Loading...

Archive

    2023 Vol. 22 No. 8 Previous Issue   

    Crop Science
    Horticulture
    Plant Protection
    Animal Science · Veterinary Medicine
    Agro-ecosystem & Environment
    Agricultural Economics and Management
    Short Communication


      Cover illustration

    For Selected: Toggle Thumbnails
    Crop Science
    A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)
    GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen
    2023, 22(8): 2295-2305.  DOI: 10.1016/j.jia.2023.02.006
    Abstract ( )   PDF in ScienceDirect  
    In higher plants, the shoot apical meristem produces lateral organs in a regular spacing (phyllotaxy) and timing (plastochron).  The molecular analysis of mutants associated with phyllotaxy and plastochron would increase our understanding of the mechanism of shoot architecture formation.  In this study, we identified mutant mnd8ynp5 that shows an increased rate of leaf emergence and a larger number of nodes in combination with a dwarfed growth habit from an EMS-treated population of the elite barley cultivar Yangnongpi 5.  Using a map-based cloning strategy, the mnd8 gene was narrowed down to a 6.7-kb genomic interval on the long arm of chromosome 5H.  Sequence analysis revealed that a C to T single-nucleotide mutation occurred at the first exon (position 953) of HORVU5Hr1G118820, leading to an alanine (Ala) to valine (Val) substitution at the 318th amino acid site.  Next, HORVU5Hr1G118820 was defined as the candidate gene of MND8 encoding 514 amino acids and containing two multidrug and toxic compound extrusion (MATE) domains.  It is highly homologous to maize Bige1 and has a conserved function in the regulation of plant development by controlling the leaf initiation rate.  Examination of modern barely varieties showed that Hap-1 was the dominant haplotype and was selected in barley breeding around the world.  Collectively, our results indicated that mnd8ynp5 is a novel allele of the HORVU5Hr1G118820 gene that is possibly responsible for the shortened plastochron and many noded dwarf phenotype in barley.
    Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers
    GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng
    2023, 22(8): 2306-2322.  DOI: 10.1016/j.jia.2023.01.002
    Abstract ( )   PDF in ScienceDirect  
    Calcium (Ca2+) plays an important role in determining plant growth and development because it maintains cell wall and
    membrane integrity. Therefore, understanding the role of Ca2+ in carbon and lipid metabolism could provide insights
    into the dynamic changes in cell membranes and cell walls during the rapid elongation of cotton fibers. In the present
    study, we found that the lack of Ca2+ promoted fiber elongation and rapid ovule expansion, but it also caused tissue
    browning in the ovule culture system. RNA-sequencing revealed that Ca2+ deficiency induced cells to be highly oxidized,
    and the expression of genes related to carbon metabolism and lipid metabolism was activated significantly. All gene
    members of nine key enzymes involved in glycolysis were up-regulated, and glucose was significantly reduced in Ca2+
    deficiency-treated tissues. Ca2+ deficiency adjusted the flowing of glycolysis metabolic. However, low K+ recovered
    the expression levels of glycolysis genes and glucose content caused by Ca2+ deficiency. Electrospray ionizationtandem
    mass spectrometry technology was applied to uncover the dynamic profile of lipidome under Ca2+ and K+
    interacted conditions. Ca2+ deficiency led to the decrease of fatty acid (FA), diacylglycerol (DAG), glycolipid and the
    significant increase of triacylglycerol (TAG), phospholipid phosphatidylethanolamine (PE), phosphatidylglycerol (PG),
    and PC (phosphatidylcholine). Low K+ restored the contents of FA, phospholipids, and glycolipids, effectively relieved
    the symptoms caused by Ca2+ deficiency, and recovered the development of fiber cells. This study revealed dynamic
    changes in transcript and metabolic levels and uncovered the signaling interaction of Ca2+ deficiency and low K+ in
    glycolysis and lipid metabolism during fiber development.
    A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)
    ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing
    2023, 22(8): 2323-2334.  DOI: 10.1016/j.jia.2023.02.005
    Abstract ( )   PDF in ScienceDirect  
    Peanut pod shape is a heritable trait which affects the market acceptance of in-shell peanut products.  In order to determine the genetic control of pod shape, six component traits of pod shape (pod length, pod width, pod length/width ratio, pod roundness, beak degree and constriction degree) were measured using an image-based phenotyping method.  A recombinant inbred line (RIL) population consisting of 181 lines was phenotyped across three environments.  Continuous distributions and transgressive segregations were demonstrated in all measured traits and environments.   Significant correlations were found among most component traits with broad-sense heritability ranging from 0.87 to 0.95.  Quantitative trait locus (QTL) analysis yielded 26 additive QTLs explaining 3.79 to 52.37% phenotypic variations.  A novel, stable and major QTL region conditioning multiple shape features was detected on chromosome 2, which spans a 10.81-Mb genomic region with 543 putative genes.  Bioinformatics analysis revealed several candidate genes in this region.  In addition, 73 pairs of epistatic interactions involving 92 loci were identified for six component traits explaining 0.94–6.45% phenotypic variations.  These results provide new genetic loci to facilitate genomics-assisted breeding of peanut pod shape.
    Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)
    XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian
    2023, 22(8): 2335-2345.  DOI: 10.1016/j.jia.2023.04.046
    Abstract ( )   PDF in ScienceDirect  

    Anthocyanin is an important pigment that affects plant color and nutritional quality.  MYBs play an important role in plant anthocyanin synthesis and accumulation.  However, the regulatory function of MYB transcription factors in anthocyanin synthesis in flax flowers is still unclear.  In this study, 402 MYB transcription factors were identified in the flax genome.  These MYB members are unevenly distributed on 15 chromosomes.  The R2R3-LuMYB members were divided into 32 phylogenetic subfamilies.  qRT-PCR analysis showed that seven R2R3-LuMYB genes in the adjacent subfamily of the evolutionary tree had similar expression patterns, among which LuMYB216 was highly expressed in the petals of different colors.  Moreover, gene editing of LuMYB216 in flax showed that the petal color, anther color and seed coat color of mutant plants were significantly lighter than those of wild-type plants, and the anthocyanin content of lumyb216 mutant plants was significantly reduced.  Correlation analysis indicated that LuMYB216 was significantly positively correlated with the upstream regulator bHLH30.  This study systematically analyzed the MYB gene family in flax, laying a foundation for studying the regulation of LuMYB216 in flax flower anthocyanin synthesis.

    Effect of Bt traits on transgenic rice’s growth and weed competitiveness
    WANG Kang-xu , ZHANG Ke-rou, CAO Cou-gui, JIANG Yang
    2023, 22(8): 2346-2358.  DOI: 10.1016/j.jia.2023.01.001
    Abstract ( )   PDF in ScienceDirect  
    Transgene escape could lead to genetically modified rice establishing wild populations in the natural environment and competing for survival space with weeds.  However, whether the expression of the Bacillus thuringiensis (Bt) gene in rice will alter the relationship between transgene plants and weeds and induce undesirable environmental consequences are poorly understood.  Thus, field experiments were conducted to investigate the weed competitiveness and assess the ecological risk of transgenic Bt rice under herbicide-free and lepidopterous pest-controlled environments.  Results showed that weed–rice competition in the direct-sowing (DS) field was earlier and more severe than that in the transplanting (TP) field, which resulted in a significant decrease in biomass and yield in DS.  However, conventional Bt and non-Bt rice yield was not significantly different.  The weed number, weed coverage ratio, and weed diversity of conventional Bt rice were significantly higher than those of non-Bt rice at the early growth and mature stages, especially in DS plots, suggesting that Bt traits did not increase the weed competitiveness of transgenic rice and had no negative effect on weed diversity.  Grain yield and weed number varied between different hybrid rice lines, but those differences were insignificant between Bt and non-Bt rice.  The number of insects increased with the increase of weeds in hybrid rice plots, whereas the insect number and diversity did not display a significant difference between Bt and non-Bt rice.  Therefore, the ecological risk of transgenic Bt rice is comparable to non-Bt rice.
    Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes
    CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long, HE Ming-rong
    2023, 22(8): 2359-2369.  DOI: 10.1016/j.jia.2023.02.002
    Abstract ( )   PDF in ScienceDirect  

    Delays in sowing have significant effects on the grain yield, yield components, and grain protein concentrations of winter wheat.  However, little is known about how delayed sowing affects these characteristics at different positions in the wheat spikes.  In this study, the effects of sowing date were investigated in a winter wheat cultivar, Shannong 30, which was sown in 2019 and 2020 on October 8 (normal sowing) and October 22 (late sowing) under field conditions.  Delayed sowing increased the partitioning of 13C-assimilates to spikes, particularly to florets at the apical section of a spike and those occupying distal positions on the same spikelet.  Consequently, the increase in grain number was the greatest for the apical sections, followed by the basal and central sections.  No significant differences were observed between sowing dates in the superior grain number in the basal and central sections, while the number in apical sections was significantly different.  The number of inferior grains in each section also increased substantially in response to delayed sowing.  The average grain weights in all sections remained unchanged under delayed sowing because there were parallel increases in grain number and 13C-assimilate partitioning to grains at specific positions in the spikes.  Increases in grain number m–2 resulted in reduced grain protein concentrations as the limited nitrogen supply was diluted into more grains.  Delayed sowing caused the greatest reduction in grain protein concentration in the basal sections, followed by the central and apical sections.  No significant differences in the reduction of the grain protein concentration were observed between the inferior and superior grains under delayed sowing.  In conclusion, a 2-week delay in sowing improved grain yield through increased grain number per spike, which originated principally from an increased grain number in the apical sections of spikes and in distal positions on the same spikelet.  However, grain protein concentrations declined in each section because of the increased grain number and reduced N uptake.

    Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize 
    WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu
    2023, 22(8): 2370-2383.  DOI: 10.1016/j.jia.2023.02.012
    Abstract ( )   PDF in ScienceDirect  

    Elevating soil water content (SWC) through irrigation was one of the simple mitigation measures to improve crop resilience to heat stress.  The response of leaf function, such as photosynthetic capacity based on chlorophyll fluorescence during the mitigation, has received limited attention, especially in field conditions.  A two-year field experiment with three treatments (control treatment (CK), high-temperature treatment (H), and high-temperature together with elevating SWC treatment (HW)) was carried out during grain filling with two maize hybrids at a typical station in North China Plain.  Averagely, the net photosynthetic rate (Pn) was improved by 20%, and the canopy temperature decreased by 1–3°C in HW compared with in H in both years.  Furthermore, the higher SWC in HW significantly improved the actual photosynthetic rate (Phi2), linear electron flow (LEF), variable fluorescence (Fv), and the maximal potential quantum efficiency (Fv/Fm) for both hybrids.  Meanwhile, different responses in chlorophyll fluorescence between hybrids were also observed.  The higher SWC in HW significantly improved thylakoid proton conductivity (gH+) and the maximal fluorescence (Fm) for the hybrid ZD958.  For the hybrid XY335, the proton conductivity of chloroplast ATP synthase (vH+) and the minimal fluorescence (Fo) was increased by the SWC.  The structural equation model (SEM) further showed that SWC had significantly positive relationships with Pn, LEF, and Fv/Fm.  The elevating SWC alleviated heat stress with the delayed leaf senescence to prolong the effective period of photosynthesis and enhanced leaf photosynthetic capacity by improving Phi2, LEF, Fv, and Fv/Fm.  This research demonstrates that elevating SWC through enhancing leaf photosynthesis during grain filling would be an important mitigation strategy for adapting to the warming climate in maize production.

    Horticulture
    SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato
    DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu
    2023, 22(8): 2384-2396.  DOI: 10.1016/j.jia.2023.07.015
    Abstract ( )   PDF in ScienceDirect  

    Salinity tolerance is an important physiological index for crop breeding.  Roots are typically the first plant tissue to withstand salt stress.  In this study, we found that the tomato (Solanum lycopersicum) trehalose-6-phosphate phosphatase (SlTPP4) gene is induced by abscisic acid (ABA) and salt, and is mainly expressed in roots.  Overexpression of SlTPP4 in tomato enhanced tolerance to salt stress, resulting in better growth performance.  Under saline conditions, SlTPP4 overexpression plants demonstrated enhanced sucrose metabolism, as well as increased expression of genes related to salt tolerance.  At the same time, expression of genes related to ABA biosynthesis and signal transduction was enhanced or altered, respectively.  In-depth exploration demonstrated that SlTPP4 enhances Casparian band development in roots to restrict the intake of Na+.  Our study thus clarifies the mechanism of SlTPP4-mediated salt tolerance, which will be of great importance for the breeding of salt-tolerant tomato crops.

    Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress
    XU Yan-xia, ZHANG Jing, WAN Zi-yun, HUANG Shan-xia, DI Hao-chen, HE Ying, JIN Song-heng
    2023, 22(8): 2397-2411.  DOI: 10.1016/j.jia.2023.07.005
    Abstract ( )   PDF in ScienceDirect  

    Rhododendron is a well-known genus consisting of commercially valuable ornamental woody plant species.  Heat stress is a major environmental factor that affects rhododendron growth.  Melatonin was recently reported to alleviate the effects of abiotic stress on plants.  However, the role of melatonin in rhododendron plants is unknown.  In this study, the effect of melatonin on rhododendron plants exposed to heat stress and the potential underlying mechanism were investigated.  Analyses of morphological characteristics and chlorophyll a fluorescence indicated 200 µmol L–1 was the optimal melatonin concentration for protecting rhododendron plants from heat stress.  To elucidate how melatonin limits the adverse effects of high temperatures, melatonin contents, photosynthetic indices, Rubisco activity, and adenosine triphosphate (ATP) contents were analyzed at 25, 35, and 40°C, respectively.  Compared with the control, exogenous application of melatonin improved the melatonin contents, electron transport rate, photosystem II and I activities, Rubisco activity, and ATP contents under heat stress.  The transcriptome analysis revealed many of the heat-induced differentially expressed genes were associated with the photosynthetic pathway; the expression of most of these genes was down-regulated by heat stress more in the melatonin-free plants than in the melatonin-treated plants.  We identified RhPGR5A, RhATPB, RhLHCB3, and RhRbsA as key genes.  Thus, we speculate that melatonin promotes photosynthetic electron transport, improves Calvin cycle enzyme activities, and increases ATP production.  These changes lead to increased photosynthetic efficiency and CO2 assimilation under heat stress conditions via the regulated expression of specific genes, including RhRbsA.  Therefore, the application of exogenous melatonin may increase the tolerance of rhododendron to heat stress.

    Plant Protection
    Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome
    YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo
    2023, 22(8): 2412-2425.  DOI: 10.1016/j.jia.2023.01.006
    Abstract ( )   PDF in ScienceDirect  
    Plant-associated microbes represent a key determinant of plant fitness through acquiring nutrients, promoting growth, and resisting to abiotic and biotic stresses.  However, an extensive characterization of the bacterial and fungal microbiomes present in different plant compartments of soybean in field conditions has remained elusive.  In this study, we investigated the effects of four niches (roots, stems, leaves, and pods), four genotypes (Andou 203, Hedou 12, Sanning 16, and Zhonghuang 13), and three field locations (Jining, Suzhou, and Xuzhou) on the diversity and composition of bacterial and fungal communities in soybean using 16S and internal transcribed spacer rRNA amplicon sequencing, respectively.  The soybean microbiome significantly differed across organs.  Host genotypes explained more variation in stem bacterial community composition and leaf fungal community composition.  Field location significantly affected the composition of bacterial communities in all compartments and the effects were stronger in the root and stem than in the leaf and pod, whereas field location explained more variation in stem and leaf fungal community composition than in the root and pod.  The relative abundances of potential soybean fungal pathogens also differed among host organs and genotypes, reflecting the niches of these microbes in the host and probably their compatibility to the host genotypes.  Systematic profiling of the microbiome composition and diversity will aid the development of plant protection technologies to benefit soybean health.  
    Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection
    Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA
    2023, 22(8): 2426-2440.  DOI: 10.1016/j.jia.2023.02.032
    Abstract ( )   PDF in ScienceDirect  

    A headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME/GC-MS) method was used to study the volatile organic compounds (VOCs) associated with the differential immune response of tomato plants infected with the recombinant strain of potato virus Y (PVYC-to), necrogenic to tomato.  Analysis was carried out in UC82 (UC), a virus susceptible tomato variety, comparing the same UC plants grafted or not onto a virus tolerant tomato ecotype, Manduria (Ma); the three types of samples used for the GC-MS analysis were mock-inoculated UC/Ma plants, UC/Ma+PVYC-to and UC+PVYC-to plants; the VOCs obtained were 111.  Results from symptomatic PVYC-to-infected UC plants showed a VOCs composition enriched in alcohols, fatty acid derivates, benzenoids, and salicylic acid derivatives, while in mock-inoculated UC/Ma plants VOCs were mainly characterized by methyl ester compounds.  The VOC profile was in line with RNAseq data analyses, denoting that PVYC-to viral RNA accumulation and disease symptoms induce the specific transcriptional activation of genes involved in VOCs biosynthesis.  Furthermore, principal component analysis highlighted that VOCs of PVYC-to-infected and mock-inoculated grafted plants were much closer each other than that of symptomatic PVYC-to-infected non-grafted UC plants.  These results suggest that VOCs profiles of tomato plants are related to the viral RNA accumulation, disease intensity and graft-derived tolerance to PVYC-to infection.

    Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change
    XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao
    2023, 22(8): 2441-2455.  DOI: 10.1016/j.jia.2022.08.023
    Abstract ( )   PDF in ScienceDirect  

    Global food security is threatened by the impacts of the spread of crop pests and changes in the complex interactions between crops and pests under climate change.  Schrankia costaestrigalis is a newly-reported potato pest in southern China.  Early-warning monitoring of this insect pest could protect domestic agriculture as it has already caused regional yield reduction and/or quality decline in potato production.  Our research aimed to confirm the potential geographical distributions (PGDs) of Scostaestrigalis in China under different climate scenarios using an optimal MaxEnt model, and to provide baseline data for preventing agricultural damage by Scostaestrigalis.  Our findings indicated that the accuracy of the optimal MaxEnt model was better than the default-setting model, and the minimum temperature of the coldest month, precipitation of the driest month, precipitation of the coldest quarter, and the human influence index were the variables significantly affecting the PGDs of Scostaestrigalis.  The highly- and moderately-suitable habitats of Scostaestrigalis were mainly located in eastern and southern China.  The PGDs of Scostaestrigalis in China will decrease under climate change.  The conversion of the highly- to moderately-suitable habitat will also be significant under climate change.  The centroid of the suitable habitat area of Scostaestrigalis under the current climate showed a general tendency to move northeast and to the middle-high latitudes in the 2030s.  The agricultural practice of plastic film mulching in potato fields will provide a favorable microclimate for Scostaestrigalis in the suitable areas.  More attention should be paid to the early warning and monitoring of Scostaestrigalis in order to prevent its further spread in the main areas in China’s winter potato planting regions.

    Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China
    WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru
    2023, 22(8): 2456-2469.  DOI: 10.1016/j.jia.2022.08.025
    Abstract ( )   PDF in ScienceDirect  

    Propylea japonica (Coleoptera: Coccinellidae) is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management.  However, its genetic pattern (i.e., genetic variation, genetic structure, and historical population dynamics) is still unclear, impeding the development of biological control of insect pests.  Population genetic research has the potential to optimize strategies at different stages of the biological control processes.  This study used 23 nuclear microsatellite sites and mitochondrial COI genes to investigate the population genetics of Propylea japonica based on 462 specimens collected from 30 sampling sites in China.  The microsatellite dataset showed a moderate level of genetic diversity, but the mitochondrial genes showed a high level of genetic diversity.  Populations from the Yellow River basin were more genetically diverse than those in the Yangtze River basin.  Propylea japonica has not yet formed a significant genealogical structure in China, but there was a population structure signal to some extent, which may be caused by frequent gene flow between populations.  The species has experienced population expansion after a bottleneck, potentially thanks to the tri-trophic plant–insect–natural enemy relationship.  Knowledge of population genetics is of importance in using predators to control pests.  Our study complements existing knowledge of an important natural predator in agroecosystems through estimating its genetic diversity and population differentiation and speculating about historical dynamics.

    The combination of NlMIP and Gαi/q coupled-receptor NlA10 promotes abdominal vibration production in female Nilaparvata lugens (Stål)
    SU Qin, LÜ Jun, LI Wan-xue, CHEN Wei-wen, LUO Min-shi, ZHANG Chuan-chuan, ZHANG Wen-qing
    2023, 22(8): 2470-2482.  DOI: 10.1016/j.jia.2023.02.028
    Abstract ( )   PDF in ScienceDirect  

    For various sexually mature insects, including the brown planthopper (BPH, Nilaparvata lugens), the abdominal vibration (AV) signal is the initiation of the mating process, and it is critical to the success of mating.  Currently, there are few studies on the genetic and molecular mechanisms of AV regulation.  Our previous AV-related transcriptomic study in female BPH identified myoinhibitory peptide (NlMIP) as a gene that potentially affects AV status in females, but how NlMIP affects AV status remains unknown.  In this study, we confirmed that NlMIP regulates AV production and mating behavior in female BPH.  When the RNAi knockdown efficiency of NlMIP was 59.00%, the probability of females producing AV and the mating rate in 1 h decreased by 38.89 and 61.11%, respectively.  In addition, six mature peptides of NlMIP were synthesized and they were able to regulate AV production and mating behavior in females, with NlMIP2 having the strongest effect.  The A-family neuropeptide GPCR 10 (NlA10) was found to be a potential receptor for NlMIP based on a phylogenetic tree analysis and the fact that NlMIP mature peptides effectively activated NlA10.  After NlA10 was knocked down, the probability of females producing AV and the mating rate in 1 h had reductions of 28.89 and 43.33%, respectively.  When activated by NlMIP2, NlA10 coupled the Gαi/q signalling pathways, thereby inhibiting the downstream AC/cAMP/PKA, activating the PLC/Ca2+/PKC signalling pathways and then activating MEK1/2 in a cascade to mediate the phosphorylation of ERK1/2, and finally regulating the AV of females.  These results provide a basis for the prevention and control of the brown planthopper pest by disrupting female AV.

    Animal Science · Veterinary Medicine
    Identification of novel antisense long non-coding RNA APMAP-AS that modulates porcine adipogenic differentiation and inflammatory responses
    ZHANG Lin-zhen, HE Li, WANG Ning, AN Jia-hua, ZHANG Gen, CHAI Jin, WU Yu-jie, DAI Chang-jiu, LI Xiao-han, LIAN Ting, LI Ming-zhou, JIN Long
    2023, 22(8): 2483-2499.  DOI: 10.1016/j.jia.2022.11.005
    Abstract ( )   PDF in ScienceDirect  
    Long non-coding RNAs (lncRNAs) are emerging as powerful regulators of adipocyte differentiation, fat metabolism and gene expression. However, the functional roles and mechanisms of lncRNAs in these processes remain unclear. Here, we identified a novel antisense transcript, named APMAP-AS, transcribed from adipocyte membrane-associated protein (APMAP) in the pig genome. APMAP-AS and APMAP were highly expressed in retroperitoneal adipose of obese pigs, compared with that in control pigs. Using a bone mesenchymal stem cells (BMSCs) adipogenic differentiation model, we found that APMAP-AS positively regulated adipogenic differentiation. APMAP-AS had the potential to form an RNA–RNA duplex with APMAP, and increased the stability of APMAP mRNA. Additionally, APMAP-AS promoted lipid metabolism and inhibited the expression of inflammatory factors. These findings of a natural antisense transcript for a regulatory gene associated with lipid synthesis might further our understanding of lncRNAs in driving adaptive adipose tissue remodeling and preserving metabolic health.
    Identification of blaIMI-mediated carbapenem-resistant Enterobacter from a duck farm in China
    HUANG Hong-hao, LU Yi-xing, WU Su-juan, MA Zhen-bao, ZENG Dong-ping, ZENG Zhen-ling
    2023, 22(8): 2500-2508.  DOI: 10.1016/j.jia.2023.06.013
    Abstract ( )   PDF in ScienceDirect  

    Carbapenem- and colistin-resistant Enterobacter has been a clinical and therapy problem in recent years. Here, we report the carbapenem- and colistin-resistant Enterobacter harboring blaIMI isolated from intestinal samples and the environment of a duck farm in China. Four blaIMI-positive Enterobacter isolates were resistant to carbapenem and colistin. Three blaIMI subtypes were detected in different molecular categories of Enterobacter. The detection of the various IMI producers highlights the diversity of carbapenemases in a duck farm. Whole-genome sequencing demonstrated the blaIMI genes were present in chromosomes or plasmids in these strains. The conjugation experiment demonstrated the ability of blaIMI-carrying plasmid to transmit horizontally. The molecular evolution characteristics were examined through comparative genetic analysis. The study demonstrated the presence of chromosomal and plasmid blaIMI and the blaIMI-carrying plasmid exhibits a horizontal transmission between Enterobacter and Escherichia coli C600. The similar genetic content was discovered between two blaIMI-16-positive Enterobacter asburiae. In addition, a blaIMI-16-carrying plasmid is an IncFII(Yp) plasmid, and a substantial amount of mobile genetic elements were identified around blaIMI-16. The IS-like elements and IncFII(Yp) plasmid are significant in the propagation of blaIMI. Our study provides evidence for the transmission of diverse blaIMI genes in China and supplies additional reference data for blaIMI-positive antimicrobial-resistant Enterobacter. Routine surveys of blaIMI-positive Enterobacter from animal-raising environments must be given more focus

    Agro-ecosystem & Environment
    Combining rhizosphere and soil-based P management decreased the P fertilizer demand of China by more than half based on LePA model simulations
    YU Wen-jia, LI Hai-gang, Peteh M. NKEBIWE, YANG Xue-yun, GUO Da-yong, LI Cui-lan, ZHU Yi-yong, XIAO Jing-xiu, LI Guo-hua, SUN Zhi, Torsten MÜLLER, SHEN Jian-bo
    2023, 22(8): 2509-2520.  DOI: 10.1016/j.jia.2022.09.003
    Abstract ( )   PDF in ScienceDirect  

    Phosphorus (P) is a finite natural resource and is increasingly considered to be a challenge for global sustainability. Agriculture in China plays a key role in global sustainable P management. Rhizosphere and soil-based P management are necessary for improving P-use efficiency and crop productivity in intensive agriculture in China. A previous study has shown that the future demand for phosphate fertilizer by China estimated by the LePA model (legacy phosphorus assessment model) can be greatly reduced by soil-based P management (the building-up and maintenance approach). The present study used the LePA model to predict the phosphate demand by China through combined rhizosphere and soil-based P management at county scale under four P fertilizer scenarios: (1) same P application rate as in 2012; (2) rate maintained same as 2012 in low-P counties or no P fertilizer applied in high-P counties until targeted soil Olsen-P (TPOlsen) level is reached, and then rate was the same as P-removed at harvest; (3) rate in each county decreased to 1–7 kg ha–1 yr–1 after TPOlsen is reached in low-P counties, then increased by 0.1–9 kg ha–1 yr–1 until equal to P-removal; (4) rate maintained same as 2012 in low-P counties until TPOlsen is reached and then equaled to P-removal, while the rate in high-P counties is decreased to 1–7 kg ha–1 yr–1 until TPOlsen is reached and then increased by 0.1–9 kg ha–1 yr–1 until equal to P-removal. Our predictions showed that the total demand for P fertilizer by whole China was 693 Mt P2O5 and according to scenario 4, P fertilizer could be reduced by 57.5% compared with farmer current practice, during the period 2013–2080. The model showed that rhizosphere P management led to a further 8.0% decrease in P fertilizer use compared with soil-based P management. The average soil Olsen-P level in China only needs to be maintained at 17 mg kg–1 to achieve high crop yields. Our results provide a firm basis for government to issue-relevant policies for sustainable P management in China.

    Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice
    ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing
    2023, 22(8): 2521-2535.  DOI: 10.1016/j.jia.2023.02.023
    Abstract ( )   PDF in ScienceDirect  
    The addition of silicon (Si) and organic fertilizers to soil conditioners can inhibit the transfer of heavy metal ions from soil to crops. However, it is not clear how Si and organic fertilizers affect soil properties and the micro-ecological environment and thereby reduce cadmium (Cd) accumulation in rice. In this study, the effects of L-type soil conditioners containing Si and organic fertilizers on bacterial and fungal community diversity, soil pH, organic matter, and available Si were analyzed with field experiments at two sites in Liuzhou City and Hezhou City, respectively, in Guangxi, China. With the increase of Si and organic fertilizer content in soil conditioner, rice yield respectively increased by 16.8–25.8 and 6.8–13.1%, and rice Cd content decreased significantly by 8.2–21.1 and 10.8–40.6%, respectively, at the two experimental sites. Soil microbiome analysis showed that the increase in abundance of Firmicutes and Actinobacteriota bacteria associated with Cd adsorption and sequestration, and Basidiomycota fungal populations associated with degradation of macromolecules favored the inhibition of soil Cd activity (soil exchangeable Cd decreased by 14.4–14.8 and 18.1–20.6%). This was associated with an increase in organic matter and Si content caused by applying soil conditioners. In conclusion, L-type soil conditioners, rich in Si and organic fertilizer, can reduce soil Cd bioavailability by regulating the dominant Cd passivating flora in the soil and ultimately reduce Cd accumulation in rice.
    Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images
    PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang
    2023, 22(8): 2536-2552.  DOI: 10.1016/j.jia.2023.02.027
    Abstract ( )   PDF in ScienceDirect  

    Remote sensing has been increasingly used for precision nitrogen management to assess the plant nitrogen status in a spatial and real-time manner. The nitrogen nutrition index (NNI) can quantitatively describe the nitrogen status of crops. Nevertheless, the NNI diagnosis for cotton with unmanned aerial vehicle (UAV) multispectral images has not been evaluated yet. This study aimed to evaluate the performance of three machine learning models, i.e., support vector machine (SVM), back propagation neural network (BPNN), and extreme gradient boosting (XGB) for predicting canopy nitrogen weight and NNI of cotton over the whole growing season from UAV images. The results indicated that the models performed better when the top 15 vegetation indices were used as input variables based on their correlation ranking with nitrogen weight and NNI. The XGB model performed the best among the three models in predicting nitrogen weight. The prediction accuracy of nitrogen weight at the upper half-leaf level (R2=0.89, RMSE=0.68 g m–2, RE=14.62% for calibration and R2=0.83, RMSE=1.08 g m–2, RE=19.71% for validation) was much better than that at the all-leaf level (R2=0.73, RMSE=2.20 g m–2, RE=26.70% for calibration and R2=0.70, RMSE=2.48 g m–2, RE=31.49% for validation) and at the plant level (R2=0.66, RMSE=4.46 g m–2, RE=30.96% for calibration and R2=0.63, RMSE=3.69 g m–2, RE=24.81% for validation). Similarly, the XGB model (R2=0.65, RMSE=0.09, RE=8.59% for calibration and R2=0.63, RMSE=0.09, RE=8.87% for validation) also outperformed the SVM model (R2=0.62, RMSE=0.10, RE=7.92% for calibration and R2=0.60, RMSE=0.09, RE=8.03% for validation) and BPNN model (R2=0.64, RMSE=0.09, RE=9.24% for calibration and R2=0.62, RMSE=0.09, RE=8.38% for validation) in predicting NNI. The NNI predictive map generated from the optimal XGB model can intuitively diagnose the spatial distribution and dynamics of nitrogen nutrition in cotton fields, which can help farmers implement precise cotton nitrogen management in a timely and accurate manner

    Agricultural Economics and Management
    Asset specificity and farmers’ intergenerational succession willingness of apple management
    ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi
    2023, 22(8): 2553-2566.  DOI: 10.1016/j.jia.2023.04.016
    Abstract ( )   PDF in ScienceDirect  
    Understanding the factors behind apple farmers’ willingness to pass on the management of their farms to their descendants is crucial to the continuity of apple production. Due to the high specificity of the human capital, physical assets, land assets, and geographical location in apple production, this study used a binary logistic regression and a mediating effect model to explore the impact of asset specificity on farmers’ intergenerational succession willingness of apple management (FISWAM) and to examine the mediating effects of loss aversion in the impact of asset specificity on the FISWAM. The results showed that about 18.68% of the respondents expressed willingness to transfer their apple business between generations, and the FISWAM was generally weak. In addition to the negative impact of geographical location specificity (GLS), human capital specificity (HCS), physical assets specificity (PAS), and land assets specificity (LAS) can enhance the FISWAM. Loss aversion plays a partial mediating role in the impact of PAS, LAS, and GLS on the FISWAM
    Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China
    LI Dong-qing, ZHANG Ming-xue, LÜ Xin-xin, HOU Ling-ling
    2023, 22(8): 2567-2576.  DOI: 10.1016/j.jia.2023.07.001
    Abstract ( )   PDF in ScienceDirect  
    Rotational grazing is considered as one of the nature-based solutions (NbS) to grassland protection by natural scientists. However, its effects on improving grassland quality are still unclear when it is adopted by herders. Using a household-level panel data from field survey in two main pastoral provinces of China, empirical results from fixed-effect model and instrumental approach show that rotational grazing practices have insignificant short-term effects on grassland quality, but have positive long-term effects. In addition, rotational grazing practices can improve grassland quality when villages invest public infrastructure or herders have private supporting measures for more efficiency livestock production. Further analysis shows that herders adopting rotational grazing have higher grazing intensity, higher supplementary intensity and more livestock-house-feeding days, which indicate herders can utilize more efficient livestock management without increasing pressure on natural grassland. We also find that herders with pastoral income are more likely to adopt rotational grazing practice. These insightful findings offer policy implications on promoting grassroot NbS for ecosystem protection and resource utilization in developing pastoral countries.
    Risk preferences and the low-carbon agricultural technology adoption: Evidence from rice production in China
    MAO Hui, QUAN Yu-Rong, FU Yong
    2023, 22(8): 2577-2590.  DOI: 10.1016/j.jia.2023.07.002
    Abstract ( )   PDF in ScienceDirect  
    Climate change which is mainly caused by carbon emissions is a global problem affecting the economic development and well-being of human society. Low-carbon agriculture is of particular significance in slowing down global warming and reaching the goal of “carbon peak and carbon neutrality”. Therefore, taking straw incorporation as an example, this paper aims to investigate the impact of risk preferences on farmers’ low-carbon agricultural technology (LCAT) adoption. Based on a two-phase micro-survey data of 1 038 rice farmers in Jiangsu, Jiangxi, and Hunan provinces, this paper uses experimental economics methods to measure farmers’ risk aversion and loss aversion to obtain the real risk preferences information of the farmers. We also explore the data to examine the actual LCAT adoption behavior of farmers. The results revealed that both risk aversion and loss aversion significantly inhibit farmers’ LCAT adoption: more risk-averse or more loss-averse farmers are less likely to adopt LCAT. It is further found that crop insurance, farm scale and governmental regulations can alleviate the negative impact of risk aversion and loss aversion on farmers’ LCAT adoption. Therefore, we propose that local governments need to promote low-carbon agricultural development by propagating the benefits of LCAT, extending crop insurance, promoting appropriate scale operations, and strengthening governmental regulations to promote farmers’ LCAT adoption.
    Short Communication
    Molecular diagnosis and direct quantification of cereal cyst nematode (Heterodera filipjevi) from field soil using TaqMan real-time PCR
    JIAN Jin-zhuo, HUANG Wen-kun, KONG Ling-an, JIAN Heng, Sulaiman ABDULSALAM, PENG De-liang, PENG Huan
    2023, 22(8): 2591-2601.  DOI: 10.1016/j.jia.2022.09.016
    Abstract ( )   PDF in ScienceDirect  
    Heterodera filipjevi continues to be a major threat to wheat production worldwide. Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease. In the present study, a TaqManminor groove binder (TaqMan-MGB) probe-based fluorescence quantitative real-time PCR (qPCR) was successfully developed and used for quantifying H. filipjevi from DNA extracts of soil. The primers and probe designed from the obtained RAPD-SCAR marker fragments of H. filipjevi showed high specificity to H. filipjevi using DNA from isolatesconfirmed species of 23 Heterodera spp., 1 Globodera spp. and 3 Pratylenchus spp. The qPCR assay is highly sensitive and provides improved H. filipjevi detection sensitivity of as low as 4–3 single second-stage juvenile (J2) DNAs, 10–3 female DNAs, and 0.01 μg μL–1 genomic DNAs. A standard curve relating to the threshold cycle and log values of nematode numbers was generated and validated from artificially infested soils and was used to quantify H. filipjevi in naturally infested field soils. There was a high correlation between the H. filipjevi numbers estimated from 32 naturally infested field soils by both conventional methods and the numbers quantified using the qPCR assay. qPCR potentially provides a useful platform for the efficient detection and quantification of H. filipjevi directly from field soils and to quantify this species directly from DNA extracts of field soils