Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (4): 748-760.doi: 10.3864/j.issn.0578-1752.2020.04.007

• PLANT PROTECTION • Previous Articles     Next Articles

Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines)

MoRan XU,RuiMing LIN(),FengTao WANG,Jing FENG(),ShiChang XU   

  1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2019-08-14 Accepted:2019-10-08 Online:2020-02-16 Published:2020-03-09
  • Contact: RuiMing LIN,Jing FENG E-mail:linruiming@caas.cn;jingfeng@ippcaas.cn

Abstract:

【Objective】The objective of this study is to understand the resistance level to stripe rust and genetic diversity of wheat cultivars (lines), master the utilization of stripe rust resistance genes, and to lay a foundation for wheat breeding and rational utilization of new cultivars with excellent resistance to stripe rust.【Method】A total of 103 wheat cultivars (lines) were identified by physiological races CYR32, CYR33 and CYR34 singly at seedling stage and CYR32 at adult stage. SSR molecular marker technique was used to evaluate the genetic diversity and the molecular markers of the important known resistance genes of wheat stripe rust Yr5, Yr9, Yr10, Yr15, Yr18 and Yr26 were used to detect the stripe rust resistance genes in the tested wheat cultivars (lines).【Result】The identification of seedling resistance showed that 20 out of 103 cultivars (lines) were resistant to physiological race CYR32, accounting for 19.42% of the tested materials; 34 cultivars (lines) showed resistance to CYR33, accounting for 33.01% of the tested materials; 36 cultivars (lines) showed resistance to CYR34, accounting for 34.95% of the tested materials; only six cultivars including Zheng 6 fu, Ningmai 3, Laolanmai, Jing 411, Jingzuo 278 and Yangmai 158 showed resistance to all the three physiological races CYR32, CYR33 and CYR34. The identification by CYR32 at adult stage showed that 55 cultivars (lines) such as Zhengzhou 021 had adult plant resistance, accounting for 53.40% of the tested materials. Genetic diversity analysis showed that the variation of genetic similarity coefficient of 103 cultivars (lines) ranged from 0.50 to 0.93, with an average of 0.66. Cluster analysis found that 103 cultivars (lines) were divided into three categories. The first category included four cultivars, namely Huapei 112-2, Jubilejina Ⅱ, Luzhan 1 and Elkhart. The second category included 43 cultivars (lines), among which the cultivars (lines) from the same region or with the same pedigree source were clustered in the same category, indicating that there was a certain relationship between the genetic relationship and the source. In the third category, the cultivars (lines) with the same pedigree were all clustered in one sub-category, indicating that the same or similar materials were mostly used in the breeding process of wheat cultivars in the same region and it resulted in the similar genetic relationship among wheat cultivars. The detection of known resistance genes suggested that Yr9, Yr10, Yr18 and Yr26 existed in 15, 8, 19 and 1 cultivars, respectively. Yr5 and Yr15 were not detected in the cultivars (lines).【Conclusion】The resistance level of the cultivars (lines) was low at seedling stage. Six cultivars, Zheng 6 fu, Ningmai 3, Laolanmai, Jing 411, Jingzuo 278 and Yangmai 158, may contain unknown all stage resistance genes, which are suitable for the control of wheat stripe rust in cultivar rotation planting. The resistance at adult stage was better and the frequency of Yr18 detection was higher. Therefore, wheat breeding should make full use of high-quality known resistant resources, explore new resistant materials, and cultivate durable resistant cultivars of multi-gene combination.

Key words: wheat stripe rust, resistance identification, genetic diversity, Yr gene detection

Table 1

Molecular markers for the detection of the known resistance genes to stripe rust"

基因
Gene
引物名称
Primer name
引物序列
Primer sequence
大小
Size (bp)
参考文献
Reference
Yr5 Yr5_insertion_F CTCACGCATTTGACCATATACAACT +1281 文献[22] Reference[22]
Yr5_insertion_R TATTGCATAACATGGCCTCCAGT
Yr9 AF1/AF4_F GGAGACATCATGAAACATTTG +1500 文献[23] Reference[23]
AF1/AF4_R CTGTTGTTGGGCAGAAAG
H20F GTTGGAAGGGAGCTCGAGCTG +1598 文献[24] Reference[24]
H20R GTTGGGCAGAAAGGTCGACATC
Yr10 Yr10F/Yr10R_F TCAAAGACATCAAGAGCCGC +543 文献[25] Reference[25]
Yr10F/Yr10R_R TGGCCTACATGAACTCTGGAT
Yr10F1/Yr10R1_F TTGGAATTGGCGACAAGCGT +755
Yr10F1/Yr10R1_R GTGATGATTACCCACTTCCTC
Yr15 Yr15K1-F GGAGATAGAGCACATTACAGAC +992 文献[26] Reference[26]
Yr15K1-R TTTCGCATCCCACCCTACTG
Yr18 csLV34_F TTGGTTAAGACTGGTGATGG +150 文献[27] Reference[27]
csLV34_R TGCTTGCTATTGCTGAATAGT -229
L34SPF GGGAGCA TT A TTTTTTTCCA TCA TG +751 文献[28] Reference[28]
L34DINT13R2 ACTTTCCTGAAAATAATACAAGCA
L34DINT9F TTGATGAAACCAGTTTTTTTTCTA -523
L34MINUSR TATGCCATTTAACATAATCATGAA
Yr26 WE173_F GGGACAAGGGGAGTTGAAGC +451
-730
文献[29] Reference[29]
WE173_R GAGAGTTCCAAGCAGAACAC

Table 2

The resistance evaluation of 103 wheat cultivars (lines) to stripe rust at seedling and adult stages and molecular detection of 6 resistance genes"

序号
Number
品种(系)
Cultivars (Lines)
苗期
Seedling
成株期
Adult (CYR32)
抗病基因检测
Detection of Yr genes
CYR32 CYR33 CYR34 IT DS (%) Yr5 Yr9 Yr10 Yr15 Yr18 Yr26
1 克珍(黑)Kezhen (black) 9 9 9 1 1 - - - - + -
2 陕8242-37 Shaan 8242-37 9 9 9 1 1 - - - - - -
3 郑州021 Zhengzhou 021 9 9 9 3 20 - - - - - -
4 北京14 Beijing 14 9 1 3/7 3 20 - - - - + -
5 三月黄小麦Sanyuehuang wheat 9 9 7 3 5 - - - - + -
6 大头红麦Datouhongmai 9 9 7 1 5 - - + - + -
7 晋1348-2 Jin 1348-2 9 3 7 7 80 - + - - - -
8 晋876051 Jin 876051 9 1 1 5 60 - - - - - -
9 晋麦18 Jinmai 18 9 / 7 7 80 - - - - - -
10 鲁沾1号Luzhan 1 3 7 4 3 10 - - - - - -
11 丰抗11号Fengkang 11 3 1 9 3 20 - + - - - -
12 郑6辐Zheng 6 fu 3 1 1 1 1 - - - - - -
13 宁麦3号Ningmai 3 3 1 1 / / - - - - - -
14 临农13 Linnong 13 3 9 7 7 60 - - - - - -
15 蚂蚱麦Mazhamai 2 6 4 1 10 - - - - - -
16 小红芒麦Xiaohongmangmai 3 7 4 7 100 - - - - - -
17 白芒麦Baimangmai 3 9 4 5 30 - - - - + -
18 老兰麦Laolanmai 0 1 1 1 1 - - - - - +
19 南选1号Nanxuan 1 1 9 7 4 20 - - - - - -
20 北京16 Beijing 16 7 1 7 3 5 - - - - - -
21 京作208 Jingzuo 208 9 7 3 3 20 - - - - - -
22 京作210 Jingzuo 210 7 1 1 5 40 - - - - - -
23 京411 Jing 411 3 3 2 0 0 - - - - - -
24 晋麦21 Jinmai 21 7 9 7 7 40 - - - - - -
25 鲁麦17 Lumai 17 4 9 7 4 20 - - - - - -
26 448 7 9 7 9 100 - - + - - -
27 竹叶青(白)Zuyeqing (white) 9 1 5 7 80 - - - - - -
28 竹叶青(红)Zuyeqing (red) 9 1 7 3 5 - - - - - -
29 白芒麦(闽)Baimangmai (min) 7 9 7 3 1 - - + - - -
30 京春70-5321 Jingchun 70-5321 4 9 1 1 1 - + - - + -
31 苏州7906 Suzhou 7906 3 9 4 2 10 - - + - + -
32 有芒红8号Youmanghong 8 7 1 7 3 10 - - - - - -
33 丰抗15 Fengkang 15 7 7 4 4 20 - - - - + -
34 京花1号Jinghua 1 9 1 2 7 40 - + - - - -
35 Elkhart 7 9 7 7 80 - - - - - -
36 卫冬8号Weidong 8 7 9 4 1 5 - - - - - -
37 03矮123 03 ai 123 7 / 1 1 1 - + - - - -
38 桥梁BW 30-3 QiaoliangBW 30-3 7 7 4 3 10 - - - - - -
39 82Y 93099 7 1 1 3 10 - - - - - -
40 京品26 Jingpin 26 7 9 4 3 40 - - - - - -
41 古城营Guchengying 7 1 1/4 9 100 - - - - - -
42 北京8号Beijing 8 7 1 / 3 5 - - - - - -
43 西农6028 Xinong 6028 7 9 7 5 40 - - - - - -
44 早洋麦Early piemium 7 1 1 / / - + - - - -
45 碧玛2号Bima 2 7 9 5 7 40 - - - - - -
46 青春1号Qingchun 1 7 1 7 5 40 - - - - - -
47 丰抗9号Fengkang 9 7 1 7 7 80 - + - - - -
48 北京14-2 Beijing 14-2 7 6 7 3 10 - - - - - -
49 京作278 Jingzuo 278 3 1 3 3 10 - - - - - -
50 科春14 Kechun 14 / 7 7 9 90 - - - - - -
51 丰抗10号Fengkang 10 7 / 7 9 100 - + - - - -
52 晋麦33 Jinmai 33 7 1 3 7 80 - + - - - -
53 京红9号Jinghong 9 4 9 9 7 60 - - - - - -
54 扬麦158 Yangmai 158 5 1 3 3 10 - - - - - -
55 山西平遥小白麦Shanxipingyaoxiaobaimai 9 9 / 9 100 - - - - - -
56 华北187 Huabei 187 9 9 7 4 60 - - - - + -
57 农大311 Nongda 311 7 9 7 7 80 - - - - - -
58 北京5号Beijing 5 4 9 9 7 80 - - - - - -
59 北京6号Beijing 6 7 9 7 5 60 - - - - - -
60 旱选10号Hanxuan 10 9 9 7 9 80 - - - - - -
61 太原116 Taiyuan 16 / / 7 / / - - - - - -
62 郑州741 Zhengzhou 741 7 9 7 8 1 - - - - - -
63 毕麦6号Bimai 6 3 9 4 2 20 - - - - - -
64 临农11 Linnong 11 7 9 7 0 0 - - - - + -
65 云麦27(滇)Yunmai 27 (dian) 9 3/9 7 3 10 - - - - - -
66 平凉32 Pingliang 32 7 1 7 2 10 - - - - + -
67 荆州HXB 7561-16
JingzhouHXB 7561-16
9 9 4 2 10 - - - - + -
68 百泉565 Baiquan 565 9 9 7 7 40 - - + - - -
69 湘麦10号Xiangmai 10 4 7 1 1 1 - - - - + -
70 新郑1号Xinzheng 1 9 9 7 / / - - - - - -
71 于城851 Yucheng 851 7 7 7 0 0 - - - - - -
72 南召76144-0-6-1 Nanzhao 76144-0-6-1 7 1 1 1 1 - + - - - -
73 花培126 Huapei 126 7 9 9 3 10 - - - - - -
74 福农50002 Funong 50002 7 9 7 / / - - + - - -
75 湘675-1 Xiang 675-1 7 9 7 7 90 - - + - - -
76 郑州9285 Zhengzhou 9285 7 1 1 1 1 - + - - - -
77 商洛76(57)22-8-7-1-2
Shangluo 76 (57) 22-8-7-1-2
7 7 4 3 40 - - - - + -
78 商洛76(57)22-0-8-7-10
Shangluo 76 (57) 22-0-8-7-10
7 7 7 1 5 - - - - + -
79 商洛76(57)22-8-7-1-8
Shangluo 76 (57) 22-8-7-1-8
7 9 7 1 1 - - - - + -
80 商洛76(57)22-0-8-17
Shangluo 76 (57) 22-0-8-17
7 7 7 1 5 - - - - + -
81 金陵1号Jinling 1 7 7 7 / / - - - - - -
82 花850512 Hua 850512 7 9 7 3 5 - - - - - -
83 豫822367 Yu 822367 7 1 7 1 1 - + - - - -
84 豫85-2325 Yu 85-2325 7 1 7 6 40 - + - - - -
85 豫30691-1-4 Yu 30691-1-4 7 9 7 7 40 - + - - - -
86 豫30691-1-3 Yu 30691-1-3 7 9 7 1 10 - - - - - -
87 花培112-2 Huapei 112-2 7 9 7 3 20 - - - - - -
88 Catoctin 7 7 6 3 20 - - - - - -
89 Mason 7 9 7 1 1 - - - - - -
90 Norm 7 9 7 3 40 - - - - + -
91 早洋麦Early piemium 7 7 4 2 20 - - - - - -
92 尤皮2号Jubilejina Ⅱ 7 9 6 7 5 - - - - - -
93 昌乐5号Changle 5 7 7 7 5 40 - - - - - -
94 济南8号Ji’nan 8 7 9 7 3 20 - - - - - -
95 德选1号Dexuan 1 7 9 3 2 10 - - - - - -
96 红良4号Hongliang 4 7 1 1 4 40 - - - - - -
97 北京11 Beijing 11 7 1 7 3 20 - - - - - -
98 北京12 Beijing 12 7 3 7 1 5 - - - - - -
99 京作236 Jingzuo 236 7 9 7 3 10 - - + - - -
100 科冬81 Kedong 81 7 2 7 3 10 - - - - - -
101 有芒白15 Youmangbai 15 7 7 7 3 10 - - - - + -
102 有芒白4 Youmangbai 4 7 1 7 3 20 - - - - - -
103 丰抗7号Fengkang 7 7 1 9 7 80 - + - - - -
104 铭贤169 Mingxian 169 9 9 9 9 100 - - - - - -

Fig. 1

Amplification result of 1 to 21 wheat cultivars (lines) by primer Xbarc59"

Fig. 2

Dendrogram of cluster analysis of 103 wheat cultivars (lines) based on SSR markers for the genetic diversity"

Fig. 3

Electropherogram of Yr9 with primer H20"

Fig. 4

Electropherogram of Yr10 with primer Yr10F/Yr10R"

Fig. 5

Electropherogram of Yr18 with primer csLV34"

Fig. 6

Electropherogram of Yr26 with primer WE173"

[1] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽 . 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015,48(17):3439-3453.
KANG Z S, WANG X J, ZHAO J, TANG C L, HUANG L L . Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Scientia Agricultura Sinica, 2015,48(17):3439-3453. (in Chinese)
[2] 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英 . 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013,46(20):4254-4262.
CHEN W Q, KANG Z S, MA Z H, XU S C, JIN S L, JIANG Y Y . Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Scientia Agricultura Sinica, 2013,46(20):4254-4262. (in Chinese)
[3] CHEN X M . Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Canadian Journal of Plant Pathology, 2005,27(3):314-317.
[4] 吴立人, 牛永春 . 我国小麦条锈病持续控制的策略. 中国农业科学, 2000,33(5):46-53.
WU L R, NIU Y C . Strategies of sustainable control of wheat stripe rust in China. Scientia Agricultura Sinica, 2000,33(5):46-53. (in Chinese)
[5] 魏国荣, 韩德俊, 赵杰, 王晓杰, 王琪琳, 黄丽丽, 康振生 . 小麦成株期抗条锈病种质筛选与评价. 麦类作物学报, 2011,31(2):376-381.
WEI G R, HAN D J, ZHAO J, WANG X J, WANG Q L, HUANG L L, KANG Z S . Identification and evaluation of adult plant resistance to stripe rust in wheat germplasms. Journal of Triticeae Crops, 2011,31(2):376-381. (in Chinese)
[6] 贾秋珍, 黄瑾, 曹世勤, 张勃, 王晓明, 金社林 . 感染我国重要小麦抗源材料贵农22的条锈菌新菌系的发现及致病性初步分析. 甘肃农业科技, 2012(1):3-5.
JIA Q Z, HUANG J, CAO S Q, ZHANG B, WANG X M, JIN S L . Discovery of new stripe rust strain infected to China’s major wheat resistant material Guinong 22 and its preliminary pathogenicity analysis.. Gansu Agricultural Science and Technology, 2012(1):3-5. (in Chinese)
[7] 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 高利, 彭云良, 金社林, 陈万权 . 中国小麦条锈菌条中34号的发现及其致病特性. 植物病理学报, 2017,47(5):681-687.
LIU B, LIU T G, ZHANG Z Y, JIA Q Z, WANG B T, GAO L, PENG Y L, JIN S L, CHEN W Q . Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopathologica Sinica, 2017,47(5):681-687. (in Chinese)
[8] TANKSLEY S D, MCCOUCH S R . Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 1997,277(5329):1063-1066.
[9] 郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚勋武, 刘三才, 曹永生 . 我国育成小麦品种的遗传多样性演变. 中国科学C辑: 生命科学, 2005,35(5):408-415.
HAO C Y, WANG L F, ZHANG X Y, YOU G X, DONG Y C, JIANG J Z, LIU X, SHANG X W, LIU S C, CAO Y S . Evolution of genetic diversity of wheat cultivars bred in China. Scientia Sinica (Vitae), 2005,35(5):408-415. (in Chinese)
[10] 周新力, 詹刚明, 黄丽丽, 韩德俊, 康振生 . 80份国外春小麦种质资源抗条锈性评价. 中国农业科学, 2015,48(8):1518-1526.
ZHOU X L, ZHAN G M, HUANG L L, HAN D J, KANG Z S . Evaluation of resistance to stripe rust in eighty abroad spring wheat germplasms. Scientia Agricultura Sinica, 2015,48(8):1518-1526. (in Chinese)
[11] 王树和, 龚凯悦, 初炳瑶, 孙秋玉, 骆勇, 马占鸿 . 四川省100个小麦品种(系)抗条锈病基因的分子检测. 植物病理学报, 2018,48(2):195-206.
WANG S H, GONG K Y, CHU B Y, SUN Q Y, LUO Y, MA Z H . Molecular detection of stripe rust resistance gene(s) in 100 wheat cultivars (lines) from Sichuan Province in China. Acta Phytopathologica Sinica, 2018,48(2):195-206. (in Chinese)
[12] 李北 . 四川盆地条锈菌冬繁区小麦品种(系)抗条锈性评价及基因分析[D]. 杨凌: 西北农林科技大学, 2017.
LI B . Stripe rust resistance and genes in wheat cultivars and lines from inoculum overwintering region in Sichuan basin[D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[13] 黄亮, 刘太国, 刘博, 高利, 罗培高, 陈万权 . 黄淮麦区34个小麦主栽品种(系)抗条锈病基因推导. 植物保护, 2019,45(1):159-163, 169.
HUANG L, LIU T G, LIU B, GAO L, LUO P G, CHEN W Q . Postulation of yellow rust resistance genes in 34 wheat cultivars from Huanghuai wheat growing region. Plant Protection, 2019,45(1):159-163, 169. (in Chinese)
[14] 李孟凯 . Yr10Yr18Yr36基因在小麦抗条锈病改良中的应用[D]. 泰安: 山东农业大学, 2017.
LI M K . Application of Yr10, Yr18 and Yr36 genes in wheat improvement for stripe rust resistance[D]. Taian: Shandong Agricultural University, 2017. (in Chinese)
[15] 周喜旺, 岳维云, 宋建荣, 曹世勤, 张耀辉, 刘鸿燕, 王娜, 南海, 赵尚文, 魏志平 . 38份冬小麦品系抗条锈病基因Yr5Yr10的分子检测. 甘肃农业科技, 2017(5):40-43.
ZHOU X W, YUE W Y, SONG J R, CAO S Q, ZHANG Y H, LIU H Y, WANG N, NAN H, ZHAO S W, WEI Z P . Molecular detection of stripe rust resistant genesYr5 and Yr10 in 38 wheat lines. Gansu Agricultural Science and Technology, 2017(5):40-43. (in Chinese)
[16] 黄苗苗, 孙振宇, 曹世勤, 贾秋珍, 刘太国, 陈万权 . 223份小麦农家品种田间抗条锈病性评价及抗病基因分子检测. 植物保护学报, 2018,45(1):90-100.
HUANG M M, SUN Z Y, CAO S Y, JIA Q Z, LIU T G, CHEN W Q . Evaluation of the resistance of 223 wheat landraces in Gansu Province to stripe rust and molecular detection. Journal of Plant Protection, 2018,45(1):90-100. (in Chinese)
[17] 孙建鲁, 王吐虹, 冯晶, 蔺瑞明, 王凤涛, 姚强, 郭青云, 徐世昌 . 100个小麦品种资源抗条锈性鉴定及重要抗条锈病基因的SSR检测. 植物保护, 2017,43(2):64-72.
SUN J L, WANG T H, FENG J, LIN R M, WANG F T, YAO Q, GUO Q Y, XU S C . Identification of resistance to wheat stripe rust and detection of known resistance genes in 100 wheat cultivars with SSR markers. Plant Protection, 2017,43(2):64-72. (in Chinese)
[18] 王明玉, 冀凯燕, 冯晶, 蔺瑞明, 王凤涛, 徐世昌 . 104个小麦品种抗条锈性及遗传多样性分析. 植物保护学报, 2018,45(1):27-36.
WANG M Y, JI K Y, FENG J, LIN R M, WANG F T, XU S C . Identification of the resistance of 104 wheat varieties to stripe rust and analysis of their genetic diversity. Journal of Plant Protection, 2018,45(1):27-36. (in Chinese)
[19] LINE R F, QAYOUM A . Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis ( the cause of stripe of wheat) in North America, 1968-1987. U.S. Department of Agriculture Technical Bulletin No1788, 1992.
[20] 商鸿生, 任文礼, 王素梅 . 小麦条锈病严重度分级标准图的探讨. 植物保护, 1990,16(1):31.
SHANG H S, REN W L, WANG S M . The discussion of a grading standard of wheat stripe rust severity. Plant Protection, 1990,16(1):31. (in Chinese)
[21] ALLEN G C, FLORES-VERGARA M A, KRASYNANSKI S, KUMAR S, THOMPSON W F . A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 2006,1(5):2320-2325.
[22] MARCHAL C, ZHANG J, ZHANG P, FENWICK P, STEUERNAGEL B, ADAMSKI N M, BOYD L, MCINTOSH R, WULFF B B H, BERRY S, LAGUDAH E, UAUY C . BED-domain- containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants, 2018,4(9):662-668.
[23] FRANCIS H A, LEITCH A R KOEBNER R M D . Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. Theoretical and Applied Genetics, 1995,90(5):636-642.
[24] LIU C, YANG Z J, LI G R, ZENG Z X, ZHANG Y, ZHOU J P, LIU Z H, REN Z L . Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica, 2008,159(1/2):249-258.
[25] SINGH R, DATTA D, PRIYAMVADA, SINGH S, TIWARI R . A diagnostic PCR based assay for stripe rust resistance gene Yr10 in wheat. Acta Phytopathologica et Entomologica Hungarica, 2009,44(1):11-18.
[26] KLYMIUK V, YANIV E, HUANG L, RAATS D, FATIUKHA A, CHEN S, FENG L, FRENKEL Z, KRUGMAN T, LIDZBARSKY G , et al. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communication, 2018,9(1):3735.
[27] LAGUDAH E S, KRATTINGER S G, HERRERA-FOESSEL S, SINGH R P, HUERTA-ESPINO J, SPIELMEYER W, BROWN- GUEDIRA G, SELTER L L, KELLER B . Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 2009,119(5):889-898.
[28] LAGUDAH E S, MCFADDEN H, SINGH R P, HUERTA-ESPINO J, BARIANA H S, SPIELMEYER W . Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 2006,114(1):21-30.
[29] WANG C M, ZHANG Y P, HAN D J, KANG Z S, LI G P, CAO A Z, CHEN P D . SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2008,159(3):359-366.
[30] ZENG Q D, HAN D J, WANG Q L, YUAN F P, WU J H, ZHANG L, WANG X J, HUANG L L, CHEN X M, KANG Z S . Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica, 2014,196(2):271-284.
[31] 高睦枪, 刘冬成, 郭小丽, 张爱民 . 我国部分冬小麦新品种(系)SSR标记遗传差异的研究. 农业生物技术学报, 2001,9(1):49-54.
GAO M Q, LIU D C, GUO X L, ZHANG A M . Genetic diversity of some Chinese new winter wheat cultivars (lines) detected by SSR markers. Journal of Agricultural Biotechnology, 2001,9(1):49-54. (in Chinese)
[32] 付宝建 . 95个小麦农家品种的抗条锈性鉴定和SSR遗传多样性分析[D]. 保定: 河北农业大学, 2008.
FU B J . Dentification of stripe rust resistance in 95 wheat native cultivars and genetic diversity analysis based on SSR marker[D]. Baoding: Hebei Agricultural University, 2008. (in Chinese)
[33] 傅晓艺, 刘桂茹, 杨学举 . 中国部分优质小麦品种(系)遗传多样性的SSR分析. 麦类作物学报, 2007,27(5):776-780.
FU X Y, LIU G R, YANG X J . Genetic diversity in some Chinese high quality wheat varieties (lines) based on SSR markers. Journal of Triticeae Crops, 2007,27(5):776-780. (in Chinese)
[34] 赵军海, 冯国华, 刘东涛, 刘世来, 王来花, 李德民, 张会云, 王静, 陈荣振 . 小麦育种亲本材料遗传多样性的SSR分析. 麦类作物学报, 2009,29(6):982-986.
ZHAO J H, FENG G H, LIU D T, LIU S L, WANG L H, LI D M, ZHANG H Y, WANG J, CHEN R Z . Genetic diversity of wheat breeding parents by SSR markers. Journal of Triticeae Crops, 2009,29(6):982-986. (in Chinese)
[35] 李振岐, 曾士迈 . 中国小麦锈病. 北京:中国农业出版社, 2002: 302.
LI Z Q, ZENG S M. Wheat Rust in China. Beijing:China Agriculture Press, 2002: 302. (in Chinese)
[36] 伍玲, 谭君, 朱华忠, 王中烈, 蒲晓蓉 . 四川近年小麦区试品系中Yr5Yr10Yr15的分子标记检测. 西南农业学报, 2007,20(2):316-320.
WU L, TAN J, ZHU H Z, WANG Z L, PU X R . Detection of stripe rust resistant genes of Yr5, Yr10 and Yr15 in some Sichuan wheat lines by molecular markers. Southwest China Journal of Agricultural Sciences, 2007,20(2):316-320. (in Chinese)
[37] 庄巧生 . 中国小麦品种改良及系谱分析. 北京:中国农业出版社, 2003: 1.
ZHUANG Q S. Wheat Variety Improvement and Pedigree Analysis in China. Beijing:China Agriculture Press, 2003: 1. (in Chinese)
[38] 韩德俊, 张培禹, 王琪琳, 曾庆东, 吴建辉, 周新力, 王晓杰, 黄丽丽, 康振生 . 1980份小麦地方品种和国外种质抗条锈性鉴定与评价. 中国农业科学, 2012,45(24):5013-5023.
HAN D J, ZHANG P Y, WANG Q L, ZENG Q D, WU J H, ZHOU X L, WANG X J, HUANG L L, KANG Z S . Identification and evaluation of resistance to stripe rust in 1980 wheat landraces and abroad germplasm. Scientia Agricultura Sinica, 2012,45(24):5013-5023. (in Chinese)
[39] 杨文雄, 杨芳萍, 梁丹, 何中虎, 尚勋武, 夏先春 . 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测. 作物学报, 2008,34(7):1109-1113.
YANG W X, YANG F P, LIANG D, HE Z H, SHANG X W, XIA X C . Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars. Acta Agronomica Sinica, 2008,34(7):1109-1113. (in Chinese)
[40] 刘太国, 章振羽, 刘博, 高利, 彭云良, 陈万权 . 小麦抗条锈病基因Yr26毒性小种的发现及其对我国小麦主栽品种苗期致病性分析. 植物病理学报, 2015,45(1):41-47.
LIU T G, ZHANG Z Y, LIU B, GAO L, PENG Y L, CHEN W Q . Detection of virulence to Yr26 and pathogenicity to Chinese commercial winter wheat cultivars at seedling stage. Acta Phytopathologica Sinica, 2015,45(1):41-47. (in Chinese)
[1] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[2] ZHANG YiZhong, ZHANG XiaoJuan, LIANG Du, GUO Qi, FAN XinQi, NIE MengEn, WANG HuiYan, ZHAO WenBo, DU WeiJun, LIU QingShan. Genetic Diversity Analysis and Comprehensive Evaluation of Sorghum Breeding Materials Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2023, 56(15): 2837-2853.
[3] GAO XinPei, ZHAO Jun, LIU BoFan, GUO Yi, KANG ZhenSheng, ZHAN GangMing. Population Genetic Analysis of Puccinia striiformis tritici in Main Winter-Increasing Areas Based on Virulent Phenotypes and Genotypes [J]. Scientia Agricultura Sinica, 2023, 56(14): 2629-2642.
[4] LI Huan, YAN XiaoQing, YANG ZhanLie, TAN JinYu, LI XiaoBing, CHEN NengGang, WU RongJu, CHEN HuiCha, RUAN RenChao. Analysis and Comprehensive Evaluation of Phenotype Genetic Diversity in Kam Sweet Rice Germplasm Resources in Guizhou [J]. Scientia Agricultura Sinica, 2023, 56(11): 2035-2046.
[5] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[6] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[7] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[8] DUAN CanXing,CAO YanYong,DONG HuaiYu,XIA YuSheng,LI Hong,HU QingYu,YANG ZhiHuan,WANG XiaoMing. Precise Characterization of Maize Germplasm for Resistance to Pythium Stalk Rot and Gibberella Stalk Rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265-279.
[9] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[10] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[11] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[12] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[13] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[14] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[15] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!