Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 969-979.doi: 10.3864/j.issn.0578-1752.2021.05.009

• PLANT PROTECTION • Previous Articles     Next Articles

Spread and Resistance Level of Aegilops tauschii to Mesosulfuron- Methyl in Winter Wheat Field of Shandong Province

XingXiang GAO1(),Jian LI1(),Shuai ZHANG2,YueLi ZHANG1,Feng FANG1,Mei LI1(),LianYang BAI3(),ShuangYing ZHANG4   

  1. 1Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji’nan 250100;
    2National Agro-Tech Extension and Service Center, Beijing 100125
    3Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha 410125
    4Shandong Qiaochang Modern Agriculture Co. , Ltd, Binzhou 256600, Shandong
  • Received:2020-04-27 Accepted:2020-06-12 Online:2021-03-01 Published:2021-03-09
  • Contact: Mei LI,LianYang BAI E-mail:xingxiang02@163.com;lijian910@163.cm;limei9909@163.com;lybai@hunaas.cn

Abstract:

【Background】Aegilops tauschii, a malignant weed, is a wild relative plant of wheat, which is one of the 10 most malignant weeds recognized in the world. At present, only the ALS inhibitor herbicide mesosulfuron-methyl can be used as treatment agent for post-seedling. The effect of mesosulfuron-methyl was decreased in some areas after years of application in wheat fields, which may be related to resistance. 【Objective】The objective of this study is to clarify the spread law and resistance level of A. tauschii to mesosulfuron-methyl in Shandong Province, and to provide a theoretical basis for the establishment of the precise regional control of A. tauschii in winter wheat field of Shandong Province. 【Method】The distribution and spread of A. tauschii in winter wheat field of Shandong Province was investigated three times in the decade of 2009-2019, and whole-plant dose response experiments were conducted to determine the resistance level of 62 A. tauschii populations collected in Shandong Province to mesosulfuron-methy in glasshouses.【Result】The results on the spread of A. tauschii showed that the distribution area was gradually expanding and the harm degree was more and more serious. In 2009 to 2010, A. tauschii mainly distributed in Shandong northwest plain region, middle mountain region and northern coastal region, with a total relative abundance 3.18; in 2013 to 2014, A. tauschii had been widely distributed in the northwest plain and other 4 regions, with a total relative abundance 7.33; in 2018 to 2019, this weed occurred in a large area throughout Shandong Province, with a total relative abundance 11.38. The results on resistance level showed that 20 populations had a certain degree of resistance to mesosulfuron-methyl, which distributed in Shandong northwest plain region, southwest plain region and middle mountain region, and no resistance population was found in other areas. The low resistance and middle resistance populations were 16 (RI ranged from 5.00 to 10.00) and 4 (RI ranged from 10.00 to 15.00), which accounted for 25.81% and 6.45% of the total population, respectively. The maximum RI was 12.63, and no high resistance population was found. Target site mutations were detected in 4 middle resistance populations, and no site mutation was detected.【Conclusion】The A. tauschii has been distributed all over Shandong Province, and its dominance and harmfulness are increasing year by year. Although there is no high resistance population to mesosulfuron-methyl, but there are 32.26% low or middle resistance populations. No site mutation was found in the target mechanism test. In view of the winter wheat field dominated by A. tauschii, it is not only necessary to rely on mesosulfuron-methyl for control, but also to promote the comprehensive control of A. tauschii combined with deep ploughing and other agricultural measures. The soil-treated herbicide is also a good way to reduce weed resistance.

Key words: Aegilops tauschii, mesosulfuron-methyl, Shandong Province, resistance level, spread and dissemination

Table 1

Information table of collecting sites of 62 A. tauschii populations"

种植区域
Planting area
种群编号
Population code
采集地点
Collecting site
种植区域
Planting area
种群编号
Population code
采集地点
Collecting site
西北平原区
The northwest plain region
DZ-BMC 德州市夏津县白马城镇
Baimacheng Town, Xiajin County, Dezhou City
中部山区
The middle mountain region
JNA-LS 济南市章丘区龙山镇
Longshan Town, Zhangqiu District, Ji’nan City
DZ-DJ 德州市宁津县杜集镇
Duji Town, Ningjin County, Dezhou City
JNA-TP 济南市济阳区太平镇
Taiping Town, Jiyang District, Ji’nan City
DZ-EC 德州市平原县恩城镇
Encheng Town, Pingyuan County, Dezhou City
JNA-XZ 济南市长清区夏张镇
Xiazhang Town, Changqing District, Ji’nan City
DZ-FS 德州市禹城区房寺镇
Fangsi Town, Yucheng District, Dezhou City
TA-CH 泰安市宁阳县漕河镇
Caohe Town, Ningyang County, Taian City
DZ-GJ 德州市乐陵县郭家镇
Guojia Town, Laoling County, Dezhou City
TA-DY 泰安市东平县大洋镇
Dayang Town, Dongping County, Taian City
DZ-HJ 德州市夏津县霍集镇
Huoji Town, Xiajin County, Dezhou City
TA-HJL 泰安市肥城县胡家楼镇
Hujialou Town, Feicheng County, Taian City
DZ-JMY 德州市武城县甲马营镇
Jiamaying Town, Wucheng County, Dezhou City
TA-MZ 泰安市岱岳区满庄镇
Manzhuang Town, Daiyue District, Taian City
DZ-M 德州市陵城区糜镇
Mi Town, Lingcheng District, Dezhou City
TA-SZ 泰安市泰山区省庄镇
Shengzhuang Town, Taishan District, Taian City
DZ-WC 德州市武城县武城镇
Wucheng Town, Wucheng County, Dezhou City
ZB-QL 淄博市临淄区齐陵镇
Qiling Town, Linzi District, Zibo City
DZ-XSD 德州市夏津县新盛店镇
Xinshengdian Town, Xiajin County, Dezhou City
北部滨海区
The northern coastal region
ZB-QC 淄博市高青县青城镇
Qingcheng Town, Gaoqing County, Zibo City
LC-DYZ 聊城市冠县定远寨镇
Dingyuanzhai Town, Guan County, Liaocheng City
BZ-TZ 滨州市邹平县台子镇
Taizi Town, Zouping County, Binzhou City
LC-HY 聊城市东昌府区侯营镇
Houying Town, Dongchangfu District, Liaocheng City
BZ-HJ 滨州市惠民县胡集镇
Huji Town, Huimin County, Binzhou City
LC-SD 聊城市临清县尚店镇
Shangdian Town, Linqing County, Liaocheng City
BZ-LD 滨州市阳信县劳店镇
Laodian Town, Yangxin County, Binzhou City
LC-XH 聊城市阳谷县西湖镇
Xihu Town, Yanggu County, Liaocheng City
DY-BS 东营市利津县北宋镇
Beisong Town, Lijin County, Dongying City
LC-YQH 聊城市高唐县鱼邱湖办事处
Yuqiuhu Office, Gaotang County, Liaocheng City
南部山区
The southern mountain region
LY-GQ 临沂市沂水县高桥镇
Gaoqiao Town, Yishui County, Linyi City
LC-ZZZ 聊城市高唐县赵寨子镇
Zhaozhaizi Town, Gaotang County, Liaocheng City
LY-LZ 临沂市兰陵县卢柞镇
Luzuo Town, Lanling County, Linyi City
西南平洼区
The southwest plain region
HZ-DK 菏泽市鄄城县董口镇
Dongkou Town, Juancheng County, Heze City
LY-QT 临沂市沂南县青驼镇
Qingtuo Town, Yi’nan County, Linyi City
HZ-HX 菏泽市牡丹区皇乡镇
Huangxiang Town, Mudan District, Heze City
LY-SL 临沂市郯城县胜利镇
Shengli Town, Tancheng County, Linyi City
HZ-LH 菏泽市单县莱河镇
Laihe Town, Shan County, Heze City
LY-TS 临沂市平邑县铜石镇
Tongshi Town, Pingyi County, Linyi City
HZ-SG 菏泽市定陶县冉堌镇
Rangu Town, Dingtao County, Heze City
LY-TY 临沂市费县探义镇
Tanyi Town, Fei County, Linyi City
HZ-TZ 菏泽市巨野县田庄镇
Tianzhuang Town, Juye County, Heze City
ZZ-ZW 枣庄市滕州市张汪镇
Zhangwang Town, Tengzhou City, Zaozhuang City
JNI-GC 济宁市汶上县郭仓镇
Guocang Town, Wenshang County, Jining City
胶东丘陵区
Hill regions
of eastern Shandong
QD-HTD 青岛市莱西市河头店镇
Hetoudian Town, Laixi City, Qingdao City
JNI-HG 济宁市梁山县韩岗镇
Hangang Town, Liangshan County, Jining City
QD-YS 青岛市平度市云山镇
Yunshan Town, Pingdu City, Qingdao City
JNI-LT 济宁市鱼台县罗屯镇
Luotun Town, Yutai County, Jining City
RZ-KG 日照市五莲县叩关镇
Kouguan Town, Wulian County, Rizhao City
JNI-NZ 济宁市任城区南张镇
Nanzhang Town, Rencheng District, Jining City
RZ-XD 日照市莒县小店镇
Xiaodian Town, Ju County, Rizhao City
JNI-TL 济宁市嘉祥县瞳里镇
Tongli Town, Jiaxiang County, Jining City
YT-SH 烟台市莱州市沙河镇
Shahe Town, Laizhou City, Yantai City
JNI-WS 济宁市汶上县汶上镇
Wenshang Town, Wenshang County, Jining City
胶潍河谷平原区
Plain regions
of middle Shandong
WF-BFZ 潍坊市安丘市白芬子镇
Baifenzi Town, Anqiu City, Weifang City
JNI-WZ 济宁市曲阜市王庄镇
Wangzhuang Town, Qufu City, Jining City
WF-CG 潍坊市高密市柴沟镇
Chaigou Town, Gaomi City, Weifang City
JNI-XX 济宁市曲阜市小雪镇
Xiaoxue Town, Qufu City, Jining City
WF-YQ 潍坊市昌乐县营丘镇
Yingqiu Town, Changle County, Weifang City
LW-K 莱芜市莱城区口镇
Kou Town, Laicheng District, Laiwu City
WF-YS 潍坊市临朐县沂山镇
Yishan Town, Linqu County, Weifang City
JNA-GD 济南市长清区归德镇
Guide Town, Changqing District, Ji’nan City
WF-ZG 潍坊市诸城市枳沟镇
Zhigou Town, Zhucheng City, Weifang City

Table 2

Primers used in this study"

引物名称
Primer name
序列
Sequence
扩增位点
Amplification site
Jals-11 5′-CTGCCTCACAGAAATCTCC-3′ 122, 197, 205, 376, 377
Jals-12 5′-TCCCCTTTTGTCAGCTCAT-3′
Jals-21 5′-AGATTGGCAAGAACAAGCAG-3′ 574, 653, 654
Jals-22 5′-CTTATGACAGCACATCCCTACA-3′

Fig. 1

Spread of A. tauschii in winter wheat fields in Shandong Province from 2009 to 2019 (Data of 2009-2010 from reference [5])"

Table 3

Resistance level of A. tauschii populations to mesosulfuron-methyl"

区域
Region
种群编号
Code name
回归方程
Regression equation (y=)
相关系数
Correlation coefficient
GR50
(95% CL)
相对抗性指数
RI
西北平原区
The northwest plain region
DZ-BMC 1.6414+2.3823x 0.9571 25.69 (19.64-37.22) 5.75
DZ-DJ 2.7510+1.7126x 0.9625 20.57 (14.84-30.88) 4.60
DZ-EC 0.8933+2.3445x 0.9540 56.45 (43.99-79.63) 12.63
DZ-FS 2.5721+1.9455x 0.9801 17.00 (15.38-20.55) 3.80
DZ-GJ 3.1395+1.3536x 0.979 23.69 (19.48-29.72) 5.30
DZ-HJ 2.9286+1.3574x 0.9473 33.57 (21.89-67.27) 7.51
DZ-JMY 1.8215+2.0327x 0.9382 36.61 (30.40-46.21) 8.19
DZ-M 2.9115+1.7662x 0.9258 15.22 (9.26-25.92) 3.40
DZ-WC 3.2068+1.3602x 0.9760 20.81 (17.23-25.72) 4.66
DZ-XSD 3.4077+0.9164x 0.9777 54.64 (37.97-92.98) 12.22
LC-DYZ 2.4271+1.9942x 0.9035 19.51 (14.87-26.93) 4.36
LC-HY 2.5370+1.8409x 0.9956 21.77 (18.69-25.83) 4.87
LC-SD 3.2928+1.5040x 0.9649 13.65 (11.48-16.20) 3.05
LC-XH 1.2459+2.7259x 0.9480 23.83 (17.05-40.16) 5.33
LC-YQH 2.3542+1.8971x 0.9761 24.81 (21.22-29.72) 5.55
LC-ZZZ 3.2431+1.1057x 0.9897 38.81 (29.51-55.77) 8.68
西南平洼区
The southwest plain region
HZ-DK 2.1165+1.6795x 0.9280 52.11 (28.73-219.78) 11.66
HZ-HX 2.8763+1.7662x 0.9791 15.94 (13.71-18.61) 3.57
HZ-LH 2.5985+1.7662x 0.9589 22.89 (15.62-39.02) 5.12
HZ-SG 2.7730+1.7662x 0.9669 18.23 (13.51-25.76) 4.08
HZ-TZ 2.4712+1.7662x 0.9907 27.03 (22.80-33.00) 6.05
区域
Region
种群编号
Code name
回归方程
Regression equation (y=)
相关系数
Correlation coefficient
GR50
(95% CL)
相对抗性指数
RI
JNI-GC 3.9007+1.0418x 0.9845 11.35 (8.82-14.34) 2.54
JNI-HG 3.0402+1.4605x 0.9386 21.97 (14.75-37.52) 4.91
JNI-LT 2.2569+1.7662x 0.9656 35.73 (24.77-63.73) 7.99
JNI-NZ 2.4873+1.4998x 0.9814 47.35 (36.84-65.89) 10.59
JNI-TL 2.4846+1.7662x 0.9233 26.56 (16.40-60.99) 5.94
JNI-WS 3.7081+0.9489x 0.9851 22.98 (17.72-31.38) 5.14
JNI-WZ 1.3495+2.5287x 0.9790 27.77 (24.09-32.90) 6.21
JNI-XX 2.3354+2.1662x 0.9060 16.99 (12.98-22.90) 3.80
中部山区
The middle mountain region
LW-K 1.2173+3.1559x 0.9786 15.80 (14.24-17.60) 3.53
JNA-GD 2.4627+2.0322x 0.9595 17.72 (12.96-25.45) 3.96
JNA-LS 3.4260+1.3826x 0.9692 13.75 (11.42-16.53) 3.08
JNA-TP 3.2598+1.2409x 0.9888 25.26 (20.41-32.53) 5.65
JNA-XZ 2.6086+1.4977x 0.9578 39.51 (31.49-52.79) 8.84
TA-CH 2.3271+2.0471x 0.9761 20.22 (15.20-28.67) 4.52
TA-DY 3.3863+1.5408x 0.9507 11.15 (7.75-15.34) 2.49
TA-HJL 3.1961+1.7662x 0.9598 10.50 (7.37-14.19) 2.35
TA-MZ 3.6318+1.3342x 0.9862 10.61 (8.63-12.82) 2.37
TA-SZ 3.9080+1.2523x 0.9711 4.47 (2.74-7.24) 1.00
ZB-QL 2.1253+2.0366x 0.9093 25.79 (19.14-38.90) 5.77
北部滨海区
The northern coastal region
ZB-QC 3.5432+1.4877x 0.9274 9.53 (5.03-15.15) 2.13
BZ-TZ 2.2802+2.1230x 0.9649 19.10 (14.09-27.63) 4.27
BZ-HJ 3.9106+1.1976x 0.9623 8.12 (6.28-10.10) 1.82
BZ-LD 3.7325+1.3620x 0.9341 8.52 (6.06-11.22) 1.73
DY-BS 3.9200+1.2143x 0.9197 7.75 (5.33-10.47) 2.73
南部山区
The southern mountain region
LY-GQ 4.1081+1.1602x 0.9182 5.8718 (3.77-8.28) 3.32
LY-LZ 3.1540+1.5768x 0.9530 14.82 (11.63-18.28) 1.98
LY-QT 2.0506+2.5039x 0.9814 15.06 (13.38-17.00) 3.37
LY-SL 3.5482+1.3820x 0.9893 11.23 (9.23-13.49) 2.51
LY-TS 3.6364+1.3993x 0.9452 9.43 (6.85-12.24) 1.58
LY-TY 3.9370+1.1220x 0.9868 8.86 (6.14-11.94) 2.11
ZZ-ZW 3.4027+1.5723x 0.9868 10.37 (8.65-12.25) 2.32
胶东丘陵区
Hill regions of eastern Shandong
QD-HTD 3.9361+1.1657x 0.9143 8.18 (5.64-11.05) 1.83
QD-YS 3.6976+1.2110x 0.9115 11.92 (8.78-15.44) 2.67
RZ-KG 3.4653+1.6632x 0.9581 8.37 (6.06-10.84) 1.31
RZ-XD 3.7148+1.2709x 0.9243 10.26 (7.46-13.37) 2.30
YT-SH 3.6279+1.3024x 0.9201 11.31 (5.27-18.94) 2.53
胶潍河谷平原区
Plain regions of middle Shandong
WF-BFZ 3.5350+1.5615x 0.9498 8.67 (6.29-11.24) 1.86
WF-CG 4.0989+1.1249x 0.9105 6.32 (4.11-8.86) 1.91
WF-YQ 3.6888+1.4592x 0.9467 7.92 (5.60-10.44) 1.94
WF-YS 3.6458+1.5950x 0.9586 7.06 (4.91-9.38) 1.77
WF-ZG 3.6313+1.4882x 0.9472 8.31 (5.95-10.88) 1.41

Fig. 2

Comparison of medium resistance population and sensitive population (TA-SZ: Sensitive population)"

[1] 王宁, 付亚军, 袁美丽, 刘征阳, 张铭鑫, 米银法. GA3浸种对入侵植物节节麦种子破眠及发芽特性的影响. 草业学报, 2020,29(2):73-81.
WANG N, FU Y J, YUAN M L, LIU Z Y, ZHANG M X, MI Y F. Effectiveness of exogenous GA3 for dormancy breaking in invasive Aegilops tauschii, and effect on germination physiology. Acta Prataculturae Sinica, 2020,29(2):73-81. (in Chinese)
[2] 王晓阳, 于海燕, 杨娟, 崔海兰, 于惠林, 李香菊. 不同环境因素对节节麦萌发的影响. 植物保护, 2019,45(3):196-200.
WANG X Y, YU H Y, YANG J, CUI H L, YU H L, LI X J. Effects of different environmental factors on seed germination of Aegilops tauschii Coss. Plant Protection, 2019,45(3):196-200. (in Chinese)
[3] 于海燕, 李香菊. 节节麦在我国的分布及其研究概况. 杂草学报, 2018,36(1):1-7.
YU H Y, LI X J. Distribution of Aegilops tauschii Coss. in China and its research progress. Journal of Weed Science, 2018,36(1):1-7. (in Chinese)
[4] 王宁, 袁美丽, 陈浩, 李真真, 张铭鑫. 干旱胁迫及复水对入侵植物节节麦幼苗生长及生理特性的影响. 草业学报, 2019,28(1):70-78.
WANG N, YUAN M L, CHEN H, LI Z Z, ZHANG M X. Effects of drought stress and rewatering on growth and physiological characteristics of invasive Aegilops tauschii seedlings. Acta Prataculturae Sinica, 2019,28(1):70-78. (in Chinese)
[5] 高兴祥, 李美, 房锋, 张悦丽, 孙作文, 齐军山. 山东省小麦田杂草组成及群落特征. 草业学报, 2014,23(5):92-98.
doi: 10.11686/cyxb20140510
GAO X X, LI M, FANG F, ZHANG Y L, SUN Z W, QI J S. Species composition and characterization of weed community in wheat fields in Shandong Province. Acta Prataculturae Sinica, 2014,23(5):92-98. (in Chinese)
doi: 10.11686/cyxb20140510
[6] 颜济, 杨俊良, 崔乃然, 钟骏平, 董玉琛, 孙雨珍, 仲干远. 新疆伊犁地区的节节麦(Aegilops tauschii Cosson). 作物学报, 1984,10(1):1-8.
YAN J, YANG J L, CUI N R, ZHONG J P, DONG Y C, SUN Y Z, ZHONG G Y. The Aegilops tauschii Cosson from Yili, Xinjiang, China. Acta Agronomica Sinica, 1984,10(1):1-8. (in Chinese)
[7] 王宁, 袁美丽, 李聪, 薄鹏纳, 潘翠玉, 刘春伟. 入侵植物节节麦种子休眠原因及解除方法研究. 草地学报, 2020,28(2):583-588.
WANG N, YUAN M L, LI C, BO P N, PAN C Y, LIU C W. Study on the causes and release of seed dormancy of an invasive plant Aegilops tauschii. Acta Agrestia Sinica, 2020,28(2):583-588. (in Chinese)
[8] WANG N, TIAN Y W, CHEN H. Mutual allelopathic effect between invasive plant Aegilops tauschii and wheat. International Journal of Agriculture and Biology, 2019,21(2):463-471.
[9] 王晓阳. 节节麦(Aegilops tauschii Coss.)生物学特性和遗传多样性[D]. 北京: 中国农业科学院, 2017.
WANG X Y. The biological characteristics and genetic diversity of Aegilops tauschii Coss.[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[10] ABBAS A. 不同非生物胁迫下节节麦种群遗传多样性及候选参考基因的筛选[D]. 北京: 中国农业科学院, 2019.
ABBAS A. Genetic diversity and suitable selection of candidate reference genes in Aegilops tauschii Coss. Populations of China under different abiotic stresses[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[11] 段美生, 杨宽林, 李香菊, 王贵启. 河北省南部小麦田节节麦发生特点及综合防除措施研究. 河北农业科学, 2005,9(1):72-74.
DUAN M S, YANG K L, LI X J, WANG G Q. Studies on characteristic of Aegilops tauschii occurrence and integrated control approaches in winter wheat in the south of Hebei Province. Journal of Hebei Agricultural Sciences, 2005,9(1):72-74. (in Chinese)
[12] 杨武云, 余毅, 胡晓蓉, 杨家秀, 颜济, 杨俊良, 郑有良. 节节麦及其在小麦生物技术育种中的研究与应用. 西南农业学报, 1999,12(增刊2):19-25.
YANG W Y, YU Y, HU X R, YANG J X, YAN J, YANG J L, ZHENG Y L. Exploring useful genes in Aegilops tausehii for modern commercial wheat improvement by biotechnology. Southwest China Journal of Agricultural Sciences, 1999,12(Suppl.2):19-25. (in Chinese)
[13] 张朝贤, 李香菊, 黄红娟, 魏守辉. 警惕麦田恶性杂草节节麦蔓延危害. 植物保护学报, 2007,34(1):103-106.
ZHANG C X, LI X J, HUANG H J, WEI S H. Alert and prevention of the spreading of Aegilops tauschii, a worst weed in wheat field. Journal of Plant Protection, 2007,34(1):103-106. (in Chinese)
[14] 房锋, 高兴祥, 魏守辉, 李燕, 李美, 张朝贤. 麦田恶性杂草节节麦在中国的发生发展. 草业学报, 2015,24(2):194-201.
doi: 10.11686/cyxb20150222
FANG F, GAO X X, WEI S H, LI Y, LI M, ZHANG C X. Occurrence and effects of Aegilops tauschii in China. Acta Prataculturae Sinica, 2015,24(2):194-201. (in Chinese)
doi: 10.11686/cyxb20150222
[15] 房锋, 张朝贤, 黄红娟, 李美, 高兴祥, 李燕, 魏守辉. 麦田节节麦发生动态及其对小麦产量的影响. 生态学报, 2014,34(14):3917-3923.
FANG F, ZHANG C X, HUANG H J, LI M, GAO X X, LI Y, WEI S H. The occurrence of Tausch’s goatgrass (Aegilops tauschii Coss.) in wheat fields and its effect on wheat yield. Acta Ecologica Sinica, 2014,34(14):3917-3923. (in Chinese)
[16] 高兴祥, 张悦丽, 李美, 房锋, 李健. 节节麦等三种禾本科杂草对不同性状土壤的适应性. 植物保护学报, 2019,46(4):832-839.
GAO X X, ZHANG Y L, LI M, FANG F, LI J. Adaptability of gramineous weeds Aegilops tauschii, Alopecurus myosuroides and Lolium multiflorum to different types of soil. Journal of Plant Protection, 2019,46(4):832-839. (in Chinese)
[17] 隋标峰. 节节麦(Aegilops tauschii Coss.)不同种群对甲基二磺隆的敏感性差异研究[D]. 北京: 中国农业科学院, 2010.
SUI B F. Basis of variable sensitivity to mesosulfuron-methyl in different Tausch’s goatgrass (Aegilops tauschii Coss.) population[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)
[18] 张百重, 谢兰芬, 李广领, 李鹏, 王建华, 朱明涛. 河南省不同地区节节麦对甲基二磺隆的敏感性. 河南科技学院学报(自然科学版), 2017,45(5):37-40.
ZHANG B Z, XIE L F, LI G L, LI P, WANG J H, ZHU M T. Mesosulfuron susceptibility of Aegilops tauschii in different populations of Henan Province. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2017,45(5):37-40. (in Chinese)
[19] 顾耘, 顾松东. 山东省农业昆虫的地理区划. 山东农业科学, 1995(3):23-27.
GU Y, GU S D. Geographical division of agricultural insects in Shandong Province. Shandong Agricultural Sciences, 1995(3):23-27. (in Chinese)
[20] 高兴祥, 李美, 高宗军, 房锋, 张悦丽, 齐军山. 山东省小麦田播娘蒿对苯磺隆的抗性测定. 植物保护学报, 2014,41(3):373-378.
GAO X X, LI M, GAO Z J, FANG F, ZHANG Y L, QI J S. Determination of flixweed (Descurainia sophia) resistance to tribenuron-methyl in Shandong Province. Journal of Plant Protection, 2014,41(3):373-378. (in Chinese)
[21] 郭文磊, 白霜, 池艳艳, 冯莉, 王金信. 看麦娘对甲基二磺隆靶标抗性的快速检测. 农药学学报, 2018,20(2):178-184.
GUO W L, BAI S, CHI Y Y, FENG L, WANG J X. Rapid detection of target-site resistance to mesosulfuron-methyl in Alopecurus aequalis. Chinese Journal of Pesticide Science, 2018,20(2):178-184. (in Chinese)
[22] 郭文磊, 赵宁, 李伟, 白霜, 王金信. 山东省小麦田看麦娘对甲基二磺隆的抗性及其基因突变. 麦类作物学报, 2016,36(12):1688-1694.
GUO W L, ZHAO N, LI W, BAI S, WANG J X. Resistance of shortawn foxtail (Alopecurus aequalis Sobol.) to mesosulfuron-methyl in wheat fields in Shandong Province. Journal of Triticeae Crops, 2016,36(12):1688-1694. (in Chinese)
[23] 毕亚玲, 戴玲玲, 谷刚, 李君君. 日本看麦娘对精噁唑禾草灵和甲基二磺隆的抗性机制. 浙江农业学报, 2020,32(4):671-677.
BI Y L, DAI L L, GU G, LI J J. Resistance mechanism of Alopecurus japonicus in response to fenoxaprop-P-ethyl and mesosulfuron-methyl. Acta Agriculturae Zhejiangensis, 2020,32(4):671-677. (in Chinese)
[24] BI Y L, LIU W T, GUO W L, LI L X, YUAN G H, DU L, WANG J X. Molecular basis of multiple resistance to ACCase- and ALS-inhibiting herbicides in Alopecurus japonicus from China. Pesticide Biochemistry and Physiology, 2016,126:22-27.
pmid: 26778430
[25] 韩玉皎, 崔海兰, 李香菊. 我国冬小麦区菵草种群对甲基二磺隆的抗性水平. 杂草科学, 2015,33(2):37-42.
HAN Y J, CUI H L, LI X J. Survey of resistance levels to mesosulfuron-methyl in Beckmannia syzigachne (Steud.) Fernald populations in winter wheat fields in China. Weed Science, 2015,33(2):37-42. (in Chinese)
[26] LI L X, LIU W T, CHI Y C, GUO W L, LUO X Y, WANG J X. Molecular mechanism of mesosulfuron-methyl resistance in multiply-resistant American sloughgrass (Beckmannia syzigachne). Weed Science, 2015,63(4):781-787.
doi: 10.1614/WS-D-15-00026.1
[27] 高兴祥, 李健, 张悦丽, 李美, 房锋. 山东省小麦田大穗看麦娘抗性水平、靶标抗性机理及田间防除效果测定. 中国农业科学, 2020,53(17):3518-3526.
GAO X X, LI J, ZHANG Y L, LI M, FANG F. Resistance level, mechanism of Alopecurus myosuroides and control efficacy in wheat field in Shandong Province. Scientia Agricultura Sinica, 2020,53(17):3518-3526. (in Chinese)
[28] 崔海兰, 王藏月, 徐林林, 李香菊. 猪殃殃对AHAS抑制剂靶标抗性的快速分子检测. 植物保护学报, 2016,43(6):1049-1054.
CUI H L, WANG C Y, XU L L, LI X J. Rapid molecular detection of the resistance of Galium aparine var. tenerum to AHAS inhibitors. Journal of Plant Protection, 2016,43(6):1049-1054. (in Chinese)
[29] YU Q, POWLES S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiology, 2014,166(3):1106-1118.
doi: 10.1104/pp.114.242750 pmid: 25106819
[30] 黄兆峰, 刘倩, 王园园, 姜翠兰, 周欣欣. 杂草对ALS抑制剂抗药性概述. 农药科学与管理, 2019,40(2):34-41.
HUANG Z F, LIU Q, WANG Y Y, JIANG C L, ZHOU X X. Overview of weed resistance to ALS inhibitors. Pesticide Science and Administration, 2019,40(2):34-41. (in Chinese)
[31] LIU W T, WU C X, GUO W L, DU L, YUAN G H, WANG J X. Resistance mechanisms to an acetolactate synthase (ALS) inhibitor in water starwort (Myosoton aquaticum) populations from China. Weed Science, 2015,63(4):770-780.
doi: 10.1614/WS-D-14-00184.1
[32] HUANG Z F, SUI B F, ZHANG C X, HUANG H J, WEI S H. The basis of resistance mechanism to mesosulfuron-methyl in Tausch’s goatgrass (Aegilops tauschii Coss.). Pesticide Biochemistry and Physiology, 2019,155:126-131.
doi: 10.1016/j.pestbp.2019.01.015 pmid: 30857622
[33] 高兴祥, 李尚友, 李美, 李恩福, 李健, 房锋. 土层深度对三种麦田禾本科杂草出苗及生长的影响. 植物保护学报, 2019,46(5):1132-1137.
GAO X X, LI S Y, LI M, LI E F, LI J, FANG F. Effects of soil depths on seedling emergence and growth of three gramineous weeds in wheat fields. Journal of Plant Protection, 2019,46(5):1132-1137. (in Chinese)
[34] 徐洪乐, 樊金星, 张宏军, 吴仁海, 苏旺苍, 薛飞, 孙兰兰, 鲁传涛. 麦田新型除草剂砜吡草唑的除草活性. 植物保护, 2019,45(4):288-292.
XU H L, FAN J X, ZHANG H J, WU R H, SU W C, XUE F, SUN L L, LU C T. Herbicidal activity of a novel herbicide pyroxasulfone in wheat field. Plant Protection, 2019,45(4):288-292. (in Chinese)
[35] 李香菊. 近年我国农田杂草防控中的突出问题与治理对策. 植物保护, 2018,44(5):77-84.
LI X J. Main problems and management strategies of weeds in agricultural fields in China in recent years. Plant Protection, 2018,44(5):77-84. (in Chinese)
[1] GAO XingXiang,ZHANG YueLi,AN ChuanXin,LI Mei,LI Jian,FANG Feng,ZHANG ShuangYing. Investigation and Analysis of Weed Community Succession in Winter Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2021, 54(24): 5230-5239.
[2] GAO XingXiang,LI Jian,ZHANG YueLi,LI Mei,FANG Feng. Resistance Level, Mechanism of Alopecurus myosuroides and Control Efficacy in Wheat Field in Shandong Province [J]. Scientia Agricultura Sinica, 2020, 53(17): 3518-3526.
[3] GAO XingXiang,ZHANG YueLi,LI Mei,LI Jian,FANG Feng. Resistance Level and Mechanism of Descurainia sophia to Florasulam in Wheat Field of Shandong Province [J]. Scientia Agricultura Sinica, 2020, 53(12): 2399-2409.
[4] RUAN Huai-jun, FENG Wen-jie, TANG Yan, ZHAO Jia, LI Dao-liang. Study on Construction of Agricultural Informatization Taking Shandong Province as a Case [J]. Scientia Agricultura Sinica, 2014, 47(20): 4117-4127.
[5] SONG Jian-Min, DAI Shuang, LI Hao-Sheng, CHENG Dun-Gong, LIU Ai-Feng, CAO Xin-You, LIU Jian-Jun, ZHAO Zhen-Dong. Evolution of Agronomic and Quality Traits of Wheat Cultivars Released in Shandong Province Recently [J]. Scientia Agricultura Sinica, 2013, 46(6): 1114-1126.
[6] YANG Cai-Hong, TIAN Xing-Shan, FENG Li, YUE Mao-Feng. Resistance of Eleusine indica Gaertn to Glyphosate [J]. Scientia Agricultura Sinica, 2012, 45(10): 2093-2098.
[7] ZHANG Li-juan,JU Xiao-tang,LIU Chen-chen,KOU Chang-lin3
. A Study on Nitrate Contamination of Ground Water Sources in Areas of Protected Vegetables-Growing Fields —A Case Study in Huimin County, Shandong Province#br# [J]. Scientia Agricultura Sinica, 2010, 43(21): 4427-4436 .
[8] . The Genetic Diversity and Phylogenetic Relationship Among Pig Breeds of Shandong Province Based on mtDNA CytB Gene
[J]. Scientia Agricultura Sinica, 2009, 42(5): 1761-1767 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!