Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2577-2590    DOI: 10.1016/j.jia.2023.07.002
Agricultural Economics and Management Advanced Online Publication | Current Issue | Archive | Adv Search |
Risk preferences and the low-carbon agricultural technology adoption: Evidence from rice production in China

MAO Hui1, QUAN Yu-Rong1, FU Yong2#

1Northwest Institute of Historical Environment and Socio-Economic Development, Shaanxi Normal University, Xi’an 710119, P.R.China

2College of Economics and Management, Nanjing Agricultural University, Nanjing 210095, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      


Abstract  Climate change which is mainly caused by carbon emissions is a global problem affecting the economic development and well-being of human society. Low-carbon agriculture is of particular significance in slowing down global warming and reaching the goal of “carbon peak and carbon neutrality”. Therefore, taking straw incorporation as an example, this paper aims to investigate the impact of risk preferences on farmers’ low-carbon agricultural technology (LCAT) adoption. Based on a two-phase micro-survey data of 1 038 rice farmers in Jiangsu, Jiangxi, and Hunan provinces, this paper uses experimental economics methods to measure farmers’ risk aversion and loss aversion to obtain the real risk preferences information of the farmers. We also explore the data to examine the actual LCAT adoption behavior of farmers. The results revealed that both risk aversion and loss aversion significantly inhibit farmers’ LCAT adoption: more risk-averse or more loss-averse farmers are less likely to adopt LCAT. It is further found that crop insurance, farm scale and governmental regulations can alleviate the negative impact of risk aversion and loss aversion on farmers’ LCAT adoption. Therefore, we propose that local governments need to promote low-carbon agricultural development by propagating the benefits of LCAT, extending crop insurance, promoting appropriate scale operations, and strengthening governmental regulations to promote farmers’ LCAT adoption.
Keywords:  Risk preferences        Crop insurance        Farm scale        Governmental regulations        Low-carbon agricultural technology  
Received: 30 November 2022   Accepted: 24 March 2023
Fund: The work was supported by the National Natural Science Foundation of China (72103115), the Humanities and Social Science Research General Project of the Ministry of Education of China (21XJC790008), the China Postdoctoral Science Foundation (2020T130393), and the Social Science Foundation of Shaanxi Province, China (2021D028).
About author:  MAO Hui, E-mail:; #Correspondence FU Yong, E-mail:

Cite this article: 

MAO Hui, QUAN Yu-Rong, FU Yong. 2023. Risk preferences and the low-carbon agricultural technology adoption: Evidence from rice production in China. Journal of Integrative Agriculture, 22(8): 2577-2590.

Abate G T, Rashid S, Borzaga C, Getnet K. 2016. Rural finance and agricultural technology adoption in Ethiopia: Does the institutional design of lending organizations matter? World Development84, 235–253.

Abay K A, Blalock G, Berhane G. 2017. Locus of control and technology adoption in developing country agriculture: Evidence from Ethiopia. Journal of Economic Behavior Organization143, 98–115.

Adnan N, Nordin S M, Ali M. 2018. A solution for the sunset industry: Adoption of green fertiliser technology amongst Malaysian paddy farmers. Land Use Policy79, 575–584.

Aguilera E, Reyes-Palomo C, Díaz-Gaona C, Sanz-Cobena A, Smith P, García- Laureano R, Rodríguez-Estévez V. 2021. Greenhouse gas emissions from Mediterranean agriculture: Evidence of unbalanced research efforts and knowledge gaps. Global Environment Change69, 102319.

Alpizar F, Carlsson F, Naranjo M A. 2011. The effect of ambiguous risk, and coordination on farmers’ adaptation to climate change - A framed field experiment. Ecological Economics70, 2317–2326.

Bailey K, Lazarovits G. 2003. Suppressing soil-borne diseases with residue management and organic amendments. Soil Tillage Research72, 169–180.

Belissa T K, Lensink R, Asseldonk M V. 2019. Risk and ambiguity aversion behavior in index-based insurance uptake decisions: Experimental evidence from Ethiopia. Journal of Economic Behavior Organization180, 718–730.

Binswanger H P, Sillers D A. 1983. Risk aversion and credit constraints in farmers’ decision making: A reinterpretation. Journal of Development Studies20, 5–21.

Brick K, Visser M. 2015. Risk preferences, technology adoption and insurance uptake: A framed experiment. Journal of Economic Behavior and Organization118, 383–396.

Burgess G H. 1995. The Economics of Regulation and Antitrust. HarperCollins, USA.

Caffaro F, Cremasco M M, Roccato M, Cavallo E. 2020. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. Journal of Rural Studies76, 264–271.

Channa H, Ricker-Gilbert J, Groote H D, Bauchet J. 2021. Willingness to pay for a new farm technology given risk preferences: Evidence from an experimental auction in Kenya. Agricultural Economics52, 733–748.

Christopher B B, Christine M M, Oloro V M, Joeli B. 2004. Better technology, better plots, or better farmers? Identifying changes in productivity and risk among Malagasy rice farmers. American Journal of Agricultural Economics86, 869–888.

Coble K H, Barnett B J. 2013. Why do we subsidize crop insurance? American Journal of Agricultural Economics95, 498–504.

Cong P, Wang J, Li Y, Liu N, Dong J, Pang H, Zhang L, Gao Z. 2020. Changes in soil organic carbon and microbial community under varying straw incorporation strategies. Soil Tillage Research204, 104735.

Djanibekov U, Finger R. 2018. Agricultural risks and farm land consolidation process in transition countries: The case of cotton production in Uzbekistan. Agricultural Systems164, 223–235.

Duan W, Shen J, Hogarth N J, Chen Q. 2021. Risk preferences significantly affect household investment in timber forestry: Empirical evidence from Fujian, China. Forest Policy and Economics125, 102421.

Fang Y, Xu K, Guo X, Hong Y. 2020. Identifying determinants of straw open field burning in northeast China: Toward greening agriculture base in newly industrializing countries. Journal of Rural Studies74, 111–123.

Farrin K, Miranda M J. 2015. A heterogeneous agent model of credit-linked index insurance and farm technology adoption. Journal of Development Economics116, 199–211.

Foster A D, Rosenzweig M R. 2010. Microeconomics of technology adoption. Annual Review of Economics2, 395–424.

Gadde B, Bonnet S, Menke C, Garivait S. 2009. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution157, 1554–1558.

Gao L, Zhang W, Mei Y, Sam A G, Song Y, Jin S. 2018. Do farmers adopt fewer conservation practices on rented land? Evidence from straw retention in China. Land Use Policy79, 609–621.

Gao Y, Zhang X, Wu L, Yin S, Lu J. 2017. Resource basis, ecosystem and growth of grain family farm in China: Based on rough set theory and hierarchical linear model. Agricultural Systems154, 157–167.

Guirkinger C, Boucher S R. 2010. Credit constraints and productivity in Peruvian agriculture. Agricultural Economics39, 295–308.

Gunnsteinsson S. 2020. Experimental identification of asymmetric information: Evidence on crop insurance in the Philippines. Journal of Development Economics144, 102414.

Haile K K, Nillesen E, Tirivayi N. 2020. Impact of formal climate risk transfer mechanisms on risk-aversion: Empirical evidence from rural Ethiopia. World Development130, 104930.

Han Y, Ma W, Zhou B, Salah A, Zhao M. 2020. Straw return increases crop grain yields and K-use efficiency under a maize–rice cropping system. The Crop Journal9, 168–180.

He G, Liu T, Zhou M. 2020. Straw burning, PM2.5, and death: Evidence from China. Journal of Development Economics145, 102468.

He P, Zhang J, Li W. 2021. The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective. Journal of Environmental Management293, 112837.

Helfand S M, Taylor M P H. 2020. The inverse relationship between farm size and productivity: Refocusing the debate. Food Policy11, 101977.

Hou L, Chen X, Kuhn L, Huang J. 2019. The effectiveness of regulations and technologies on sustainable use of crop residue in Northeast China. Energy Economics81, 519–527.

Hu Y, Li B, Zhang Z, Wang J. 2019. Farm size and agricultural technology progress: Evidence from China. Journal of Rural Studies93, 417–429.

Huang W, Wu J F, Pan X H, Tan X M, Zeng Y J, Shi Q H, Liu T J, Zeng Y H. 2021. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China. Journal of Integrative Agriculture20, 236–247.

Ihli H J, Chiputwa B, Winter E, Gassner A. 2022. Risk and time preferences for participating in forest landscape restoration: The case of coffee farmers in Uganda. World Development150, 105713.

Jiang W, Yan T, Chen B. 2021. Impact of media channels and social interactions on the adoption of straw return by Chinese farmers. Science of the Total Environment756, 144078.

Jin J, Gao Y, Wang X, Nam P K. 2015. Farmers’ risk preferences and their climate change adaptation strategies in the Yongqiao District, China. Land Use Policy47, 365–372.

Kaine G, Murdoch H, Lourey R, Bewsell D. 2010. A framework for understanding individual response to regulation. Food Policy35, 531–537.

Kurkalova L, Kling C, Zhao J. 2006. Green subsidies in agriculture: Estimating the adoption costs of conservation tillage from observed behavior. Canadian Journal of Agricultural Economics54, 247–267.

Laar A, Barnes A, Aryeetey R, Tandoh A, Holdsworth M. 2020. Implementation of healthy food environment policies to prevent nutrition-related non-communicable diseases in Ghana: National experts’ assessment of government action. Food Policy93, 101907.

Lal R. 2005. World crop residues production and implications of its use as a biofuel. Environment International31, 575–584.

Lai W, Li S, Li Y, Tian X. 2021. Air pollution and cognitive functions: Evidence from straw burning in China. American Journal of Agricultural Economics392, 25–33.

Li J, Gan G, Chen X, Zou J. 2021. Effects of long-term straw management and potassium fertilization on crop yield, soil properties, and microbial community in a rice–oilseed rape rotation. Agriculture11, 1233.

Liu E M. 2013. Time to change what to sow: Risk preferences and technology adoption decisions of cotton farmers in China. The Review of Economics and Statistics95, 1386–1403.

Liu H, Owens K A, Yang K, Zhang C. 2020. Pollution abatement costs and technical changes under different environmental regulations. China Economic Review62, 101497.

Liu M, Yang L. 2021. Spatial pattern of China’s agricultural carbon emission performance. Ecological Indicators133, 108345.

Liu Y, Chen K, Hill R V. 2020. Delayed premium payment, insurance adoption, and household investment in rural China. American Journal of Agricultural Economics102, 1177–1197.

Lu F, Wang X K, Han B, Ouyang Z Y, Duan X N, Zheng H, Miao H. 2010. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Global Change Biology15, 281–305.

Makate C, Makate M, Mutenje M, Mango N, Siziba S. 2019. Synergistic impacts of agricultural credit and extension on adoption of climate-smart agricultural technologies in southern Africa. Environmental Development32, 100458.

Mao H, Zhou L, Ifft J, Ying R Y. 2019. Risk preferences, production contracts and technology adoption by broiler farmers in China. China Economic Review54, 147–159.

Mao H, Zhou L, Ying R, Pan D. 2021. Time preferences and green agricultural technology adoption: Field evidence from rice farmers in China. Land Use Policy109, 105627.

Martey E, Kuwornu J. 2021. Perceptions of climate variability and soil fertility management choices among smallholder farmers in northern Ghana. Ecological Economics180, 106870.

Ndiritu S W, Kassie M, Shiferaw B. 2014. Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya. Food Policy49, 117–127.

Nicola D, Francesca. 2015. The impact of weather insurance on consumption, investment, and welfare. Quantitative Economics6, 637–661.

Ramsey D, Soldevila-Lafon V, Viladomiu L. 2013. Environmental regulations in the hog farming sector: A comparison of Catalonia, Spain and Manitoba, Canada. Land Use Policy32, 239–249.

Saqib S E, Ahmad M M, Panezai S, Rana I A. 2016. An empirical assessment of farmers’ risk attitudes in flood-prone areas of Pakistan. International Journal of Disaster Risk Reduction18, 107–114.

Sattler C, Nagel U J. 2010. Factors affecting farmers’ acceptance of conservation measures - A case study from north-eastern Germany. Land Use Policy27, 70–77.

Schleich J, Gassmann X, Meissner T, Faure C. 2019. A large-scale test of the effects of time discounting, risk aversion, loss aversion, and present bias on household adoption of energy-efficient technologies. Energy Economics80, 377–393.

Senapati A K. 2020. Evaluation of risk preferences and coping strategies to manage with various agricultural risks: Evidence from India. Heliyon6, e03503.

Shan A Q, Pan J Q, Kang K J, Pan M H, Wang G, Wang M, He Z L, Yang X E. 2021. Effects of straw return with N fertilizer reduction on crop yield, plant diseases and pests and potential heavy metal risk in a Chinese rice paddy: A field study of 2 consecutive wheat–rice cycles. Environmental Pollution288, 117741.

Tanaka T, Camerer C F. 2010. Risk and time preferences: Linking experimental and household survey data from Vietnam. American Economic Review1, 557–571.

The Standing Committee of Jiangsu Provincial People’s Congress. 2018. Decision on promoting the comprehensive utilization of crop straw. [2018-11-23].
YjM2OGY%3D (in Chinese)

United Nations. 2019. Climate action and support trends. [2019-10-1].

Uri N D. 1998. Conservation tillage and the use of energy and other inputs in US agriculture. Energy Economics20, 389–410.

Vermont B, Cara S D. 2010. How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture? A meta-analysis. Ecological Economics69, 1373–1386.

Vickery J, Gine X, Cole S. 2017. How does risk management influence production decisions? Evidence from a field experiment. Review of Financial Studies30, 1935–1970.

Visser M, Jumare H, Brick K. 2020. Risk preferences and poverty traps in the uptake of credit and insurance amongst small-scale farmers in South Africa. Journal of Economic Behavior and Organization180, 826–836.

Wang S C, Zhao Y W, Wang J Z, Zhu P, Cui X, Han X Z, Xu M G, Lu C A. 2018. The efficiency of long-term straw return to sequester organic carbon in Northeast China’s cropland. Journal of Integrative Agriculture17, 436–448.

Wang Y, Wu P, Mei F, Ling Y, Qiao Y, Liu C, Leghari S J, Guan X, Wang T. 2021. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. Journal of Environmental Management288, 112391.

Wu F, Zhou P, Zhou D Q. 2020. Modeling carbon emission performance under a new joint production technology with energy input. Energy Economics92, 104963.

Wu J, Babcock B A. 1998. The choice of tillage, rotation, and soil testing practices: Economic and environmental implications. American Journal of Agricultural Economics80, 494–511.

Xu C, Han X, Zhuge Y, Xiao G, Ni B, Xu X, Meng F. 2021. Crop straw incorporation alleviates overall fertilizer-N losses and mitigates N2O emissions per unit applied N from intensively farmed soils: An in situ 15N tracing study. Science of the Total Environment764, 142884.

Yang X, Zhou X, Deng X. 2022. Modeling farmers’ adoption of low-carbon agricultural technology in Jianghan Plain, China: An examination of the theory of planned behavior. Technological Forecasting and Social Change180, 121726.

Ye B, Lin L. 2020. Environmental regulation and responses of local governments. China Economic Review60, 101421.

Yuan G, Huan W, Song H, Lu D, Chen X, Wang H, Zhou J. 2021. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice–wheat system. Soil and Tillage Research209, 104958.

Zhang J H, He N P, Liu C C, Xu L, Chen Z, Li Y, Wang, R M, Yu G R, Sun W, Xiao C W, Chen H Y H, Reich P B. 2020. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology26, 2534–2543.

No related articles found!
No Suggested Reading articles found!