Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2483-2499    DOI: 10.1016/j.jia.2022.11.005
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of novel antisense long non-coding RNA APMAP-AS that modulates porcine adipogenic differentiation and inflammatory responses
ZHANG Lin-zhen1*, HE Li1*, WANG Ning1, AN Jia-hua1, ZHANG Gen1, CHAI Jin1, WU Yu-jie1, DAI Chang-jiu1, LI Xiao-han1, LIAN Ting2, LI Ming-zhou1, JIN Long1

1 Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China

2 College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

脂肪沉积是猪最重要的经济性状之一,是猪遗传学研究和育种工作中关注的焦点,其分子调控机制一直被视为猪分子育种重要研究内容。猪的生理结构、器官大小、代谢特征以及脂肪的生理解剖位置与人类更为相似,脂肪易沉积、易解剖和易获取,这使得猪成为研究不同内脏脂肪组织结构与功能的理想选择。长链非编码RNA (long non-coding RNA, lncRNA)是一类具有重要基因调控功能的RNA分子,在多种生物学过程中起着重要作用。随着对lncRNAs研究的深入,人们发现它不仅影响脂肪细胞的合成,还对脂肪过度沉积伴随的肥胖和代谢综合征相关的全身低度炎症具有调节作用。然而,lncRNAs对猪的内脏脂肪组织沉积过程中的调控作用还有待进行进一步研究。因此,本研究以成年雌性巴马猪(2年)为研究对象,分两组进行基础饮食和高脂饮食饲喂后,通过转录组测序技术对两组个体的内脏脂肪(腹膜后脂肪)进行测序。通过分析两组样本的测序数据,筛选了差异表达的lncRNAs,在细胞水平上进行lncRNAs的功能验证。在这里,我们在猪的基因组中发现了一个新的反义转录物,命名为APMAP-AS,由脂肪细胞膜相关蛋白(APMAP)转录而成。与对照组猪相比,APMAP-ASAPMAP在肥胖猪的腹膜后脂肪中高度表达。利用猪骨髓间质干细胞的脂肪分化模型,我们发现APMAP-AS对脂肪形成成分化有积极的调节作用。同时,APMAP-AS促进了脂质代谢并抑制了炎症因子的表达。APMAP-AS有可能与APMAP形成一个RNA-RNA双链,并增加APMAP mRNA的稳定性,从而起到正向调控猪体内APMAP表达的作用。这些结果表明,APMAP-AS通过顺式作用调节APMAP基因的表达,从而影响脂肪沉积、脂质代谢和巴马猪腹膜后脂肪组织的免疫反应。APMAP-AS是一种适应性机制,在肥胖期间促进脂肪组织的健康重塑并维持代谢平衡。这些与脂质合成相关的调控基因的天然反义转录物的发现,可能会进一步加深我们对lncRNAs在驱动适应性脂肪组织重塑和维护代谢健康方面的理解。

Abstract  Long non-coding RNAs (lncRNAs) are emerging as powerful regulators of adipocyte differentiation, fat metabolism and gene expression. However, the functional roles and mechanisms of lncRNAs in these processes remain unclear. Here, we identified a novel antisense transcript, named APMAP-AS, transcribed from adipocyte membrane-associated protein (APMAP) in the pig genome. APMAP-AS and APMAP were highly expressed in retroperitoneal adipose of obese pigs, compared with that in control pigs. Using a bone mesenchymal stem cells (BMSCs) adipogenic differentiation model, we found that APMAP-AS positively regulated adipogenic differentiation. APMAP-AS had the potential to form an RNA–RNA duplex with APMAP, and increased the stability of APMAP mRNA. Additionally, APMAP-AS promoted lipid metabolism and inhibited the expression of inflammatory factors. These findings of a natural antisense transcript for a regulatory gene associated with lipid synthesis might further our understanding of lncRNAs in driving adaptive adipose tissue remodeling and preserving metabolic health.
Keywords:  lncRNA        adipogenesis        lipid metabolism        inflammation        RNA–RNA duplex  
Received: 11 July 2022   Accepted: 14 October 2022
Fund: This study was supported by grants from the National Key R&D Program of China (2021YFA0805903, 2020YFA0509500 and 2021YFD1300800), and the Sichuan Science and Technology Program, China (2021ZDZX0008, 2021YFYZ0009, 2021YFYZ0030 and 2022JDJQ0054).
About author:  ZHANG Lin-zhen, E-mail:; HE Li, E-mail:; #Correspondence JIN Long, E-mail:; LI Ming-zhou, E-mail: * These authors contributed equally to this study.

Cite this article: 

ZHANG Lin-zhen, HE Li, WANG Ning, AN Jia-hua, ZHANG Gen, CHAI Jin, WU Yu-jie, DAI Chang-jiu, LI Xiao-han, LIAN Ting, LI Ming-zhou, JIN Long. 2023. Identification of novel antisense long non-coding RNA APMAP-AS that modulates porcine adipogenic differentiation and inflammatory responses. Journal of Integrative Agriculture, 22(8): 2483-2499.

Albrektsen T, Richter H E, Clausen J T, Fleckner J. 2001. Identification of a novel integral plasma membrane protein induced during adipocyte differentiation. Biochemical Journal359, 393–402.

Betz M J, Slawik M, Lidell M E, Osswald A, Heglind M, Nilsson D, Lichtenauer U D, Mauracher B, Mussack T, Beuschlein F, Enerbäck S. 2013. Presence of brown adipocytes in retroperitoneal fat from patients with benign adrenal tumors: relationship with outdoor temperature. The Journal of Clinical Endocrinology & Metabolism98, 4097–4104.

Bi Y, Yuan L, Ying X Y, Chang G. 2019. Two new IncRNAs regulate the key immune factor NOD1 and TRAF5 in chicken lymphocyte. Journal of Integrative Agriculture18, 2589–2597.

Bjørndal B, Burri L, Staalesen V, Skorve J, Berge R K. 2011. Different adipose depots: Their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. Journal of Obesity2011, 490650.

Bogner-Strauss J G, Prokesch A, Sanchez-Cabo F, Rieder D, Hackl H, Duszka K, Krogsdam A, Di Camillo B, Walenta E, Klatzer A, Lass A, Pinent M, Wong W C, Eisenhaber F, Trajanoski Z. 2010. Reconstruction of gene association network reveals a transmembrane protein required for adipogenesis and targeted by PPARγ. Cellular and Molecular Life Sciences67, 4049–4064.

Cero C, Lea H J, Zhu K Y, Shamsi F, Tseng Y H, Cypess A M. 2021. β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. Journal of Clinical Investigation6,139–160.

Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg A S, Obin M S. 2005. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research46, 2347–2355.

Cotillard A, Poitou C, Torcivia A, Bouillot J L, Dietrich A, Klöting N, Grégoire C, Lolmede K, Blüher M, Clément K. 2014. Adipocyte size threshold matters: Link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. The Journal of Clinical Endocrinology & Metabolism99, E1466–E1470.

Crewe C, An Y A, Scherer P E. 2017. The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. The Journal of Clinical Investigation127, 74–82.

Cui M, Xiao Z, Wang Y, Zheng M, Song T, Cai X, Sun B, Ye L, Zhang X. 2015. Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. Cancer Research75, 846–857.

Cui X, You L, Li Y, Zhu L, Zhang F, Xie K, Cao Y, Ji C, Guo X. 2016. A transcribed ultraconserved noncoding RNA, uc.417, serves as a negative regulator of brown adipose tissue thermogenesis. The FASEB Journal30, 4301–4312.

DeNino W F, Tchernof A, Dionne I J, Toth M J, Ades P A, Sites C K, Poehlman E T. 2001. Contribution of abdominal adiposity to age-related differences in insulin sensitivity and plasma lipids in healthy nonobese women. Diabetes Care24, 925–932.

Dimitrova N, Zamudio J R, Jong R M, Soukup D, Resnick R, Sarma K, Ward A J, Raj A, Lee J T, Sharp P A, Jacks T. 2014. LincRNA-p21 activates p21 in cis to promote polycomb target gene expression and to enforce the G1/S checkpoint. Molecular Cell54, 777–790.

Du M Q, Huang Y Q, Lu N S, Shu G, Zhu X T, Wang L N, Gao P, Xi Q, Zhang Y, Wang S, Jiang Q. 2014. Characterization and differentiation into adipocytes and myocytes of porcine bone marrow mesenchymal stem cells. Journal of Integrative Agriculture13, 837–848.

Elman J S, Li M, Wang F, Gimble J M, Parekkadan B. 2014. A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. Journal of Inflammation11, 1.

Espinoza C A, Goodrich J A, Kugel J F. 2007. Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. RNA13, 583–596.

Faghihi M A, Wahlestedt C. 2009. Regulatory roles of natural antisense transcripts. Nature Reviews Molecular Cell Biology10, 637–643.

Fox C S, Massaro J M, Hoffmann U, Pou K M, Maurovich-Horvat P, Liu C Y, Vasan R S, Murabito J M, Meigs J B, Cupples L A, D’Agostino R B, O’Donnell C J. 2007. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the framingham heart study. Circulation116, 39–48.

Frasca D, Diaz A, Romero M, Thaller S, Blomberg B B. 2018. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue. PLoS ONE13, e0197472.

Gelfand B, Mead J, Bruning A, Apostolopoulos N, Tadigotla V, Nagaraj V, Sengupta A M, Vershon A K. 2011. Regulated antisense transcription controls expression of cell-type-specific genes in yeast. Molecular and Cellular Biology31, 1701–1709.

Huang W, Zhang X, Li A, Xie L, Miao X. 2018. Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds. Cellular Physiology and Biochemistry50, 2406–2422.

Huang X, Fu C, Liu W, Liang Y, Li P, Liu Z, Sheng Q, Liu P. 2019. Chemerin-induced angiogenesis and adipogenesis in 3 T3-L1 preadipocytes is mediated by lncRNA Meg3 through regulating Dickkopf-3 by sponging miR-217. Toxicology and Applied Pharmacology385, 114815.

Jiang S, Wang X, Song D, Liu X, Gu Y, Xu Z, Wang X, Zhang X, Ye Q, Tong Z, Yan B, Yu J, Chen Y, Sun M, Wang Y, Gao S. 2019. Cholesterol induces epithelial-to-mesenchymal transition of prostate cancer cells by suppressing degradation of EGFR through APMAP. Cancer Research79, 3063–3075.

Jin L, Tang Q, Hu S, Chen Z, Zhou X, Zeng B, Wang Y, He M, Li Y, Gui L, Shen L, Long K, Ma J, Wang X, Chen Z, Jiang Y, Tang G, Zhu L, Liu F, Zhang B, et al. 2021. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nature Communications12, 3715.

Kamber R A, Nishiga Y, Morton B, Banuelos A M, Barkal A A, Vences-Catalán F, Gu M, Fernandez D, Seoane J A, Yao D, Liu K, Lin S, Spees K, Curtis C, Jerby-Arnon L, Weissman I L, Sage J, Bassik M C. 2021. Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature597, 549–554.

Kampa D, Cheng J, Kapranov P, Yamanaka M, Brubaker S, Cawley S, Drenkow J, Piccolboni A, Bekiranov S, Helt G, Tammana H, Gingeras T R. 2004. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Research14, 331–342.

Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap C C, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang K C, Hallinan J, Mattick J, Hume D A, et al. 2005. Antisense transcription in the mammalian transcriptome. Science309, 1564–1566.

Kern P A, Ranganathan S, Li C, Wood L, Ranganathan G. 2001. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. American Journal of Physiology (Endocrinology and Metabolism), 280, 745–751.

Kershaw E E, Flier J S. 2004. Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology & Metabolism89, 2548–2556.

Kim D, Monaco E, Maki A, de Lima A S, Kong H J, Hurley W L, Wheeler M B. 2010. Morphologic and transcriptomic comparison of adipose- and bone-marrow-derived porcine stem cells cultured in alginate hydrogels. Cell and Tissue Research341, 359–70.

Kumar H, Srikanth K, Park W, Lee S H, Choi B H, Kim H, Kim Y M, Cho E S, Kim J H, Lee J H, Jung J Y, Go G W, Lee K T, Kim J M, Lee J, Lim D, Park J E. 2019. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene703, 71–82.

Latos P A, Pauler F M, Koerner M V, Şenergin H B, Hudson Q J, Stocsits R R, Allhoff W, Stricker S H, Klement R M, Warczok K E, Aumayr K, Pasierbek P, Barlow D P. 2012. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science338, 1469–1472.

Li C C, Yu S L, Ren H F, Wu W, Wang Y L, Han Q, Xu H X, Xu Y J, Zhang P P. 2021. Identification and functional prediction of long intergenic noncoding RNAs in fetal porcine longissimus dorsi muscle. Journal of Integrative Agriculture, 20, 201–211.

Li J, Cao Y, Xu X, Xiang H, Zhang Z, Chen B, Hao Y, Wei Z, Zhou P, Chen D. 2015. Increased new lncRNA-mRNA gene pair levels in human cumulus cells correlate with oocyte maturation and embryo development. Reproductive Sciences22, 1008–1022.

Lin C S, Xin Z C, Deng C H, Ning H, Lin G, Lue T F. 2010. Defining adipose tissue-derived stem cells in tissue and in culture. Histology and Histopathology25, 807–815.

Liu P, Jin L, Zhao L, Long K, Song Y, Tang Q, Ma J, Wang X, Tang G, Jiang Y, Zhu L, Li X, Li M. 2018. Identification of a novel antisense long non-coding RNA PLA2G16-AS that regulates the expression of PLA2G16 in pigs. Gene671, 78–84.

Liu T M, Martina M, Hutmacher D W, Hui J H, Lee E H, Lim B. 2007. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells25, 750–60.

Liu Y, Wang Y, He X, Zhang S, Wang K, Wu H, Chen L. 2018. LncRNA TINCR/miR-31-5p/C/EBP-α feedback loop modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. Stem Cell Research32, 35–42.

Long Y, Wang X, Youmans D T, Cech T R. 2017. How do lncRNAs regulate transcription? Science Advances3, 2110.

Lu Y, Liu X, Xie M, Liu M, Ye M, Li M, Chen X M, Li X, Zhou R. 2017. The NF-κB-responsive long noncoding RNA FIRRE regulates posttranscriptional regulation of inflammatory gene expression through Interacting with hnRNPU. The Journal of Immunology199, 3571–3582.

Ma Y, Gao J, Yin J, Gu L, Liu X, Chen S, Huang Q, Lu H, Yang Y, Zhou H, Wang Y, Peng Y. 2016. Identification of a novel function of adipocyte plasma membrane-associated protein (APMAP) in gestational diabetes mellitus by proteomic analysis of omental adipose tissue. Journal of Proteome Research15, 628–637.

Mackie G A. 2000. Stabilization of circular rpsT mRNA demonstrates the 5´-end dependence of RNase E action in vivoJournal of Biological Chemistry275, 25069–25072.

Marchese F P, Raimondi I, Huarte M. 2017. The multidimensional mechanisms of long noncoding RNA function. Genome Biology18, 1–13.

Martinez-Santibañez G, Lumeng C N. 2014. Macrophages and the regulation of adipose tissue remodeling. Annual Review of Nutrition34, 57–76.

Modarresi F, Faghihi M A, Lopez-Toledano M A, Fatemi R P, Magistri M, Brothers S P, van der Brug M P, Wahlestedt C. 2012. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nature Biotechnology30, 453–459.

Noel D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, Jorgensen C, Cousin B. 2008. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Experimental Cell Research314, 1575–1584.

Oliveira D T, Fernandes I D C, Sousa G G, Santos T, Paiva N C N, Carneiro C M, Evangelista E A, Barboza N R, Guerra-Sá R. 2020. High-sugar diet leads to obesity and metabolic diseases in ad libitum fed rats irrespective of caloric intake. Archives of Endocrinology and Metabolism64, 71–81.

Ozsolak F, Kapranov P, Foissac S, Kim S W, Fishilevich E, Monaghan A P, John B, Milos P M. 2010. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell143, 1018–1029.

Pessentheiner A R, Huber K, Pelzmann H J, Prokesch A, Radner F P W, Wolinski H, Lindroos-Christensen J, Hoefler G, Rülicke T, Birner-Gruenberger R, Bilban M, Bogner-Strauss J G. 2017. APMAP interacts with lysyl oxidase-like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion. The FASEB Journal31, 4088–4103.

Poglio S, De Toni-Costes F, Arnaud E, Laharrague P, Espinosa E, Casteilla L, Cousin B. 2010. Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells28, 2065–2072.

Pontier D B, Gribnau J. 2011. Xist regulation and function explored. Human Genetics130, 223–236.

Reilly S M, Saltiel A R. 2017. Adapting to obesity with adipose tissue inflammation. Nature Reviews Endocrinology13, 633–643.

Rinn J L, Kertesz M, Wang J K, Squazzo S L, Xu X, Brugmann S A, Goodnough L H, Helms J A, Farnham P J, Segal E, Chang H Y. 2007. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323.

Romacho T, Elsen M, Röhrborn D, Eckel J. 2014. Adipose tissue and its role in organ crosstalk. Acta Physiologica210, 733–753.

Sam S, Haffner S, Davidson M H, D’Agostino R B, Feinstein S, Kondos G, Perez A, Mazzone T. 2008. Relationship of abdominal visceral and subcutaneous adipose tissue with lipoprotein particle number and size in type 2 diabetes. Diabetes57, 2022–2027.

Scheideler M. 2019. Regulatory small and long noncoding RNAs in brite. In: Brown Adipose Tissue. Springer, Cham. pp. 215–237.

Shin S, Ajuwon K M. 2018. Divergent response of murine and porcine adipocytes to stimulation of browning genes by 18-carbon polyunsaturated fatty acids and beta-receptor agonists. Lipids53, 65–75.

Spadaro P A, Flavell C R, Widagdo J, Ratnu V S, Troup M, Ragan C, Mattick J S, Bredy T W. 2015. Long noncoding RNA-directed epigenetic regulation of gene expression is associated with anxiety-like behavior in mice. Biological Psychiatry78, 848–859.

Stapleton K, Das S, Reddy M A, Leung A, Amaram V, Lanting L, Chen Z, Zhang L, Palanivel R, Deiuliis J A, Natarajan R. 2020. Novel long noncoding rna, macrophage inflammation-suppressing transcript (MIST), regulates macrophage activation during obesity. ArteriosclerosisThrombosisand Vascular Biology40, 914–928.

Stoecklin G, Mayo T, Anderson P. 2006. ARE-mRNA degradation requires the 5´–3´ decay pathway. EMBO Reports7, 72–77.

Sun Y, Cai R, Wang Y, Zhao R, Qin J, Pang W. 2020. A newly identified lncRNA lncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals10, 926.

Sun Y, Chen X, Qin J, Liu S, Zhao R, Yu T, Chu G, Yang G, Pang W. 2018. Comparative analysis of long noncoding RNAs expressed during intramuscular adipocytes adipogenesis in fat-type and lean-type pigs. Journal of Agricultural and Food Chemistry66, 12122–12130.

Terashima M, Tange S, Ishimura A, Suzuki T. 2017. MEG3 long noncoding RNA contributes to the epigenetic regulation of epithelial-mesenchymal transition in lung cancer cell lines. Journal of Biological Chemistry292, 82–99.

Tufarelli C, Stanley J A, Garrick D, Sharpe J A, Ayyub H, Wood W G, Higgs D R. 2003. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nature Genetics34, 157–165.

Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V. 2018. Adipokine dysregulation and adipose tissue inflammation in human obesity. European Journal of Clinical Investigation48, e12997.

Villegas V E, Zaphiropoulos P G. 2015. Neighboring gene regulation by antisense long non-coding RNAs. InternationalJournal of Molecular Sciences16, 3251–3266.

Wang G Q, Wang Y, Xiong Y, Chen X C, Ma M L, Cai R, Gao Y, Sun Y M, Yang G S, Pang W J. 2016. Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Scientific Reports6, 21865.

Wei N, Wang Y, Xu R X, Wang G Q, Xiong Y, Yu T Y, Yang G S, Pang W J. 2015. PU.1 antisense lncRNA against its mRNA translation promotes adipogenesis in porcine preadipocytes. Animal Genetics46, 133–140.

Xie Q, Chen S, Tian R, Huang X, Deng R, Xue B, Qin Y, Xu Y, Wang J, Guo M, Chen J, Tang S, Li G, Zhu H. 2018. Long noncoding RNA ITPRIP-1 positively regulates the innate immune response through promotion of oligomerization and activation of MDA5. Journal of Virology92, 507–518.

Xing K, Wang K, Ao H, Chen S, Tan Z, Wang Y, Xitong Z, Yang T, Zhang F, Liu Y, Ni H, Sheng X, Qi X, Wang X, Guo Y, Wang C. 2019. Comparative adipose transcriptome analysis digs out genes related to fat deposition in two pig breeds. Scientific Reports9, 1–11.

Xing Y H, Yao R W, Zhang Y, Guo C J, Jiang S, Xu G, Dong R, Yang L, Chen L L. 2017. SLERT regulates DDX21 rings associated with pol I transcription. Cell169, 664–678.

Yakovchuk P, Goodrich J A, Kugel J F. 2009. B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proceedings of the National Academy of Sciencesof the United States of America106, 5569–5574.

Yan C, Chen J, Chen N. 2016. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Scientific Reports6, 22640.

Yang Y, Zhou R, Zhu S, Li X, Li H, Yu H. 2017. Systematic identification and molecular characteristics of long noncoding RNAs in pig tissues. BioMed Research International2017, 6152582.

Ye X, Gui X, Freed D C, Ku Z, Li L, Chen Y, Xiong W, Fan X, Su H, He X, Rustandi R R, Loughney J W, Ma N, Espeseth A S, Liu J, Zhu H, Wang D, Zhang N, Fu T M, An Z. 2019. Identification of adipocyte plasma membrane-associated protein as a novel modulator of human cytomegalovirus infection. PLoS Pathogens15, e1007914.

Yi X, He Z, Tian T, Kou Z, Pang W. 2021. LncIMF2 promotes adipogenesis in porcine intramuscular preadipocyte through sponging miR-217. Animal Biotechnology34, 268–279.

Yoon J H, Abdelmohsen K, Gorospe M. 2013. Posttranscriptional gene regulation by long noncoding RNA. Journal of Molecular Biology425, 3723–3730.

Żelechowska P, Agier J, Kozłowska E, Brzezińska-Błaszczyk E. 2018. Mast cells participate in chronic low-grade inflammation within adipose tissue. Obesity Reviews19, 686–697.

Zhang L, Zhao R, Xiao M, Lin S D, Li B X, Qiu F F, Ma J E, Zhang D X, Nie Q H, An L L, Zhang X Q. 2016. An efficient and rapid method to detect and verify natural antisense transcripts of animal genes. Journal of Integrative Agriculture15, 2070–2076.

Zhao X Y, Li S, DelProposto J L, Liu T, Mi L, Porsche C, Peng X, Lumeng C N, Lin J D. 2018. The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health. Molecular Metabolism14, 60–70.

Zhou R, Li S T, Yao W Y, Xie C D, Chen Z, Li Z J. 2021. The Meishan pig genome reveals structural variation-mediated gene expression and phenotypic divergence underlying Asian pig domestication. Molecular Ecology Resources21, 2077–2092.

Zhou R, Yao W Y, Xie C D, Zhang L X, Pei Y L, Li H, Li K. 2020. Developmental stage-specific A-to-I editing pattern in the postnatal pineal gland of pigs (Sus scrofa). Journal of Animal Science and Biotechnology11, 1–9.

Zhu E, Zhang J, Li Y, Yuan H, Zhou J, Wang B. 2019. Long noncoding RNA Plnc1 controls adipocyte differentiation by regulating peroxisome proliferator-activated receptor γ. The FASEB Journal33, 2396–2408.

[1] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[2] LI Mei-zhen, XIAO Hua-mei, HE Kang, LI Fei. Progress and prospects of noncoding RNAs in insects[J]. >Journal of Integrative Agriculture, 2019, 18(4): 729-747.
[3] CHEN Meng-yao, YE Wan-yi, XIAO Hua-mei, LI Mei-zhen, CAO Zheng-hong, YE Xin-hai, ZHAO Xian-xin, HE Kang, LI Fei. LncRNAs are potentially involved in the immune interaction between small brown planthopper and rice stripe virus[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2814-2822.
[4] BI Yu-lin, YUAN Xiao-ya, CHEN Ying, CHANG Guo-bin, CHEN Guo-hong .
Two new lncRNAs regulate the key immune factor NOD1 and TRAF5 in chicken lymphocyte  
[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2589-2597.
No Suggested Reading articles found!