Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2323-2334    DOI: 10.1016/j.jia.2023.02.005
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)

ZHANG Sheng-zhong1, HU Xiao-hui1, WANG Fei-fei1, CHU Ye2, YANG Wei-qiang1, XU Sheng3, WANG Song4, WU Lan-rong5, YU Hao-liang6, MIAO Hua-rong1#, FU Chun7#, CHEN Jing1#

1 Shandong Peanut Research Institute, Qingdao 266100, P.R.China

2 Department of Horticulture, University of Georgia Tifton Campus, Tifton, GA 31793, the United States

3 Anhui General Station of Agricultural Technology Extension, Hefei 230001, P.R.China

4 Anhui Academy of Agricultural Sciences, Hefei 230001, P.R.China

5 Qingdao Agricultural Technology Extension Center, Qingdao 266071, P.R.China

6 Yantai Fenglin Foodstuff Co., Ltd., Yantai 264108, P.R.China

7 Weifang Academy of Agricultural Sciences, Weifang 261071, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  荚果形状是影响花生荚果制品市场价值的重要可遗传性状。为探索该性状内在遗传机制,本研究基于图像分析考察了影响荚果性状的6个组分性状,包括荚果长度、荚果宽度、荚果长宽比、荚果圆度、果喙明显度和缢缩明显度。对含有181个家系的重组自交系群体进行了三个不同环境下的表型测定。结果表明,该群体的6个组分性状均表现为连续分布和超亲遗传,且各组分性状之间表现为不同程度相关性,广义遗传率变异范围为0.87-0.95。数量性状位点(QTL)分析共鉴定到26个加性QTL,分别解释3.79%~52.37%的表型变异。在花生第2染色体上发现一个可调控多个组分性状的稳定主效遗传位点。该位点覆盖10.81 Mb物理区间,包含543个潜在基因,生物信息学分析对候选基因进行了预测。本研究还针对6个组分性状鉴定到73对上位性互作(涉及92个遗传位点),分别可解释0.94%-6.45%表型变异。以上研究结果为荚果形状相关基因的图位克隆与分子标记辅助育种提供了重要研究基础。

Abstract  Peanut pod shape is a heritable trait which affects the market acceptance of in-shell peanut products.  In order to determine the genetic control of pod shape, six component traits of pod shape (pod length, pod width, pod length/width ratio, pod roundness, beak degree and constriction degree) were measured using an image-based phenotyping method.  A recombinant inbred line (RIL) population consisting of 181 lines was phenotyped across three environments.  Continuous distributions and transgressive segregations were demonstrated in all measured traits and environments.   Significant correlations were found among most component traits with broad-sense heritability ranging from 0.87 to 0.95.  Quantitative trait locus (QTL) analysis yielded 26 additive QTLs explaining 3.79 to 52.37% phenotypic variations.  A novel, stable and major QTL region conditioning multiple shape features was detected on chromosome 2, which spans a 10.81-Mb genomic region with 543 putative genes.  Bioinformatics analysis revealed several candidate genes in this region.  In addition, 73 pairs of epistatic interactions involving 92 loci were identified for six component traits explaining 0.94–6.45% phenotypic variations.  These results provide new genetic loci to facilitate genomics-assisted breeding of peanut pod shape.
Keywords:  peanut       pod shape        quantitative trait locus        additive effect        epistasis  
Received: 18 August 2022   Accepted: 19 December 2022
Fund: This research was supported by the National Natural Science Foundation of China (32001584), the Natural Science Foundation of Shandong Province, China (ZR202111290099), the Breeding Project from Department Science & Technology of Shandong Province, China (2020LZGC001), the Agricultural Scientific and the Technological Innovation Project of Shandong Academy of Agricultural Sciences, China (CXGC2022A21, CXGC2022A03, and CXGC2023A06 (A39 and A46)), and the Qingdao People’s Livelihood Science and Technology Program, China (20-3-4-26-nsh).
About author:  ZHANG Sheng-zhong, E-mail:; #Correspondence MIAO Hua-rong, E-mail:; FU Chun, E-mail:; CHEN Jing, Tel: +86-532-87631512, E-mail:

Cite this article: 

ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. 2023. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.). Journal of Integrative Agriculture, 22(8): 2323-2334.

Alyr M H, Pallu J, Sambou A, Nguepjop J R, Seye M, Tossim H A, Djiboune Y R, Sane D, Rami J F, Fonceka D. 2020. Fine mapping of a wild genomic region involved in pod and seed size reduction on chromosome A07 in peanut (Arachis hypogaea L.). Genes, 11, 1402.

Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaeaNature Genetics51, 877–884.

Chen Y, Ren X, Zheng Y, Zhou X, Huang L, Yan L, Jiao Y, Chen W, Huang S, Wan L, Lei Y, Liao B, Huai D, Wei W, Jiang H. 2017. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Molecular Breeding37, 17.

Chu Y, Chee P, Isleib T G, Holbrook C C, Ozias-Akins P. 2020. Major seed size QTL on chromosome A05 of peanut (Arachis hypogaea) is conserved in the US mini core germplasm collection. Molecular Breeding40, 6.

Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. 2016. A developmental transcriptome map for allotetraploid Arachis hypogaeaFrontiers in Plant Science7, 1446.

Desmae H, Janila P, Okori P, Pandey M K, Motagi B N, Monyo E, Mponda O, Okello D, Sako D, Echeckwu C, Oteng-Frimpong R, Miningou A, Ojiewo C, Varshney R K. 2019. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breeding138, 425–444.

Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R, Ge S, Qian Q, Li Y. 2017. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Molecular Plant10, 685–694.

Fang N, Xu R, Huang L, Zhang B, Duan P, Li N, Luo Y, Li Y. 2016. SMALL GRAIN 11 controls grain size, grain number and grain yield in rice. Rice9, 64.

Gao X, Zhang J, Zhang X, Zhou J, Jiang Z, Huang P, Tang Z, Bao Y M, Cheng J, Tang H J, Zhang W, Zhang H S, Huang J. 2019. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling. Plant Cell31, 1077–1093.

Hake A A, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak S N, Lingaraju S, Patil P V, Nadaf H L, Gowda M V C, Bhat R S. 2017. Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS ONE12, e0186113.

Ho S L, Huang L F, Lu C A, He S L, Wang C C, Yu S P, Chen J, Yu S M. 2013. Sugar starvation-and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Molecular Biology81, 347–361.

Hu Q, Zhang Y, Ma R, An J, Huang W, Wu Y, Hou J, Zhang D, Lin F, Xu R, Sun Q, Sun L. 2021. Genetic dissection of seed appearance quality using recombinant inbred lines in soybean. Molecular Breeding41, 72.

Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H. 2015. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics128, 1103–1115.

Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. 2013. Loss of function of the IAA glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 45, 707–711.

Janila P, Variath M T, Pandey M K, Desmae H, Motagi B N, Okori P, Manohar S S, Rathnakumar A L, Radhakrishnan T, Liao B, Varshney R K. 2016. Genomic tools in groundnut breeding program: status and perspectives. Frontiers in Plant Science7, 289.

Kale D M, Badigannavar A M, Murty G S S. 2000. Development of new large pod Trombay groundnut (Arachis hypogaea) selections. Indian Journal of Agricultural Sciences70, 365–369.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods25, 402–408.

Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. 2018. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics131, 267–282.

Luo H, Ren X, Li Z, Xu Z, Li X, Huang L, Zhou X, Chen Y, Chen W, Lei Y, Liao B, Pandey M K, Varshney R K, Guo B, Jiang X, Liu F, Jiang H. 2017a. Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics18, 58.

Luo H, Xu Z, Li Z, Li X, Lv J, Ren X, Huang L, Zhou X, Chen Y, Yu J, Chen W, Lei Y, Liao B, Jiang H. 2017b. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics130, 1635–1648.

Mackay I J, Cockram J, Howell P, Powell W. 2021. Understanding the classics: The unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnology Journal19, 26–34.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal3, 269–283.

Mondal S, Badigannavar A M. 2019. Identification of major consensus QTLs for seed size and minor QTLs for pod traits in cultivated groundnut (Arachis hypogaea L.). 3 Biotech9, 347.

Patil A S, Popvsky S, Levy Y, Chu Y, Clevenger J, Ozias-Atkins P, Hovav R. 2018. Genetic insight and mapping of the pod constriction trait in Virginia-type peanut. BMC Genetics19, 93.

Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, et al. 2012. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biology12, 80.

Tamiru M, Undan J R, Takagi H, Abe A, Yoshida K, Undan J Q, Natsume S, Uemura A, Saitoh H, Matsumura H, Urasaki N, Yokota T, Terauchi R. 2015. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). Plant Molecular Biology88, 85–99.

Tian P, Liu J, Mou C, Shi C, Zhang H, Zhao Z, Lin Q, Wang J, Wang J, Zhang X, Guo X, Cheng Z, Zhu S, Ren Y, Lei C, Wang H, Wan J. 2019. GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. Journal of Integrative Plant Biology, 61, 1171–1185.

Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity93, 77–78.

Wang L, Yang X, Cui S, Mu G, Sun X, Liu L, Li Z. 2019. QTL mapping and QTL×environment interaction analysis of multi-seed pod in cultivated peanut (Arachis hypogaea L.). The Crop Journal7, 249–260.

Wang L, Yang X, Cui S, Wang J, Hou M, Mu G, Li Z, Liu L. 2020. Identification of main effect and epistatic QTLs controlling initial flowering date in cultivated peanut (Arachis hypogaea L.). Journal of Integrative Agriculture, 19, 2383–2393.

Wang S, Basten C J, Zeng Z. 2012. Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. [2017-08-11].

Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B. 2018. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Frontiers in Plant Science, 9, 827.

Yang J, Guo Z, Luo L, Gao Q, Xiao W, Wang J, Wang H, Chen Z, Guo T. 2021. Identification of QTL and candidate genes involved in early seedling growth in rice via high-density genetic mapping and RNA-seq. The Crop Journal9, 360–371.

Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J. 2019. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biology19, 537.

Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Xu S, Guo J, Fu C, Song X, Hou M, Qiu J, Chen J. 2021. Imaged-based phenotyping accelerated QTL mapping and QTL × environment interaction analysis of testa colour in peanut (Arachis hypogaea). Plant Breeding, 140, 884–895.

Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communication9, 1240.

[1] LIU Zhu, NAN Zhen-wu, LIN Song-ming, YU Hai-qiu, XIE Li-yong, MENG Wei-wei, ZHANG Zheng, WAN Shu-bo. Millet/peanut intercropping at a moderate N rate increases crop productivity and N use efficiency, as well as economic benefits, under rain-fed conditions[J]. >Journal of Integrative Agriculture, 2023, 22(3): 738-751.
[2] ZHU Peng-fei, YANG Qing-li, ZHAO Hai-yan. Identification of peanut oil origins based on Raman spectroscopy combined with multivariate data analysis methods[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2777-2785.
[3] ZHAO Zhi-hao, SHI Ai-min, GUO Rui, LIU Hong-zhi, HU Hui, WANG Qiang. Protective effect of high-oleic acid peanut oil and extra-virgin olive oil in rats with diet-induced metabolic syndrome by regulating branched-chain amino acids metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 878-891.
[4] ZHAO Shi-cheng, LÜ Ji-long, XU Xin-peng, LIN Xiao-mao, Luiz Moro ROSSO, QIU Shao-jun, Ignacio CIAMPITTI, HE Ping . Peanut yield, nutrient uptake and nutrient requirements in different regions of China[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2502-2511.
[5] WANG Yi-bo, HUANG Rui-dong, ZHOU Yu-fei. Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1250-1265.
[6] WANG Si-yu, LI Li-na, FU Liu-yang, LIU Hua, QIN Li, CUI Cai-hong, MIAO Li-juan, ZHANG Zhong-xin, GAO Wei, DONG Wen-zhao, HUANG Bing-yan, ZHENG Zheng, TANG Feng-shou, ZHANG Xin-you, DU Pei . Development and characterization of new allohexaploid resistant to web blotch in peanut[J]. >Journal of Integrative Agriculture, 2021, 20(1): 55-64.
[7] CHEN Bing-yu, LI Qi-zhai, HU Hui, MENG Shi, Faisal SHAH, WANG Qiang, LIU Hong-zhi . An optimized industry processing technology of peanut tofu and the novel prediction model for suitable peanut varieties[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2340-2351.
[8] ZHANG Jia-lei, GENG Yun, GUO Feng, LI Xin-guo, WAN Shu-bo. Research progress on the mechanism of improving peanut yield by single-seed precision sowing[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1919-1927.
[9] LIANG Xiao-yan, GUO Feng, FENG Ye, ZHANG Jia-lei, YANG Sha, MENG Jing-jing, LI Xin-guo, WAN Shu-bo. Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea[J]. >Journal of Integrative Agriculture, 2020, 19(4): 1019-1032.
[10] ZHANG Guan-chu, DAI Liang-xiang, DING Hong, CI Dun-wei, NING Tang-yuan, YANG Ji-shun, ZHAO Xin-hua, YU Hai-qiu, ZHANG Zhi-meng . Response and adaptation to the accumulation and distribution of photosynthetic product in peanut under salt stress[J]. >Journal of Integrative Agriculture, 2020, 19(3): 690-699.
[11] WANG Hai-xia, WANG Ming-lun, WANG Xiu-zhong, DING Yu-long . Detection of seven phytohormones in peanut tissues by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry[J]. >Journal of Integrative Agriculture, 2020, 19(3): 700-708.
[12] WANG Liang, YANG Xin-lei, CUI Shun-li, WANG Ji-hong, HOU Ming-yu, MU Guo-jun, LI Zi-chao, LIU Li-feng. Identification of main effect and epistatic QTLs controlling initial flowering date in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2383-2393.
[13] Abdel-Gayed M. Ahmad, Abo-Zaid G. Attia, Matar S. Mohamed, Hafez E. Elsayed. Fermentation, formulation and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of peanut soil-borne diseases[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2080-2092.
[14] LI Yan-hong, SHI De-yang, LI Guang-hao, ZHAO Bin, ZHANG Ji-wang, LIU Peng, REN Bai-zhao, DONG Shu-ting. Maize/peanut intercropping increases photosynthetic characteristics, 13C-photosynthate distribution, and grain yield of summer maize[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2219-2229.
[15] GONG A-na, SHI Ai-min, LIU Hong-zhi, YU Hong-wei, LIU Li, LIN Wei-jing, WANG Qiang. Relationship of chemical properties of different peanut varieties to peanut butter storage stability[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1003-1010.
No Suggested Reading articles found!