Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2370-2383    DOI: 10.1016/j.jia.2023.02.012
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize 
WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng#, WANG Pu

College of Agronomy and Biotechnology, China Agricultural University, Beijing 100093, P.R.China


Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

通过灌溉提高土壤含水量(SWC)是一种潜在、有效的缓解高温胁迫的调控措施。在提高土壤含水量缓解高温影响的过程中,田间条件下基于叶绿素荧光的光合特性响应受到了有限的关注。本研究在华北平原开展了2年田间试验(2019-2020年),以郑单958ZD958)和先玉335XY335)为材料,在灌浆期设置三个试验处理(正常生长条件(CK)、大田升温(H)和大田升温+水分调控(HW))研究田间高温对玉米冠层光合的影响及水分调控效应。与H处理相比,HW处理下冠层温度降低1-3℃,净光合速率(Pn)提高20%此外,HW处理显著提高了两个品种的实际光合速率(Phi2)、线性电子流(LEF)、可变荧光(Fv)和最大光能转换效率(Fv/Fm)。同时,发现两个品种对叶绿素荧光的响应存在差异。HW处理显著提高了ZD958的类囊体质子电导率(gH+)和最大荧光(Fm),提高了XY335的叶绿体ATP合酶质子电导率(vH+)和最小荧光(F0)。结构方程分析进一步表明,土壤水分含量与PnLEFFv/Fm呈显著正相关。提高土壤水分含量可通过延缓叶片衰老,延长光合作用有效时间,改善Phi2LEFFvFv/Fm,提高叶片光合能力。综合本研究结果表明,提高SWC以增强灌浆期叶片光合作用,玉米生产中适应气候变暖的一重要技术措施



Abstract  

Elevating soil water content (SWC) through irrigation was one of the simple mitigation measures to improve crop resilience to heat stress.  The response of leaf function, such as photosynthetic capacity based on chlorophyll fluorescence during the mitigation, has received limited attention, especially in field conditions.  A two-year field experiment with three treatments (control treatment (CK), high-temperature treatment (H), and high-temperature together with elevating SWC treatment (HW)) was carried out during grain filling with two maize hybrids at a typical station in North China Plain.  Averagely, the net photosynthetic rate (Pn) was improved by 20%, and the canopy temperature decreased by 1–3°C in HW compared with in H in both years.  Furthermore, the higher SWC in HW significantly improved the actual photosynthetic rate (Phi2), linear electron flow (LEF), variable fluorescence (Fv), and the maximal potential quantum efficiency (Fv/Fm) for both hybrids.  Meanwhile, different responses in chlorophyll fluorescence between hybrids were also observed.  The higher SWC in HW significantly improved thylakoid proton conductivity (gH+) and the maximal fluorescence (Fm) for the hybrid ZD958.  For the hybrid XY335, the proton conductivity of chloroplast ATP synthase (vH+) and the minimal fluorescence (Fo) was increased by the SWC.  The structural equation model (SEM) further showed that SWC had significantly positive relationships with Pn, LEF, and Fv/Fm.  The elevating SWC alleviated heat stress with the delayed leaf senescence to prolong the effective period of photosynthesis and enhanced leaf photosynthetic capacity by improving Phi2, LEF, Fv, and Fv/Fm.  This research demonstrates that elevating SWC through enhancing leaf photosynthesis during grain filling would be an important mitigation strategy for adapting to the warming climate in maize production.

Keywords:  high temperature       soil water content        photosynthesis        chlorophyll fluorescence        maize  
Received: 22 August 2022   Accepted: 10 November 2022
Fund: This work was supported by the Key R&D Program Project in Hebei Province, China (22326408D) and the 2115 Talent Development Program of China Agricultural University.
About author:  WANG Xing-long, E-mail: 18111673236@163.com; #Correspondence MENG Qing-feng, E-mail: mengqf@cau.edu.cn

Cite this article: 

WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. 2023. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize . Journal of Integrative Agriculture, 22(8): 2370-2383.

Alizadeh M R, Adamowski J, Nikoo M R, Aghakouchak A, Dennison P, Sadegh M. 2020. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Science Advances6, 1–11.

Avenson T J, Cruz J A, Kanazawa A, Kramer D M. 2005. Regulating the proton budget of higher plant photosynthesis. Proceedings of the National Academy of Sciences of the United States of America102, 9709–9713.

Bukhov N G, Sabat S C, Mohanty P. 1990. Analysis of chlorophyll a fluorescence changes in weak light in heat treated Amaranthus chloroplastsPhotosynthesis Research23, 81–87.

Ceglar A, Zampieri M, Toreti A, Dentener F. 2019. Observed northward migration of agro-climate zones in Europe will further accelerate under climate change. Earth’s Future7, 1088–1101.

Coast O, Posch B C, Bramley H, Gaju O, Richards R A, Lu M, Ruan Y L, Trethowan R, Atkin O K. 2020. Acclimation of leaf photosynthesis and respiration to warming in field-grown wheat. Plant Cell and Environment44, 66–76.

Craufurd P Q, Vadez V, Jagadish S K, Prasad P V, Zaman-Allah M. 2013. Crop science experiments designed to inform crop modeling. Agricultural and Forest Meteorology170, 8–18.

Dong X, Guan L, Zhang P H, Liu X L, Li S J, Fu Z J, Tang L, Qi Z Y, Qiu Z G, Jin C, Huang S B, Yang H. 2021. Responses of maize with different growth periods to heat stress around flowering and early grain filling. Agricultural and Forest Meteorology303, 108378.

Dusenge M E, Duarte A G, Way D A. 2019. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist221, 32–49.

Eck M A, Murray A R, Ward A R, Konrad C E. 2020. Influence of growing season temperature and precipitation anomalies on crop yield in the southeastern United States. Agricultural and Forest Meteorology291, 108053.

Ferguson J N, Tidy A C, Murchie E H, Wilson Z A. 2021. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. Plant Cell and Environment44, 1–24.

Gabaldón-Leal C, Webber H, Otegui M, Slafer G, Ordóñez R, Gaiser T, Lorite I, Ruiz-Ramos M, Ewert F. 2016. Modelling the impact of heat stress on maize yield formation. Field Crops Research198, 226–237.

Galmés J, Hermida-Carrera C, Laanisto L, Niinemets Ü. 2016. A compendium of temperature responses of Rubisco kinetic traits: Variability among and within photosynthetic groups and impacts on photosynthesis modeling. Journal of Experimental Botany67, 5067–5091.

Hafez E M, Omara A E O, Alhumaydhi F A, El-Esawi M A. 2020. Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiologia Plantarum172, 1–16.

Haldimann P, Feller U. 2004. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell and Environment27, 1169–1183.

Herzog H, Chai-Arree W. 2012. Gas exchange of five warm-season grain legumes and their susceptibility to heat stress. Journal of Agronomy & Crop Science198, 466–474.

Hill J, Goodkind A, Tessum C, Thakrar S, Tilman D, Polasky S, Smith T, Hunt N, Mullins K, Clark M, Marshall J. 2019. Air-quality-related health damages of maize. Nature Sustainability2, 397–403.

IPCC (Intergovernmental Panel on Climate Change). 2021. Climate change 2021: The physical science basis. Summary for policymakersWorking group I contribution to the sixth assessment report of the intergovernmental panel on climate changeCambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Iversen C, Norby R. 2014. Terrestrial plant productivity and carbon allocation in a changing climate. In: Freedman B, ed., Global Environmental Change. Springer, Netherlands. pp. 297–316.

Jägermeyr J, Pastor A, Biemans H, Gerten D. 2017. Reconciling irrigated food production with environmental flows for sustainable development goals implementation. Nature Communications8, 15900.

Jin Z N, Zhuang Q L, Tan Z L, Dukes J, Zheng B Y, Melillo J M. 2016. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biology22, 3112–3126.

Kanazawa A, Kramer D M. 2002. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proceedings of the National Academy of Sciences of the United States of America99, 12789–12789.

Kanazawa A, Ostendorf E, Kohzuma K, Hoh D, Strand D D, Sato-Cruz M, Savage L, Cruz J A, Fisher N, Froehlich J E, Kramer D M. 2017. Chloroplast ATP synthase modulation of the thylakoid proton motive force: Implications for photosystem I and photosystem II photoprotection. Frontiers in Plant Science8, 719.

Kimm H, Guan K, Burroughs C H, Peng B, Ainsworth E A, Bernacchi C J, Moore C E, Kumagai E, Yang X, Berry J A, Wu G H. 2021. Quantifying high-temperature stress on soybean canopy photosynthesis: The unique role of sun-induced chlorophyll fluorescence. Global Change Biology27, 2403–2415.

Kramer D M, Johnson G, Kiirats O, Edwards G E. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research79, 209–218.

Kuhlgert S, Greg Austic G, Zegarac R, Osei-Bonsu I, Hoh D, Chilvers M I, Roth M G, Bi1 K, TerAvest D, Weebadde P, Kramer D M. 2016. MultispeQ Beta: A tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science3, 160592.

Li M, Svoboda V, Davis G, Kramer D, Kunz H H, Kirchhoff H. 2021. Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and Photoprotection. Nature Plants7, 1–10.

Li Y, Guan K Y, Peng B, Franz T E, Wardlow B, Pan M. 2020. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Global Change Biology26, 3065–3078.

Lobell D B, Roberts M J, Schlenker W, Braun N, Little B B, Rejesus R M, Hammer G L. 2014. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science344, 516–519.

Luan X Y, Giulia V. 2021. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation - A modeling analysis. Hydrol. Earth System Science Data25, 1411–1423.

Luan X Y, Riccardo B, Anna S, Giulia V. 2021. Combined heat and drought suppress rainfed maize and soybean yields and modify irrigation benefits in the USA. Environmental Research Letters16, 2–18.

Michaletz S T, Weiser M D, McDowell N G, Zhou J, Kaspari M, Helliker B R, Enquist B J. 2016. The energetic and carbon economic origins of leaf thermoregulation. Nature Plants2, 16129.

Mishra R K, Singhal G S. 1992. Function of photosynthetic apparatus of intact wheat leaves under high light and heat-stress and its relationship with peroxidation of thylakoid lipids. Plant Physiology98, 1–6.

Miyashita K, Tanakamaru S, Maitani T, Kimura K. 2005. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environmental and Experimental Botany53, 205–214.

Mott K A, Peak D. 2013. Testing a vapour-phase model of stomatal responses to humidity. Plant Cell and Environment36, 936–944.

Munekage Y, Shikanai T. 2005. Cyclic electron transport through photosystem I. Plant Biotechnology22, 361–369.

Ordóñez R A, Savin R, Cossani C M, Slafer G A. 2015. Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Research183, 184–203.

Osei-Bonsu I, McClain A M, Walker B J, Sharkey T D, Kramer D M. 2021. The roles of photorespiration and alternative electron acceptors in the responses of photosynthesis to elevated temperatures in cowpea. Plant Cell and Environment44, 1–18.

Perdomo J A, Capó-Bauçà S, Carmo-Silva E, Galmés J. 2017. Rubisco and Rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Frontiers in Plant Science8, 490.

Sailaja B, Subrahmanyam D, Neelamraju S, Vishnukiran T, Rao Y V, Vijayalakshmi P, Voleti S R, Bhadana V P, Mangrauthia S K. 2015. Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature. Frontiers in Plant Science6, 1044.

Savchenko G E, Klyuchareva E A, Abrabchik L M, Serdyuchenko E V. 2002. Effect of periodic heat shock on the membrane system of etioplasts. Russian Journal of Plant Physiology49, 349−359.

Schermelleh-Engel K, Moosbrugger H, Müller H H. 2003. Evaluating the fit of structural equation models tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research8, 23–74.

Sehgal A, Sita K, Bhandari K, Kumar S, Kumar J, Prasad P V V, Siddique K H M, Nayyar H. 2018. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell and Environment42, 198–211.

Sharma D K, Andersen S B, Ottosen C O, Rosenqvist E. 2015. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum153, 284–298.

Siebert S, Ewert F, Rezaei E E, Kage H, Grass R. 2014. Impact of heat stress on crop yield-on the importance of considering canopy temperature. Environmental Research Letters9, 044012.

Slot M, Winter K. 2017. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Plant Cell and Environment40, 3055–3068.

Song H, Li Y B, Zhou L, Xu Z Z, Zhou G S. 2018. Maize leaf functional responses to drought episode and rewatering. Agricultural and Forest Meteorology249, 57–70.

Stella T, Webber H, Olesen J, Ruane A C, Fronzek S, Bregaglio S, Mamidanna S, Bindi M, Collins B, Faye S, Ferrise R, Fodo N, Gabaldón-Leal C, Jabloun M, Kersebaum C, Lizaso J, Lorite I J, Manceau L, Martre P, Nendel C, et al. 2021. Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environmental Research Letters16, 104033.

Teuling A J. 2018. A hot future for European droughts. Nature Climate Change8, 364–365.

Wang W L, Cai C, He J, Gu J F, Zhu G L, Zhang W Y, Zhu J G, Liu G. 2019. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research248, 107605.

Wang X L, Yan Y, Xu C C, Wang X Y, Luo N, Wei D, Meng Q F, Wang P. 2021. Mitigating heat impacts in maize (Zea mays L.) during the reproductive stage through biochar soil amendment. Agriculture Ecosystems & Environment311, 107321.

Wang X Y, Wang X L, Xu C C, Tan W M, Wang P, Meng Q F. 2019. Decreased kernel moisture in medium-maturing maize hybrids with high yield for mechanized grain harvest. Crop Science59, 1–12.

Wright I J, Reich P B, Cornelissen J H C, Falster D S, Groom P K, Hikosaka K, Lee W, Lusk C H, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton D I, Westoby M. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography14, 411–421.

Yang Y H, Zhang Q Q, Huang G J, Peng S B, Li Y. 2020. Temperature responses of photosynthesis and leaf hydraulic conductance in rice and wheat. Plant Cell and Environment43, 1437–1451.

[1] XU Yan-xia, ZHANG Jing, WAN Zi-yun, HUANG Shan-xia, DI Hao-chen, HE Ying, JIN Song-heng. Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2397-2411.
[2] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[3] REN Chuan-ying, LU Shu-wen, GUAN Li-jun, HONG Bin, ZHANG Ying-lei, HUANG Wen-gong, LI Bo, LIU Wei, LU Wei-hong.

The metabolomics variations among rice, brown rice, wet germinated brown rice, and processed wet germinated brown rice [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2767-2776.

[4] TONG Hui, DUAN Hua, WANG Sheng-jun, SU Jing-ping, SUN Yue, LIU Yan-qing, TANG Liang, LIU Xue-jun, CHEN Wen-fu. Moderate drought alleviate the damage of high temperature to grain quality by improving the starch synthesis of inferior grain in japonica rice[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3094-3101.
[5] LI Qiang, CHANG Xu-hong, MENG Xiang-hai, LI Ding, ZHAO Ming-hui, SUN Shu-luan, LI Hui-min, QIAO Wen-chen. Heat stability of winter wheat depends on cultivars, timing and protective methods[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1984-1997.
[6] XU Bo, ZHOU Zhi-guo, GUO Lin-tao, XU Wen-zheng, ZHAO Wen-qin, CHEN Bing-lin, MENG Ya-li, WANG You-hua. Susceptible time window and endurable duration of cotton fiber development to high temperature stress[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1936-1945.
[7] ZHENG Yong-qiang, YANG Qiong, JIA Xue-mei, LIU Yan-mei, HE Shao-lan, DENG Lie, XIE Rang-jin, YI Shi-lai, Lü Qiang . Ca(NO3)2 canopy spraying during physiological fruit drop period has a better influence on the tree character and fruit quality of Newhall navel orange (Citrus sinensis Osbeck)[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1513-1519.
[8] CAO Zhen-zhen, PAN Gang, WANG Fu-biao, WEI Ke-su, LI Zhao-wei, SHI Chun-hai, GENG Wei, CHENG Fang-min. Effect of high temperature on the expressions of genes encoding starch synthesis enzymes in developing rice endosperms[J]. >Journal of Integrative Agriculture, 2015, 14(4): 642-659.
[9] WANG Jun, CHEN Yuan, YAO Meng-hao, LI Yuan, WEN Yu-jin, CHEN Yuan, ZHANG Xiang, CHEN De-hua. The effects of high temperature level on square Bt protein concentration of Bt cotton[J]. >Journal of Integrative Agriculture, 2015, 14(10): 1971-1979.
[10] Lü Guo-hua, WU Yong-feng, BAI Wen-bo, MA Bao, WANG Chun-yan , SONG Ji-qing. Influence of High Temperature Stress on Net Photosynthesis, Dry Matter Partitioning and Rice Grain Yield at Flowering and Grain Filling Stages[J]. >Journal of Integrative Agriculture, 2013, 12(4): 603-609.
[11] TAO Zhi-qiang, SUI Peng, CHEN Yuan-quan, LI Chao, NIE Zi-jin, YUAN Shu-fen, SHI Jiangtao. Subsoiling and Ridge Tillage Alleviate the High Temperature Stress in Spring Maize in the North China Plain[J]. >Journal of Integrative Agriculture, 2013, 12(12): 2179-2188.
[12] TAN Yue, LI Ling, LENG Chuan-yuan, LI Dong-mei, CHEN Xiu-de, GAO Dong-sheng. Respiratory Response of Dormant Nectarine Vegetative Buds to High Temperature Stress[J]. >Journal of Integrative Agriculture, 2013, 12(1): 80-86.
[13] CHEN Yuan, WEN Yu-jin, CHENYuan , John Tom Cothren, ZHANG Xiang, WANG Yong-hui, William A. Effects of Extreme Air Temperature and Humidity on the Insecticidal Expression Level of Bt Cotton[J]. >Journal of Integrative Agriculture, 2012, 12(11): 1836-1844.
No Suggested Reading articles found!