Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2456-2469    DOI: 10.1016/j.jia.2022.08.025
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China

WANG Meng-qi1, 2, 3, ZHANG Hong-rui2, XI Yu-qiang1, 4, WANG Gao-ping1, 4, ZHAO Man1, 4, ZHANG Li-juan1, 4#, GUO Xian-ru1,4#

1 Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, P.R.China

2 College of Plant Protection, Yunnan Agricultural University, Kunming 650201, P.R.China

3 Suifenhe Bureau of Agriculture and Rural Affairs, Suifenhe 157300, P.R.China

4 Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      



Propylea japonica (Coleoptera: Coccinellidae) is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management.  However, its genetic pattern (i.e., genetic variation, genetic structure, and historical population dynamics) is still unclear, impeding the development of biological control of insect pests.  Population genetic research has the potential to optimize strategies at different stages of the biological control processes.  This study used 23 nuclear microsatellite sites and mitochondrial COI genes to investigate the population genetics of Propylea japonica based on 462 specimens collected from 30 sampling sites in China.  The microsatellite dataset showed a moderate level of genetic diversity, but the mitochondrial genes showed a high level of genetic diversity.  Populations from the Yellow River basin were more genetically diverse than those in the Yangtze River basin.  Propylea japonica has not yet formed a significant genealogical structure in China, but there was a population structure signal to some extent, which may be caused by frequent gene flow between populations.  The species has experienced population expansion after a bottleneck, potentially thanks to the tri-trophic plant–insect–natural enemy relationship.  Knowledge of population genetics is of importance in using predators to control pests.  Our study complements existing knowledge of an important natural predator in agroecosystems through estimating its genetic diversity and population differentiation and speculating about historical dynamics.

Keywords:  demographic history              genetic differentiation              genetic diversity              population expansion              microsatellite              mitochondrial COI  
Received: 12 February 2022   Accepted: 16 May 2022
Fund: This work was supported by a grant from the Key S&T Special Project of Henan, China (201300111500), the National Key R&D Program of China (2018YFD0200600), the Modern Agricultural System in Industry Technology of Henan Province, China (S2015-02-G05), the Key R&D and Promotion Project in Henan Province, China (212102110471).  

About author:  WANG Meng-qi, E-mail:; #Correspondence ZHANG Li-juan, E-mail:; GUO Xian-ru, E-mail:

Cite this article: 

WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. 2023. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China. Journal of Integrative Agriculture, 22(8): 2456-2469.

Andras J P, Fields P D, Ebert D. 2018. Spatial population genetic structure of a bacterial parasite in close coevolution with its host. Molecular Ecology, 27, 1371–1384.

Avise J C, Amold J, Ball R M. 1987. Intraspecific phylogeography: The mitochondrial bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.

Barraclough T G, Nee S. 2001. Phylogenetic and speciation. Trends in Ecology & Evolution16, 391–399.

Bowcock A M, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd J R, Cavalli-Sforza L L. 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368, 455-457.

Cao L J, Wang Z H, Gong Y J, Zhu L, Hoffmann A A, Wei S J. 2017. Low genetic diversity but strong population structure reflects multiple introductions of western flower thrips (Thysanoptera, Thripidae) into China followed by human-mediated spread. Evolutionary Applications10, 391–401.

Chailleux A, Mohl E K, Teixeira A M, Messelink G J, Desneux N. 2014. Natural enemy-mediated indirect interactions among prey species, potential for enhancing biocontrol services in agroecosystems. Pest Management Science70, 1769–1779.

Chen L, Sun J T, Jin P Y, Hoffmann A A, Bing X L, Zhao D S, Xue X F, Hong X Y. 2020. Population genomic data in spider mites point to a role for local adaptation in shaping range shifts. Evolutionary Applications13, 2821-2835.

Cheng S L, Zhang F, Pang H. 2007. Comparative study on heat tolerance of Guangdong and Beijing populations of Propylea japonica (Thunberg) (Coleoptera, Coccinellidae). Acta Entomologica Sinica, 50, 376–3823. (in Chinese)

Cornuet J M, Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics144, 2001–2014.

Delghandi M, Delghandi M P, Goddard S. 2022. The significance of PCR primer design in genetic diversity studies, exemplified by recent research into the genetic structure of marine species. In: Basu C, ed., PCR Primer Design. Methods in Molecular Biology. Humana, New York. pp. 2392.

Drummond A J, Suchard M A, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution29, 1969–1973.

Dumont F, Lucas E, Brodeur J. 2015. Do furtive predators benefit from a selfish herd effect by living within their prey colony? Behavioral Ecology and Sociobiology69, 971–976.

Dupanloup I, Schneider S, Excoffier L. 2002. A simulated annealing approach to define the genetic. Molecular Ecology11, 2571–2581.

Earl D A, VonHoldt B M. 2012. STRUCTURE HARVESTER, a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361.

Elmer K R, Reggio C, Wirth T, Verheyen E, Salzburger W, Meyer A. 2009. Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America106, 13404–13409.

Excoffier L, Lischer H E L. 2010. Arlequin suite ver 3.5, a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.

Fang F, Chen J, Jiang L, Qu Y, Qiao G. 2018. Genetic origin and dispersal of the invasive soybean aphid inferred from population genetic analysis and approximate Bayesian computation. Integrative Zoology, 13, 536–552.

Graham H M, Wolfenbarger D A, Nosky J B. 1978. Labeling plants and their insect fauna with rubidium. Environmental Entomology, 7, 379–383.

Gripenberg S, Mayhew P J, Parnell M, Roslin T. 2010. A meta-analysis of preference–performance relationships in phytophagous insects. Ecology Letters, 13, 383–393.

Gu C, Mu X, Peng G, Zhao G, Sun W. 2018. Changes in run-off and sediment load in the three parts of the Yellow River basin, in response to climate change and human activities. Hydrological Processes, 33, 585-601. (in Chinese)

Huang J, Zhang G, Yu H, Wang S, Guan X, Ren Y. 2020. Characteristics of climate change in the Yellow River basin during recent 40 years. Journal of Hydraulic Engineering51, 1048–1058. (in Chinese)

Jakobsson M, Rosenberg N. 2007. CLUMPP, a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801–1806.

Ji H K, Lim C, Park S H , Kim W G, Sareein N, Bae Y J. 2020. Genetic and morphologic variation in a potential mosquito biocontrol agent, Hydrochara Affinis (Coleoptera: Hydrophilidae). Sustainability, 12, 5481.

Kajita Y, O’Neill E M, Zheng Y, Obrycki J, Weisrock D. 2012. A population genetic signature of human releases in an invasive ladybeetle. Molecular Ecology, 21, 5473–5483.

Kalinowski S. 2005. HP-Rare: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5, 187–189.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K, Mega X. 2018. Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution35, 1547–1549.

Leigh J W, Bryant D. 2015. POPART, Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116.

Leung K, Ras E, Ferguson K B, Ariëns S, Babendreier D, Bijma P. 2020. Next-generation biological control, the need for integrating genetics and genomics. Biological Reviews, 95, 1838–1854.

Li G F, Zheng F K, Wang H. 2005. Preliminary study of Coccinellidae in the suburbs of Nanchong City. Journal of China West Normal University (Natural Sciences), 26, 145–148. (in Chinese)

Li H S, Huang Y H, Chen M L, Ren Z, Qiu B Y, De Clercq P, Heckel G, Pang H. 2021. Genomic insight into diet adaptation in the biological control agent Cryptolaemus montrouzieri. BMC Genomics, 22, 135.

Li H S, Jin M J, Ślipiński A, De Clercq P, Pang H. 2015. Genetic differentiation in native and introduced populations of cryptolaemus montrouzieri (Coleoptera, Coccinellidae) and its implications for biological control programs. Journal of Economic Entomology, 108, 2458–2464.

Li M M, Li B L, Jiang S X, Zhao Y W, Xu X L, Wu J X. 2019. Microsatellite-based analysis of genetic structure and gene flow of Mythimna separata (Walker) (Lepidoptera, Noctuidae) in China. Ecology and Evolution, 9, 13426–13437.

Lin C P, Danforth B N. 2004. How do insect nuclear and mitochondrial gene substitution patterns differ? insights from Bayesian analyses of combined datasets. Molecular Phylogenetics and Evolution30, 686–702.

Liu C L. 1963. Economic Entomography, Coleoptera, Coccinellidae. Science Press, Beijing. pp. 47–49.

Liu M, Wang X, Ma L, Cao L, Liu H, Pu D. 2019. Genome-wide developed microsatellites reveal a weak population differentiation in the hoverfly Eupeodes corollae (Diptera, Syrphidae) across China. PLoS ONE14, 1–10.

Lombaert E, Guillemaud T, Lundgren J, Koch R, Facon B, Grez A. 2014. Complementarity of statistical treatments to reconstruct worldwide routes of invasion, the case of the Asian ladybird Harmonia axyridis. Molecular Ecology, 23, 5979–5997.

Lombaert E, Guillemaud T, Thomas C E, Handley L J L, Estoup A. 2011. Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation, case study of the invasive ladybird Harmonia axyridis. Molecular Ecology, 20, 4654–4670.

Luo M, Lu H, Huang B, Huang C, Hsu Y, Liao P. 2022. Local adaptation and migratory habits balance spatial-genetic structure between continental and insular chestnut tiger butterflies in East Asia. Molecular Ecology, 31, 1864–1878.

Maiakovska O, Andriantsoa R, Tönges S, Legrand C, Gutekunst J, Hanna K, Pârvulescu L, Novitsky R, Weiperth A, Sciberras A, Deidun A, Ercoli F, Kouba A, Lyko F. 2021. Genome analysis of the monoclonal marbled crayfish reveals genetic separation over a short evolutionary timescale. Communications Biology, 4, 74.

Markert J A, Danley P D, Arnegard M E. 2001. New markers for new species, microsatellite loci and the East African cichlids. Trends in Ecology & Evolution16, 100–107.

Meng L X, Wang Y M, Wei W H, Zhang H Y. 2018. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera, Liviidae), host-driven genetic differentiation in China. Scientific Reports8, 1-15.

Mohl E K, Stenoien C M, Heimpel G E. 2020. The effects of host plant species on adult oviposition and larval performance of the aphid predator Aphidoletes aphidimyza. Environmental Entomology, 45, 606–616.

Paetkau D, Calvert W, Stirling I, Strobeck C. 1995. Microsatellite analysis of population-structure in Canadian Polar Bears. Molecular Ecology4, 347–354.

Paetkau D, Slade R, Burden M, Estoup A. Paetkau D, Slade R, Burden M, Estoup A. 2004. Direct, real-time estimation of migration rate using assignment methods, a simulation-based exploration of accuracy and power. Molecular Ecology, 13, 55-65.

Papadopoulou A, Anastasiou I, Vogler A P. 2020. Revisiting the insect mitochondrial molecular clock, the mid-aegean trench calibration. Molecular Biology and Evolution27, 1659–1672.

Peakall R, Smouse P E. 2012. GenAlEx 6.5, genetic analysis in excel. Population genetic software for teaching and research--an update. Bioinformatics28, 2537–2539.

Petermann S, Otto S, Eichner G, Schetelig M F. 2021. Spatial and temporal genetic variation of Drosophila suzukii in Germany. Journal of Pest Science, 94, 1291–1305.

Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A. 2004. GENECLASS2, A software for genetic assignment and first-generation migrant detection. Journal of Heredity95, 536–539.

Piry S, Luikart G, Cornuet J M. 1999. BOTTLENECK, a computer program for detecting recent reductions in the effective size using allele frequency data. Journal of Heredity, 90, 502–503.

Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics155, 945–959.

Qin Y J, Krosch M N, Schutze M K, Zhang Y, Wang X, Prabhakar C S. 2018. Population structure of a global agricultural invasive pest, Bactrocera dorsalis (Diptera, Tephritidae). Evolutionary Applications11, 1990–2003.

Rambaut A, Drummond A J, Xie D, Baele G, Suchard M A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology67, 901–904.

Rannala B, Mountain J L. 1997. Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America, 94, 9197 – 9201.

Raymond M, Rousset F. 1995. GENEPOP (Version 1.2), population genetics software for exact tests and ecumenicism. Journal of Heredity86, 248–249.

Reitz S R, Gao Y, Kirk W D J, Hoddle M S, Leiss K A, Funderburk J E. 2020. Invasion biology, ecology, and management of western flower thrips. Annual Review of Entomology, 65, 17–37.

Rondoni G, Borges I, Collatz J, Conti E, Costamagna A C, Dumont F. 2021. Exotic ladybirds for biological control of herbivorous insects – a review. Entomologia Experimentalis et Applicata, 169, 6–27.

Rosenberg N A. 2004. Distruct, a program for the graphical display of population structure. Molecular Ecology Notes4, 137–138.

Rozas J, Ferrer-Mata A, Sanchez-DelBarrio J C, Guirao-Rico S, Librado P, Ramos-Onsins S E. 2017. DnaSP 6, DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34, 3299–3302.

Sethuraman A, Janzen F J, Obrycki J. 2015. Population genetics of the predatory lady beetle Hippodamia convergens. Biological Control, 84, 1–10.

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701.

Suzuki T, Yano K, Ohba S, Kawano K, Sekiné K, Bae Y, Tojo K. 2021. Genome-wide molecular phylogenetic analyses and mating experiments which reveal the evolutionary history and an intermediate stage of speciation of a giant water bug. Molecular Ecology, 30, 5179–5195.

Tang L D, Wang X M, Jin F L, Qiu B L, Wu J H, Ren S X. 2014. De novo sequencing-based transcriptome and digital gene expression analysis reveals insecticide resistance-relevant genes in Propylaea japonica (Thunberg) (Coleoptea : Coccinellidae ). PLoS ONE9, e100946.

Takezaki N, Nei M, Tamura K. 2010. POPTREE2, Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Molecular Biology and Evolution, 27, 747–752.

Thioulouse J, Dray S. 2007. Dray, Interactive multivariate data analysis in R with the ade4 and ade4TkGUI packages. Journal of Statistical Software, 22, 1–14.

Wakil W, Brust G E, Perring T M. 2018. Sustainable management of arthropod pests of tomato. In: Leppla N C, Johnson M W, Merritt J L, Zalom F G, eds., Applications and Trends in Commercial Biological Control for Arthropod Pests of Tomato. Academic Press, New York. pp. 283-303.

Wang X Y, Yang X M, Lu B, Zhou L H, Wu K M. 2017. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers. Scientific Reports, 7, 1–14.

Wright M G, Bennett G M. 2018. Evolution of biological control agents following introduction to new environments. BioControl, 63, 105–116.

 Xu J. 2015. Complex response of runoff–precipitation ratio to the rising air temperature, the source area of the Yellow River, China. Regional Environmental Change, 15, 35–43.

Xun H, Li H, Li S, Wei S, Zhang L, Song F, Jiang P, Yang H L, Han F, Cai W Z. 2016. Population genetic structure and post-LGM expansion of the plant bug Nesidiocoris tenuis (Hemiptera, Miridae) in China. Scientific Reports6, 1–11.

Yeh F, Yang R C, Boyle T, Ye Z, Mao J. 1999. POPGENE, Version 1.32, the User Friendly Software for Population Genetic Analysis. University of Alberta, Edmonton.

Zhang S, Fu W, Li N, Zhang F, Liu T X. 2015. Antioxidant responses of Propylaea japonica (Coleoptera, Coccinellidae) exposed to high temperature stress. Journal of Insect Physiology73, 47–52.

Zhang S Z, Li J J, Shan H W, Zhang F, Liu T X. 2012. Influence of five aphid species on development and reproduction of Propylaea japonica (Coleoptera, Coccinellidae). Biological Control62, 135–159.

Zhang S Z, Wu J X, Zhang Q, Jiang J X, Xu X L, Chen J A. 2004. Research advances of Propylea japonica (Thunberg) in biology, ecology and utilization. Agricultural Research in the Arid Areas22, 206–210. (in Chinese)

Zhang X J, Li Y H, Romeis J, Yin X M, Wu K M, Peng Y F. 2014. Use of a pollen-based diet to expose the ladybird beetl Propylea japonica to insecticidal proteins. PLoS ONE, 9, 1–8.

Zink R M, Barrowclough G F. 2008. Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17, 2107–2121.

[1] SONG Ying-lian, LIU Hong-wu, YANG Yi-hong, HE Jing-jing, YANG Bin-xin, YANG Lin-li, ZHOU Xiang, LIU Li-wei, WANG Pei-yi, YANG Song. Novel 18β-glycyrrhetinic acid amide derivatives show dual-acting capabilities for controlling plant bacterial diseases through ROS-mediated antibacterial efficiency and activating plant defense responses[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2759-2771.
[2] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[3] ZHAO Hao-xiang, XIAN Xiao-qing, GUO Jian-yang, YANG Nian-wan, ZHANG Yan-ping, CHEN Bao-xiong, HUANG Hong-kun, LIU Wan-xue. Monitoring the little fire ant, Wasmannia auropunctata (Roger 1863), in the early stage of its invasion in China: Predicting its geographical distribution pattern under climate change [J]. >Journal of Integrative Agriculture, 2023, 22(9): 2783-2795.
[4] Nafiu Garba HAYATU, LIU Yi-ren, HAN Tian-fu, Nano Alemu DABA, ZHANG Lu, SHEN Zhe, LI Ji-wen, Haliru MUAZU, Sobhi Faid LAMLOM, ZHANG Hui-min. Carbon sequestration rate, nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2848-2864.
[5] ZHANG Jin, WANG Jie, WANG Qiao, CUI Huan-xian, DING Ji-qiang, WANG Zi-xuan, Mamadou Thiam, LI Qing-he, ZHAO Gui-ping. Immunogenetic basis of chicken’s heterophil to lymphocyte ratio revealed by genome-wide indel variants analysis[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2810-2823.
[6] LI Meng-wei, HE Yu-hua, LIU Rong, LI Guan, WANG Dong, JI Yi-shan, YAN Xin, HUANG Shu-xian, WANG Chen-yu, MA Yu, LIU Bei, YANG Tao, ZONG Xu-xiao. Construction of SNP genetic maps based on targeted next-generation sequencing and QTL mapping of vital agronomic traits in faba bean (Vicia faba L.)[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2648-2659.
[7] ZHAI Qian-hang, PAN Ze-qun, ZHANG Cheng, YU Hui-lin, ZHANG Meng, GU Xue-hu, ZHANG Xiang-hui, PAN Hong-yu, ZHANG Hao. Colonization by Klebsiella variicola FH-1 stimulates soybean growth and alleviates the stress of Sclerotinia sclerotiorum[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2729-2745.
[8] SUN Jia-nan, SI Gao-yue, LIU Hong-yi, LI Ya-qian, WANG Xin-hua, CHEN Jie. Degradation effects on dichlorvos by a biocontrol strain, Trichoderma atroviride T23[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2746-2758.
[9] ZHAO Chun-hua, ZHANG Na, FAN Xiao-li, JI Jun, SHI Xiao-li, CUI Fa, LING Hong-qing, LI Jun-ming. Dissecting the key genomic regions underlying high yield potential in common wheat variety ‘Kenong 9204’[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2603-2616.
[10] YUE Kai, LI Ling-ling, XIE Jun-hong, Zechariah EFFAH, Sumera ANWAR, WANG Lin-lin, MENG Hao-feng, LI Lin-zhi. Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2673-2686.
[11] XU Wang-ying, YU Xiao-bing, XUE Xin-yu. A binary gridding path-planning method for plant-protecting UAVs on irregular fields[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2796-2809.
[12] ZHANG Sha, YANG Shan-shan, WANG Jing-wen, WU Xi-fang, Malak HENCHIRI, Tehseen JAVED, ZHANG Jia-hua, BAI Yun. Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years' winter wheat yield over the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2865-2881.
[13] BAO Wan-kui, LEI Qiu-liang, JIANG Zhuo-dong, SUN Fu-jun, ZHANG Tian-peng, HU Ning, WANG Qiu-bing. Predicting and delineating soil temperature regimes of China using pedotransfer function[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2882-2892.
[14] LU Yan-li, SONG Gui-pei, WANG Yu-hong, WANG Luo-bin, XU Meng-ze, ZHOU Li-ping, WANG Lei. Combining nitrogen effects and metabolomics to reveal the response mechanisms to nitrogen stress and the potential for nitrogen reduction in maize[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2660-2672.
[15] XIAO Ning, LÜ Yun-yun, LI Jian-nan, CHEN Chang-feng, LIN Hui-xing, FAN Hong-jie. Preparation and application of a novel monoclonal antibody specific for the heat shock protein 60 of Lawsonia intracellularis[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2824-2833.
No Suggested Reading articles found!