Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (3): 600-611.doi: 10.3864/j.issn.0578-1752.2020.03.012

• HORTICULTURE • Previous Articles     Next Articles

Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation

GAO Yuan,WANG DaJiang,WANG Kun(),CONG PeiHua(),ZHANG CaiXia,LI LianWen,PIAO JiCheng   

  1. Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture, Xingcheng 125100, Liaoning
  • Received:2019-07-21 Accepted:2019-11-01 Online:2020-02-01 Published:2020-02-13
  • Contact: Kun WANG,PeiHua CONG E-mail:wangkun5488@163.com;congph@163.com

Abstract:

【Objective】Malus baccata (L.) Borkh is the most widely distributed native species in China. The non-coding region of chloroplast genome by maternal inheritance is suitable for the systematic study of lower taxonomic levels (such as families and genera). The non-coding regions of cpDNA of 215 germplasms were sequenced, and their genetic variation was analyzed. In this study, the genetic diversity of Malus baccata and the phylogenetic relationship among different populations were explored from the perspective of maternal inheritance, which provided a theoretical basis for origin and genetic evolution, collection and protection of Malus baccata germplasm resources in China.【Method】Four non-coding regions (trnH-psbA, trnS-trnG spacer + intron, trnT-5'trnL and 5'trnL-trnF) of 215 germplasms were amplified by four primers. After manually proofreading sequences obtained through forward and backward sequencing, MEGA 7.0 was used for sequence splicing and alignment, and based on genetic distance, the Neighbour-Joining phylogenetic tree was constructed among different populations of Malus baccata. DnaSP ver5.10.01 was used to calculate the genetic diversity parameters of chloroplast DNA, gene flow and gene differentiation among different populations. Arlequin v3.5 was used to analyze standard molecular variation (AMOVA), and NetWork 4.6.1.2 was used to construct Median-Joining network for cpDNA haplotypes among intraspecific populations of Malus baccata.【Result】The length of four non-coding regions of chloroplast DNA was 3 777 bp after sequencing, splicing, alignment and merging, and 171 variable sites were detected, which included 1 singleton variable sites, 20 parsimony informative sites and 150 insertion-deletion gaps. Among 215 accessions of Malus baccata, the number of variable sites of region trnH-psbA, trnS-trnG spacer + intron, trnT-5'trnL and 5'trnL-trnF were 26, 32, 103 and 10, respectively. The number of haplotypes for four regions were 8, 8, 6 and 4, respectively, and after four regions merged, the haplotypes of chloroplast DNA fragments were 24. The region with highest nucleotide diversity was trnT-5'trnL (Pi=0.01174), and the region with highest haplotype diversity was trnS-trnG spacer + intron (Hd=0.599), and the haplotype diversity of 5'trnL-trnF was the lowest (Hd=0.228). The cpDNA diversity of Malus baccata was high (Hd=0.727, Pi=0.00577). Tajima’s test showed all Tajima’s D values were not statistical at different levels, which indicated that variation of those chloroplast regions followed natural theory of molecular evolution. AMOVA showed that genetic variation mainly existed within populations.【Conclusion】The four non-coding regions of chloroplast DNA were suitable for the analysis of genetic diversity and phylogenetics of Malus baccata. At the cpDNA level, it was not natural selection, but mutation pressure and genetic drift that led to population evolution of Malus baccata. The genetic differentiation among populations was not completely correlated with their geographical distance. Malus baccata might originate from several sites, and the three possible origins, including Heilongjiang and Jilin, Inner Mongolia, Gansu and Shanxi, were inferred.

Key words: Malus baccata, chloroplast DNA, non-coding region, genetic diversity, phylogenetics

Table 1

Four cpDNA intergenic regions and four pairs of cpDNA primers in this study"

编号
Code
cpDNA间区
cpDNA intergenic regions
F序列(5′-3′)
Forward sequence (5′-3′)
R序列(5′-3′)
Reverse sequence (5′-3′)
扩增片段长度
Amplified fragment length
CP20 trnH-psbA CGCGCATGGTGGATTCACAATCC GTTATGCATGAACGTAATGCTC ~400
CP21 trnS-trnG spacer + intron AGATAGGGATTCGAACCCTCGGT GTAGCGGGAATCGAACCCGCATC ~1500
CP22 trnT-5' trnL CATTACAAATGCGATGCTCT TCTACCGATTTCGCCATATC ~1200
CP23 5' trnL-trnF ATTTGAACTGGTGACACGAG CGAAATCGGTAGACGCTACG ~1000

Fig. 1

2% agarose gel electrophoresis of PCR amplified products of partial Malus Mill. samples for chloroplast region trnH-psbA"

Table 2

Amplification of four cpDNA intergenic regions of Malus baccata"

编号
Code
扩增区域
Region
PCR反应条件
PCR condition
退火温度
Annealing temperature
CP20 trnH-psbA 80℃ 5 min;94℃ 30 s,56℃ 30 s,72℃ 1 min,35个循环(35 cycles);72℃ 10 min 56℃
CP21 trnS-trnG spacer + intron 80℃ 5 min;96℃ 10 s,50℃ 5 s,60℃ 4 min,30个循环(30 cycles);60℃ 10 min 50℃
CP22 trnT-5' trnL 96℃ 5 min;96℃ 1 min,57℃ 2 min,72℃ 2.5 min,34个循环(34 cycles);72℃ 10 min 57℃
CP23 5' trnL-trnF 80℃ 5 min;96℃ 10 s,50℃ 5 s,60℃ 4 min,30个循环(30 cycles);60℃ 10 min 50℃

Table 3

The polymorphic information of four cpDNA regions of Malus baccata detected in this study"

叶绿体DNA区域
cpDNA regions
片段长度
Length of fragment
(bp)
变异位点
Variable
sites
(Vs)
单一突变位点
Singleton
variable sites
(Ss)
简约信息位点
Parsimony informative sites (Ps)
插入-缺失位点
Insertion-deletion gaps
(Is)
核苷酸多样性
Nucleotide diversity
(Pi)
平均核苷酸差异
Average number of nucleotide
difference (K)
trnH-psbA 285 26 0 2 24 0.00913 3.13236
trnS-trnG spacer+intron 1383 32 1 5 26 0.00311 4.52649
trnT-5' trnL 1140 103 0 11 92 0.01174 15.68937
5' trnL-trnF 965 10 0 2 8 0.00045 0.44216
组合 Combined 3773 171 1 20 150 0.00577 23.79039

Table 4

The diversity of cpDNA haplotypes of Malus baccata detected"

cpDNA区域
cpDNA Regions
单倍型数目
Number of haplotypes (h)
单倍型(基因)多样性
Haplotype (Gene) diversity
(Hd)
单倍型多样性方差
Variance of haplotype
Diversity (Vh)
单倍型多样性标准差
Standard deviation of
haplotype diversity (Sh)
trnH-psbA 8 0.4762 0.00159 0.040
trnS-trnG spacer + intron 8 0.599 0.00111 0.033
trnT-5' trnL 6 0.372 0.00168 0.041
5' trnL-trnF 4 0.228 0.00133 0.037
组合 Combined 24 0.727 0.00084 0.029

Table 5

Information about Tajima's D in 4 cpDNA regions of 215 accessions of Malus baccata"

cpDNA区域
cpDNA regions
Tajima's D值
Tajima's D
显著性
Significance
trnH-psbA -0.78313 P>0.10
trnS-trnG spacer+ intron -0.45018 P>0.10
trnT-5' trnL -0.29083 P>0.10
5' trnL-trnF -1.70516 0.05<P<0.10
组合 Combined -0.54177 P>0.10

Table 6

7 populations of 215 accessions of Malus baccata grouped by original provinces"

试材编号Code of accessions 来源地Origion 个体数量Number of accessions 群体代码Code of populations
MB1-MB83 黑龙江 Heilongjiang 83 MBHLJ
MB84-MB101 吉林 Jilin 18 MBJL
MB102-MB143 内蒙古 Inner Mongolia 42 MBNM
MB144-MB197 河北 Hebei 54 MBHB
MB198-MB210 山西 Shanxi 13 MBSX
MB211-MB214 甘肃 Gansu 4 MBGS
MB215 辽宁 Liaoning 1 MBLN

Table 7

Analysis of molecular variance for populations of Malus baccata"

变异来源
Source of variation
自由度
df
平方和
Sum of square
变异组分
Variance component
变异百分比
Percentage of variation
概率值
P
居群间Among population 6 201.966 0.84873 6.97 <0.001
居群内Within population 206 2334.987 11.33487 93.03 <0.001
总数 Total 212 2536.948 12.18360 100 <0.001

Table 8

The genetic differentiation coefficient among the six groups of Malus baccata from seven sources"

6个山荆子群体
6 populations of Malus baccata
MBGS MBHB MBHLJ MBJL MBNM MBSX
MBGS 0.000
MBHB 0.184 0.000
MBHLJ 0.206 0.042 0.000
MBJL 0.216 0.035 0.002 0.000
MBNM 0.209 0.166 0.061 0.079 0.000
MBSX -0.024 0.120 0.097 0.056 0.104 0.000

Fig. 2

Consensus neighbor-joining tree of Malus baccata on the genetic distance of populations"

Fig. 3

Median-Joining network for cpDNA haplotypes of Malus baccata based on four combined chloroplast DNA fragments"

[1] 中国植物志编辑委员会. 中国植物志[DB/OL]. [ 2019- 05- 17]. .
Editorial Committee of Flora Reipublicae Sinicae. Flora Reipublicae Popularis Sinicae [DB/OL]. [ 2019- 05- 17]. .(in Chinese)
[2] 俞德俊 . 中国果树分类学. 北京: 中国农业出版社, 1979: 91.
YU D J. Taxonomy of China Fruits. Beijing: China Agriculture Press, 1979: 91. (in Chinese)
[3] 钱关泽 . 苹果属 (Malus Mill.) 分类学研究[D]. 南京: 南京林业大学, 2005.
QIAN G Z . The taxonomic study of the genus Malus Mill.[D]. Nanjing: Nanjing Forestry University, 2005. ( in Chinese)
[4] ELITH J, GRAHAM C H, ANDERSON R P, DUDíK M, FERRIER S, GUISAN A, HIJMANS R J, HUETTMANN F, LEATHWICK J R, LEHMANN A, LI J, Lohmann L G, LOISELLE B A, MANION G, MORITZ C, NAKAMURA M, NAKAZAWA Y, OVERTON J M, PETERSON A T, PHILLIPS S J, RICHARDSON K, SCACCHETTI- PEREIRA R, SCHAPIRE R E, SOBERON J, WILLIAMS S, WISZ M S, ZIMMERMANN N E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006,29(2):129-151.
[5] 王大江, 王昆, 高源, 赵继荣, 刘立军, 龚欣, 李连文 . 我国苹果属资源现代分布调查初报. 植物遗传资源学报, 2017,18(6):1116-1124.
WANG D J, WANG K, GAO Y, ZHAO J R, LIU L J, GONG X, LI L W . Preliminary investigation of modern distribution of Malus resources in China. Journal of Plant Genetic Resources, 2017,18(6):1116-1124. (in Chinese)
[6] 杜学梅, 杨廷桢, 高敬东, 王骞, 蔡华成, 李春燕, 弓桂花 . 中国野生山定子的自然分布及利用研究现状. 中国农学通报, 2017,33(5):24-28.
DU X M, YANG T Z, GAO J D, WANG Q, CAI H C, LI C Y, GONG G H . Wild Malus baccata(L.) Borkh. in China: Natural distribution, utilization and study status. Chinese Agricultural Science Bulletin, 2017,33(5):24-28. (in Chinese)
[7] 王雷宏 . 山荆子(Malus baccata (L.) Borkh.)变异式样研究[D]. 南京: 南京林业大学, 2008.
WANG L H . A study on variation patterns in Malus baccata (L.) Borkh.[D]. Nanjing: Nanjing Forestry University, 2008. ( in Chinese)
[8] 陆秋农, 贾定贤 . 中国果树志•苹果卷. 北京: 中国林业出版社, 1999: 121.
LU Q N, JIA D X. Chinese Fruit Tree • Apple. Beijing: China Forestry Press, 1999: 121. (in Chinese)
[9] 李育农 . 苹果属植物种质资源研究. 北京: 中国农业出版社, 2001: 23-25.
LI Y N. Researches of Germplasm Resources of Malus Mill. Beijing: China Agriculture Press, 2001: 23-25. (in Chinese)
[10] 邹旭, 彭冶, 王璐, 李垚, 张往祥, 刘雪 . 末次盛冰期以来气候变化对中国山荆子分布格局的影响. 植物科学学报, 2018,36(5):676-686.
ZOU X, PENG Y, WANG L, LI Y, ZHANG W X, LIU X . Impact of climate change on the distribution pattern of Malus baccata(L.) Borkh. in China since the Last Glacial Maximum. Plant Science Journal, 2018,36(5):676-686. (in Chinese)
[11] 王雷宏, 汤庚国 . 山荆子腊叶标本表型性状变异分析. 西北植物学报, 2007,27(8):1690-1694.
WANG L H, TANG G G . Phenotypic variations of exsiccate- specimen of Malus baccata(L.) Borkh. Acta Botanica Boreali Occidentalia Sinica, 2007,27(8):1690-1694. (in Chinese)
[12] 王雷宏, 汤庚国, 夏海武, 蔡华 . 山荆子叶脉序的研究. 南京林业大学学报(自然科学版), 2008,32(2):39-42.
WANG L H, TANG G G, XIA H W, CAI H . Study on leaf venation of Malus baccata(L.) Borkh. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008,32(2):39-42. (in Chinese)
[13] 陈曦, 汤庚国, 郑玉红, 王雷宏 . 苹果属山荆子遗传多样性的RAPD 分析. 西北植物学报, 2008,28(10):1954-1959.
CHEN X, TANG G G, ZHENG Y H, WANG L H . RAPD analysis of genetic diversity of Malus baccata. Acta Botanica Boreali Occidentalia Sinica, 2008,28(10):1954-1959. (in Chinese)
[14] ROBINSON J P, HARRIS S A, JUNIPER B E . Taxonomy of the genus Malus Mill.(Rosaceae ) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Systematic and Evolution, 2001,226(1/2):35-58.
[15] 王雷宏, 杨俊仙, 郑玉红, 汤庚国 . 苹果属山荆子地理分布模拟. 北京林业大学学报, 2011,33(3):70-73.
WANG L H, YANG J X, ZHENG Y H, TANG G G . Modelling the geographical distribution of Malus baccata. Journal of Beijing Forestry University, 2011,33(3):70-73. (in Chinese)
[16] 杨锋, 刘志, 伊凯, 刘延杰, 王强, 孙建设 . 东北山定子(Malus baccata (L.) Borkh.)野生居群表型遗传多样性分析及生态地理分布研究. 植物遗传资源学报, 2015,16(3):490-496.
YANG F, LIU Z, YI K, LIU Y J, WANG Q, SUN J S . Studies on geographical regions and analysis on genetic diversity of phenotypic of natural population of ‘Malus baccata ( L.) Borkh’ in Northeast of China. Journal of Plant Genetic Resources, 2015,16(3):490-496. (in Chinese)
[17] 王雷宏, 郑玉红, 汤庚国 . 8个山荆子居群遗传多样性的ISSR分析. 西北植物学报, 2010,30(7):1337-1343.
WANG L H, ZHENG Y H, TANG G G . ISSR analysis of genetic diversity of eight populations in Malus baccata. Acta Botanica Boreali Occidentalia Sinica, 2010,30(7):1337-1343. (in Chinese)
[18] 王雷宏, 郑玉红, 汤庚国 . 基于SSR标记的8个山荆子居群遗传多样性和遗传关系分析. 植物资源与环境学报, 2012,21(1):42-46.
WANG L H, ZHENG Y H, TANG G G . Analyses of genetic diversity and genetic relationship of eight populations of Malus baccata based on SSR marker. Journal of Plant Resources and Environment, 2012,21(1):42-46. (in Chinese)
[19] 高源, 王昆, 王大江, 赵继荣, 张彩霞, 丛佩华, 刘立军, 李连文, 朴继成 . 7 个来源地区山荆子的遗传多样性与群体结构分析. 中国农业科学, 2018,51(19):3766-3777.
GAO Y, WANG K, WANG D J, ZHAO J R, ZHANG C X, CONG P H, LIU L J, LI L W, PIAO J C . The genetic diversity and population structure analysis on Malus baccata(L.) Borkh. from 7 sources. Scientia Agricultura Sinica, 2018,51(19):3766-3777. (in Chinese)
[20] 倪梁红, 赵志礼, 米玛 . 药用植物叶绿体基因组研究进展. 中药材, 2015,38(9):1990-1994.
NI L H, ZHAO Z L, MI M . Advances in research on chloroplast genome of medicinal plants. Journal of Chinese Medicinal Materials, 2015,38(9):1990-1994. (in Chinese)
[21] 李宏韬, 赵淑青, 赵彦修, 张慧 . 叶绿体基因工程简介. 遗传, 2003,25(4):495-498.
LI H T, ZHAO S Q, ZHAO X X, ZHANG H . The introduction of chloroplast gene engineering. Hereditas, 2003,25(4):495-498. (in Chinese)
[22] 张韵洁, 李德铢 . 叶绿体系统发育基因组学的研究进展. 植物分类与资源学报, 2011,33(4):365-375.
ZHANG Y J, ZHANG D Z . Advances in phylogenomics based on complete chloroplast genomes. Plant Diversity and Resources, 2011,33(4):365-375. (in Chinese)
[23] 付涛, 王志龙, 钱萍仙, 李文, 袁冬明, 严春风 . 高等植物DNA条形码最新研究进展及其应用. 核农学报, 2016,30(5):887-896.
FU T, WANG Z L, QIAN P X, LI W, YUAN D M, YAN C F . The latest research progress and application of the DNA barcode in higher plants. Journal of Nuclear Agricultural Sciences, 2016,30(5):887-896. (in Chinese)
[24] SAVOLAINEN V, CORBAZ R, MONCOUSIN C, SPICHIPER R, MANEN J F . Chloroplast DNA variation and parentage analysis in 55 apples. Theoretical and Applied Genetics, 1995,90:1138-1141.
[25] ROBINSON J P, HARRIS S A, JUNIPER B E . Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Systematics and Evolution, 2001,226:35-58.
[26] COART E, VAN GLABEKE S, DE LOOSE M, LARSEN A S, ROLDAN-RUIZ I . Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L) Mill.) and the domesticated apple (Malus domestica Borkh.). Molecular Ecology, 2006,15:2171-2182.
[27] NIKIFOROVA S V, CAVALIERI D, VELASCO R, GOREMYKIN V . Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Molecular Biology Evolution, 2013,30(8):1751-1760.
[28] 丁芳兵. 湖北海棠(Malus.hupehensis)及近缘种的matK和ITS序列分析[D]. 南京: 南京林业大学, 2012.
DING F B . Sequence analysis of matK and ITS between Malus hupehensis and its relative species[D]. Nanjing: Nanjing Forestry University, 2012. ( in Chinese)
[29] 朱元娣, 曹敏格, 许正, 王昆, 张文 . 基于ITS和matK序列探讨新疆野苹果与中国苹果的系统演化关系. 园艺学报, 2014,41(2):227-239.
ZHU Y D, CAO M G, XU Z, WANG K, ZHANG W . Phylogenetic relationship between Xinjiang wild apple(Malus sieversii Roem.)and Chinese apple(Malus × domestica subsp. chinensis)based on ITS and matK sequences. Acta Horticulturae Sinica, 2014,41(2):227-239. (in Chinese)
[30] 徐榕雪 . 基于分子标记技术的部分苹果属植物分类地位及亲缘关系研究[D]. 南京: 南京林业大学, 2018.
XU R X . Taxonomic status and phylogenetic relationships of some Malus plants based on molecular marker technology[D]. Nanjing: Nanjing Forestry University, 2018. ( in Chinese)
[31] 李慧峰 . 泰沂山区苹果属植物系统学研究[D]. 沈阳: 沈阳农业大学, 2012.
LI H F . Studies on the taxonomy of the genus Malus Mill. (Rosaceae) of Taiyi-Mountains[D]. Shenyang: Shenyang Agricultural University, 2012. ( in Chinese)
[32] BARAKET G, OLFA S, KHALED C, MESSAOUD M, MOHAMED M, MOKHTAR T, AMEL S H . Chloroplast DNA analysis in Tunisian fig cultivars (Ficus carica L.): Sequence variations of the trnl-trnf intergenic spacer. Biochemical Systematics and Ecology, 2009,36(11):828-835.
[33] POTTER D, LUBY J J, HARRISON R E . Phylogenetic relationships among species of Fragaria (Rosaceae) inferred from non-coding nuclear and chloroplast DNA sequences. Systematic Botany, 2009,25(2):337-348.
[34] GHADA B, AHMED B A, KHALED C, OLFA S, MESSAOUD M, MOKHTAR T, AMEL S H . Molecular evolution of chloroplast DNA in fig (Ficus carica L.): Footprints of sweep selection and recent expansion. Biochemical Systematics and Ecology, 2010,38(4):563-575.
[35] SHAW J, LICKEY E B, BECK J T, FARMER S B, LIU W S, MILLER J, SIRIPUN K C, WINDER C T, SCHILLING E E, SMALL R L . The tortoise and the hare Ⅱ: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 2005,921(1):142-166.
[36] VOLK G M, HENK A D, BALDO A, FAZIO G, CHAO C T, RICHARDS C M . Chloroplast heterogeneity and historical admixture within the genus Malus. American Journal of Botany, 2015,102(7):1198-1208.
[37] KUMAR S, STECHER G, TAMURA K . MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology Evolution, 2016,33(7):1870-1874.
[38] LIBRADO P, ROZAS J . DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009,25:1451-1452.
[39] SAITO N, NEI M . The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987,4(4):406-425.
[40] EXCOFFIER L, LISCHER H E L . Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 2010,10:564-567.
[41] KIMURA T, IKETANI H, KOTOBUKI K, MATSUTA N, BAN Y, HAYASHI T, YAMAMOTO T . Genetic characterization of pear varieties revealed by chloroplast DNA sequences. Journal of Horticultural Science and Biotechnology, 2003,7:241-247.
[42] PETIT R, AGUINAGALDE I, DE BEAULIEU J, BITTKAU C, BREWER S, CHEDDADI R, ENNOS R, FINESCHI S, GRIVET D, LASCOUX M, MOHANTY A, MÜLLER-STARCK G, DEMESURE- MUSCH B, PALMÉ A, MARTÍN J P, RENDELL S, VENDRAMIN G G . Glacial refugia: Hotspots but not melting pots of genetic diversity. Science, 2003,300:1563-1565.
[43] KATAYAMA H, OGIHARA Y . Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA. Current Genetics, 1996,20:527-581.
[44] EIADTHONG W, YONEMORI K, SUGIURA A, UTSUNOMIYA N, SUBHADRABANDHU S . Analysis of phylogenetic relationships in Mangifera by restriction site analysis of an amplified region of cpDNA. Scientia Horticulturae, 1999,80:145-150.
[45] LIU J, ZHENG X Y, DANEIL P, HU C Y, TENG Y W . Genetic diversity and population structure of Pyrus Calleryana (Rosaceae) in Zhejiang province, China. Biochemical Systematics and Ecology, 2012,45:69-78.
[46] 宗宇 . 中国北方野生杜梨的遗传多样性和谱系地理研究[D]. 杭州: 浙江大学, 2014.
ZONG Y . Studies on genetic diversity and phylogeography of wild Pyrus betulaefolia in Northern China[D]. Hangzhou: Zhejiang University, 2014. ( in Chinese)
[47] NEI M . Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978,89(3):583-590.
[48] AVISE J C, ARNOLD J, BALL R M, BERMINGHAM E, LAMB T, NEIGEL J E, REEB C A, SAUNDER N C . Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 1987,18:489-522.
[49] WRIGHT S. Evolution and the Genetics of Populations, Variability Within and Among Natural Populations. Chicago: The University of Chicago Press, 1978: 4.
[50] ZHANG C Y, CHEN X S, HE T M, LIU X L, FENG T, YUAN Z H . Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. Journal of Genetics and Genomics, 2007,34(10):947-955.
[51] POSADA D, CRANDALL K A . Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology and Evolution, 2001,16:37-45.
[1] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[6] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[7] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[8] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[9] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
[10] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[11] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[12] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
[13] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
[14] WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790.
[15] HUANG MiaoMiao,CHEN WanQuan,CAO ShiQin,SUN ZhenYu,JIA QiuZhen,GAO Li,LIU Bo,LIU TaiGuo. Surveillance and Genetic Diversity Analysis of Puccinia striiformis f. sp. tritici in Gansu and Qinghai Provinces [J]. Scientia Agricultura Sinica, 2020, 53(18): 3693-3706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!