Scientia Agricultura Sinica

Previous Articles     Next Articles

Genetic Diversity of Juglans regia L. Cultivars Revealed by AFLP Analysis

WANGHong-xia1;ZHAOShu-gang2;GAOYi3;ZHANGZhi-hua1;XUANLi-chun4   

  1. 1、Mountainous Areas Research Institute, Hebei Agricultural University, Baoding 071001, Hebei;
    2、College of Life Science, Hebei Agricultural University, Baoding 071001, Hebei;
    3、College of Horticulture, Hebei Agricultural University, Baoding 071001, Hebei;
    4、Forestry Bureau of Qian’an City, Hebei Province, Qian’an 064400, Hebei
  • Received:2010-07-22 Online:2011-04-02 Published:2010-12-14

Abstract: 【Objective】The genetic diversity and phylogenetic relationship of walnut cultivars were discussed at the molecular level, thus providing a scientific basis for more effective protection and use of these resources.【Method】The genetic diversity and relationship of 131 Juglans regia L. cultivars were analyzed by AFLP (amplified fragment length polymorphism) -silver staining protocol. The specific bands were counted and analyzed by NTSYSpc2.11a software. 【Result】 AFLP fingerprinting of 131 Juglans regia L. cultivars with twenty pairs of EcoRⅠ/MseⅠ primers revealed a total number of 1 643 unambiguous bands, of which 1 512 ones were polymorphic and 82.15 polymorphic bands were detected by each pair of primer on average. The polymorphism frequency was 92.03%. This result showed the abundant diversities of enzyme digestion sites among Juglans regia L. cultivars. As analyzed by NTSYSpc2.11a, the similarity coefficient of 131 Juglans regia L. cultivars ranged from 0.637 to 0.928. These Juglans regia L. cultivars were divided into eight groups by UPGMA (unweighted pair group method with arithmetic aver age) based on similarity coefficient. The genetic relationship of 131 Juglans regia L. cultivars was analyzed according to the similarity coefficient. 【Conclusion】 There are rich genetic diversity and complex genetic background in walnut germplasms, but it is difficult to distinguish distinctly the precocious walnut and serotinous walnut by cluster analysis.

Key words: Juglans regia L. , AFLP , genetic diversity , relationship

[1]郗荣庭, 张毅萍. 中国核桃. 北京:中国林业出版社, 1992.
Xi R T, Zhang Y P. Chinese Walnut. Beijing: China Forestry Press, 1992. (in Chinese)
[2]Fjiellstrom R G, Parfitt D E. RFLP inheritance and linkage in walnut. Theoretical and Applied Genetics, 1994, 89: 665-670.
[3]Nicese F P, Hormaza J I, Mcgranahan G H. Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotype based on RAPD markers. Euphytica, 1998, 101: 199-206.
[4]Damiel P, Gao F Y, Giovanna A. Intersimple sequence repeat markers for fingerprinting and determining genetic relationships of walnut(Juglans regia L.) cultivars. Journal of the American Society for Horticultural Science, 2002, 127(1): 75-81.
[5]Fornari B, Cannata F, Spada M, Malvolti M E. Allozyme analysis of genetic diversity and differentiation in European and Asiatic walnut (Juglans regia L.) populations. Forest Genetics, 1999, 6(2): 115-127.
[6]Fornari B, Malvolti M E, Taurchini D, Fineschi S, Beritognolo I, Maccaglia E, Cannata F. Isozyme and organellar DNA analysis of genetic diversity in natural/naturalised European and Asiatic walnut (Juglans regia L.) populations. Acta Horticulturae, 2001, (544): 167-178.
[7]王  滑, 郝俊民, 王宝庆, 裴  东. 中国核桃8个天然居群遗传多样性分析. 林业科学, 2007, 43(7): 120-124.
Wang H, Hao J M, Wang B Q, Pei D. SSR analysis of genetic diversity of eight natural walnut populations in China. Scientia Silvae Sinicae, 2007, 43(7): 120-124. (in Chinese)
[8]Foroni I, Woeste K, Monti L M, Rao R. Identification of ‘Sorrento’ walnut using simple sequence repeats (SSRs). Genetic Resources and Crop Evolution, 2007, 54:1081-1094.
[9]Ciarmiello L F, Piccirillo P, Pontecorvo G, de Luca A, Kafantaris I, Woodrow P. A PCR based SNPs marker for specific characterization of English walnut (Juglans regia L.) cultivars. Molecular Biology Reports, 2010, doi: 10.1007/s11033-010-0223-y.
[10]吴燕民, 裴  东, 奚声珂, 李嘉瑞. 运用RAPD对核桃属种间亲缘关系的研究. 园艺学报, 27(1): 17-22.
Wu Y M, Pei D, Xi S K, Li J R. A study on the genetic relationship among species in Juglans L. using RAPD markers. Acta Horticulturae Sinica, 2000, 27(1): 17-22. (in Chinese)
[11]Wang H, Zhao S, Zhang Z, Gao Y, Zhao Y, Fang J, He F. Genetic relationship and diversity of eight Juglans species in China estimated through AFLP analysis. Acta Horticulturae(ISHS), 2010, 861: 143-150.
[12]Vos P, Hogers R, Bleeker M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23: 4407-4414.
[13]韩  洁, 胡  楠, 李玉阁, 尚富德. 菊花品种资源遗传多样性的AFLP分析. 园艺学报, 2007, 34 (4): 1041-1046.
Han J, Hu N, Li Y G, Shang F D. Genetic diversity of chrysanthemum cultivars revealed by AFLP analysis. Acta Horticulturae Sinica, 2007, 34 (4): 1041-1046. (in Chinese)
[14]黄建安, 李家贤, 黄意欢, 罗军武, 龚志华, 刘仲华. 茶树品种资源遗传多样性的AFLP研究. 园艺学报, 2006, 33 (2): 317-322.
Huang J A, Li J X, Huang Y H, Luo J W, Gong Z H, Liu Z H. Genetic diversity of tea [Camellia sinensis(L.)O. Kuntze] cultivars revealed by AFLP analysis. Acta Horticulturae Sinica, 2006, 33 (2): 317-322. (in Chinese)
[15]王  涛, 祝  军, 李光晨, 周爱琴, 张  文. 苹果砧木亲缘关系AFLP分析. 中国农业科学, 2001, 34(3): 256-259.
Wang T, Zhu J, Li G C, Zhou A Q, Zhang W. AFLP analysis of genetic relationships in apple rootstocks. Scientia Agricultura Sinica, 2001, 34(3): 256-259. (in Chinese)
[16]杨朝东, 王  健, 张俊卫, 张  波, 包满珠. 梅花不同样本间亲缘关系的AFLP初步分析. 中国农业科学, 2005, 38(10): 2084-2089.
Yang C D, Wang J, Zhang J W, Zhang B, Bao M Z. A preliminary analysis of genetic relationships for Prunus mume Sieb. et Zucc. by AFLP. Scientia Agricultura Sinica, 2005, 38(10): 2084-2089. (in Chinese)
[17]Tosto D S, Hopp H E. Suitability of AFLP markers for the study of genomic relationships within the Oxalis tuberosa alliance. Plant Systematics and Evolution, 2000, 223: 201-209.
[18]Beedanagari S R, Dove S K, Wood B W, Conner. J. A first linkage map of pecan cultivars based on RAPD and AFLP markers. Theoretical and Applied Genetics, 2005, 110: 1127-1137.
[19]陈  静, 王文江. 适于AFLP分析的核桃幼叶DNA提取方法. 河北农业大学学报, 2004, 27(6): 44-47.
Chen J, Wang W J. Extraction of DNA for AFLP amplification reaction in tender walnut leaves. Journal of Agricultural University of Hebei, 2004, 27(6): 44-47. (in Chinese)
[20]高志红, 章  镇, 韩振海, 沈志军. 果梅SSR反应体系的优化. 南京农业大学学报, 2002, 25 (4): 19-22.
Gao Z H, Zhang Z, Han Z H, Shen Z J. Optimization on SSR analysis system of Japanese apricot( Prunus mume Sieb.et Zucc.). Journal of Nanjing Agricultural University, 2002, 25 (4): 19-22. (in Chinese)
[21]宋国立, 张春庆, 贾继增, 王坤波, 崔荣霞. 棉花AFLP银染技术及品种指纹图谱应用初报. 棉花学报, 1999, 11(6): 281-283.
Song G L, Zhang C Q, Jia J Z ,Wang K B, Cui R X. Cotton AFLP analysis with silver-staining and preliminary report of variety fingerprinting based on it. Acat Gossypll Sinica, 1999, 11(6): 281-283. (in Chinese)
[22]王红霞, 张志华, 赵书岗, 赵悦平, 玄立春. 核桃种质资源遗传多样性研究中的AFLP技术优化及引物筛选. 华北农学报, 2008, 23(1): 50-54.
Wang H X, Zhang Z H, Zhao S G, Zhao Y P, Xuan L C. Optimization of AFLP fingerprinting and screening of primer pairs in genetic diversity analysis of walnut germplasm. Acta Agriculturae Boreali-Sinica, 2008, 23(1): 50-54. (in Chinese)
[23]王红霞. 核桃遗传多样性分析及核心种质的构建[D]. 河北保定: 河北农业大学, 2006.
Wang H X. Analysis of genetic diversity and establishment of core collection of walnut varieties with AFLP markers[D]. Baoding, Hebei: Hebei Agricultural University, 2006. (in Chinese)
[24]罗正荣, 李发芳, 蔡礼鸿. 部分中国原产甜柿种质的分子系统学研究. 园艺学报, 1999, 26(5): 297-301.
Luo Z R, Li F F, Cai L H. Molecular systematics of China native nonastringent persimmon based on random amplified polymorphic DNA. Acta Horticulturae Sinica, 1999, 26(5): 297-301. (in Chinese)
[25]庞晓明, 邓秀新, 胡春根. 枳属36份特异种质的AFLP指纹图谱构建与分析. 园艺学报, 2003, 30(4): 394-398.
Pang X M, Deng X X, Hu C G. Construction of AFLP fingerprint of 36 poncirus accessions. Acta Horticulturae Sinica, 2003, 30(4): 394-398. (in Chinese)
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[9] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[10] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[11] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[12] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[13] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[14] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[15] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!