aureus and community-associated Staphylococcus aureus in Shanghai, China. Frontiers in Microbiology, 2018, 8:2639. doi: 10.3389/fmicb.2017.02639.
doi: 10.3389/fmicb.2017.02639
[11] MA D Z, MANDELL J B, DONEGAN N P, CHEUNG A L, MA W Y, ROTHENBERGER S, SHANKS R M Q, RICHARDSON A R, URISH K L. The toxin-antitoxin MazEF drives Staphylococcus aureus biofilm formation, antibiotic tolerance, and chronic infection. mBio, 2019, 10(6):e01658-19. doi: 10.1128/mBio.01658-19.
doi: 10.1128/mBio.01658-19
[12] OTTO M. Staphylococcal biofilms. Microbiology Spectrum, 2018, 6(4):207-228. doi: 10.1128/microbiolspec.gpp3-0023-2018.
doi: 10.1128/microbiolspec.gpp3-0023-2018
[13] KIM M K, ZHAO A S, WANG A, BROWN Z Z, MUIR T W, STONE H A, BASSLER B L. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nature Microbiology, 2017, 2:17080. doi: 10.1038/nmicrobiol.2017.80.
doi: 10.1038/nmicrobiol.2017.80
[14] MOORMEIER D E, BAYLES K W. Staphylococcus aureus biofilm: A complex developmental organism. Molecular Microbiology, 2017, 104(3):365-376. doi: 10.1111/mmi.13634.
doi: 10.1111/mmi.13634
[15] 房诗薇, 黄玲利, 谢书宇, 王玉莲, 瞿玮, 程古月, 刘振利, 袁宗辉, 郝海红. 兽用抗菌药耐药判定标准的研究进展. 中国抗生素杂志, 2019, 44(6):667-673. doi: 10.13461/j.cnki.cja.006669.
doi: 10.13461/j.cnki.cja.006669
FANG S W, HUANG L L, XIE S Y, WANG Y L, QU W, CHENG G Y, LIU Z L, YUAN Z H, HAO H H. Study progress on breakpoints of veterinary antibiotics. Chinese Journal of Antibiotics, 2019, 44(6):667-673. doi: 10.13461/j.cnki.cja.006669. (in Chinese)
doi: 10.13461/j.cnki.cja.006669
[16] 张林吉, 张小荣, 曹永忠, 巢国祥, 任士飞, 吴艳涛. 金黄色葡萄球菌肠毒素基因与MLST及spa分子克隆相关性研究. 中国病原生物学杂志, 2018, 13(5):449-456. doi: 10.13350/j.cjpb.180501.
doi: 10.13350/j.cjpb.180501
ZHANG L J, ZHANG X R, CAO Y Z, CHAO G X, REN S F, WU Y T. Diversity of enterotoxin genes of Staphylococcus aureus and characterization of S. aureus clones. Journal of Pathogen Biology, 2018, 13(5):449-456. doi: 10.13350/j.cjpb.180501. (in Chinese)
doi: 10.13350/j.cjpb.180501
[17] ENRIGHT M C, DAY N P, DAVIES C E, PEACOCK S J, SPRATT B G. Multilocus sequence typing for characterization of methicillin- resistant and methicillin-susceptible clones of Staphylococcus aureus. Journal of Clinical Microbiology, 2000, 38(3):1008-1015. doi: 10.1128/JCM.38.3.1008-1015.2000.
doi: 10.1128/JCM.38.3.1008-1015.2000
[18] 刘保光, 蔡田, 李小申, 刘营营, 贺丹丹, 匡秀华, 高延玲, 胡功政. 牛奶源金黄色葡萄球菌血清型、毒力基因及PFGE分型. 食品科学, 2019, 40(2):281-286. doi: 10.7506/spkx1002-6630-20180110-124.
doi: 10.7506/spkx1002-6630-20180110-124
LIU B G, CAI T, LI X S, LIU Y Y, HE D D, KUANG X H, GAO Y L, HU G Z. Serotyping, virulence genes and pulsed field gel electrophoresis (PFGE) typing of Staphylococcus aureus isolated from fresh milk. Food Science, 2019, 40(2):281-286. doi: 10.7506/spkx1002-6630-20180110-124. (in Chinese)
doi: 10.7506/spkx1002-6630-20180110-124
[19] LUTHER M K, PARENTE D M, CAFFREY A R, DAFFINEE K E, LOPES V V, MARTIN E T, LAPLANTE K L. Clinical and genetic risk factors for biofilm-forming Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2018, 62(5):e02252-17. doi: 10.1128/ AAC.02252-17.
doi: 10.1128/ AAC.02252-17
[20] PAHARIK A E, HORSWILL A R. The staphylococcal biofilm: adhesins, regulation, host response. Microbiology Spectrum, 2016, 4(2): 10. 1128/microbiolspec.VMBF-22. doi: 10.1128/microbiolspec.VMBF-0022-2015.
doi: 10.1128/microbiolspec.VMBF-0022-2015
[21] LAKSHMI S A, BHASKAR J P, KRISHNAN V, SETHUPATHY S, PANDIPRIYA S, ARUNI W, PANDIAN S K. Inhibition of biofilm and biofilm-associated virulence factor production in methicillin- resistant Staphylococcus aureus by docosanol. Journal of Biotechnology, 2020, 317:59-69. doi: 10.1016/j.jbiotec.2020.04.014.
doi: 10.1016/j.jbiotec.2020.04.014
[22] 吴帆. 宁夏地区牛源金黄色葡萄球菌生物被膜相关基因检测及耐药性研究[D]. 银川: 宁夏大学, 2017.
WU F. Study on detection of bofilm genes and antimicrobial resistance of Staphylococcus aureus isolated from cow in ningxia[D]. Yinchuan: Ningxia University, 2017. (in Chinese)
[23] 郭慧琴, 李田, 肖鹏, 余茂林, 姜中其. 牛源金黄色葡萄球菌的分离鉴定、耐药性分析及木糖醇对生物被膜形成的干预. 中国兽医学报, 2019, 39(5):889-893. doi: 10.16303/j.cnki.1005-4545.2019.05.14.
doi: 10.16303/j.cnki.1005-4545.2019.05.14
GUO H Q, LI T, XIAO P, YU M L, JIANG Z Q. Isolation, identification and bacterial resistance of dairy cows' Staphylococcus aureus and intervention of biofilm formation by xylitol. Chinese Journal of Veterinary Science, 2019, 39(5):889-893. doi: 10.16303/j.cnki.1005-4545.2019.05.14. (in Chinese)
doi: 10.16303/j.cnki.1005-4545.2019.05.14
[24] 李宝明, 戴命子, 李学钊. 奶牛乳房炎的诊治. 中国牛业科学, 2019, 45(6):92-93. doi: 10.3969/j.issn.1001-9111.2019.06.030.
doi: 10.3969/j.issn.1001-9111.2019.06.030
LI B M, DAI M Z, LI X Z. Diagnosis and treatment of mastitis in dairy cows. China Cattle Science, 2019, 45(6):92-93. doi: 10.3969/j.issn.1001-9111.2019.06.030. (in Chinese)
doi: 10.3969/j.issn.1001-9111.2019.06.030
[25] CHEN L, TANG Z Y, CUI S Y, MA Z B, DENG H, KONG W L, YANG L W, LIN C, XIONG W G, ZENG Z L. Biofilm production ability, virulence and antimicrobial resistance genes in Staphylococcus aureus from various veterinary hospitals. Pathogens (Basel, Switzerland), 2020, 9(4):264. doi: 10.3390/pathogens9040264.
doi: 10.3390/pathogens9040264
[26] ANTÓK F I, MAYRHOFER R, MARBACH H, MASENGESHO J C, KEINPRECHT H, NYIRIMBUGA V, FISCHER O, LEPUSCHITZ S, RUPPITSCH W, EHLING-SCHULZ M, FEßLER A T, SCHWARZ S, MONECKE S, EHRICHT R, GRUNERT T, SPERGSER J, LONCARIC I. Characterization of antibiotic and biocide resistance genes and virulence factors of Staphylococcus species associated with bovine mastitis in Rwanda. Antibiotics (Basel, Switzerland), 2019, 9(1):1. doi: 10.3390/antibiotics9010001.
doi: 10.3390/antibiotics9010001
[27] 吴文学, 李秀波, 王瑞, 王朋朋, 田欣睿, 张海燕, 焦晓宇, 李金祥. 奶牛乳房炎的发病机制. 中国兽医杂志, 2019, 55(10):113-116.
WU W X, LI X B, WANG R, WANG P P, TIAN X R, ZHANG H Y, JIAO X Y, LI J X. Pathogenesis of mastitis in dairy cows. Chinese Journal of Veterinary Medicine, 2019, 55(10):113-116. (in Chinese)
[28] LIMA M G B, BLAGITZ M G, SOUZA F N, SANCHEZ E M R, BATISTA C F, BERTAGNON H G, DINIZ S A, SILVA M X, LIBERA A M, DELLA M P. Profile of immunoglobulins, clinical and bacteriological cure after different treatment routes of clinical bovine mastitis. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia , 2018, 70(4):1141-1149. doi: 10.1590/1678-4162-9695.
doi: 10.1590/1678-4162-9695
[29] Prevalence of bovine mastitis in the Anaime Canyon, a Colombian dairy region, including etiology and antimicrobial resistance. Revista de Investigaciones Veterinarias del Perú, 2018, 29(1):226-293. doi. org/10.15381/rivep.v29i1.14084.
doi: org/10.15381/rivep.v29i1.14084
[30] CUI S H, LI J Y, HU C Q, JIN S H, LI F Q, GUO Y C, RAN L, MA Y. Isolation and characterization of methicillin-resistant Staphylococcus aureus from swine and workers in China. Journal of Antimicrobial Chemotherapy, 2009, 64(4):680-683. doi: 10.1093/jac/dkp275.
doi: 10.1093/jac/dkp275
[31] 李德喜. 恶唑烷酮类耐药基因cfr和optrA在猪源MRSA和CoNS中流行及传播机制的研究[D]. 北京: 中国农业大学, 2016.
LI D X. The epidemiological study on the oxazolidinones resistance genescfr and OptrA and theirs transmission mechanism among MRSA and CoNS isolates from swine[D]. Beijing: China Agricultural University, 2016. (in Chinese)
[1] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[2] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[3] YANG Jun,CHU PinPin,SONG Shuai,CAI RuJian,YANG DongXia,BIAN ZhiBiao,GOU HongChao,LI Yan,JIANG ZhiYong,LI ChunLing,YAN He. Construction of lpxM Gene Deletion Strain of Haemophilus parasuis and It's Some Biological Characteristics [J]. Scientia Agricultura Sinica, 2020, 53(16): 3394-3403.
[4] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
[5] BAI Hao, HAN Xian-Gan, LIU Lei, DAN Xue-Qin, SONG Jun, LIU Rui, DONG Hong-Liang, LIU Hai-Wen, DING Chan, YU Sheng-Qing. The Regulation of Autoinducer-2 in Avian Pathogenic Escherichia coli [J]. Scientia Agricultura Sinica, 2012, 45(24): 5110-5116.
[6] LI Li,YANG Hong-jun,LIU Dai-cheng,HE Hong-bin,WANG Chang-fa,ZHONG Ji-feng,GAO Yun-dong
. Biofilm Formation and Analysis of Associated Genes Involved in Staphylococcus Isolates from Bovine Mastitis
[J]. Scientia Agricultura Sinica, 2011, 44(1): 160-166 .
[7] WANG Xiu-mei,JIANG Hong-xia,LIAO Xiao-ping,ZHANG Wan-jiang,ZHU Heng-qian,ZHANG Yue,LIU Ya-hong
. Prevalence of Serotypes and Virulence Genes and Antimicrobial Susceptibility of Pathogenic Escherichia coli Isolates from Swine
[J]. Scientia Agricultura Sinica, 2010, 43(19): 4109-4115 .
[8] . Identification of 16SrDNA and Research on Acylated Homoserine Lactones Produced by Pseudomomas Isolated from the Fish [J]. Scientia Agricultura Sinica, 2007, 40(7): 1486-1491 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!