Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2441-2455    DOI: 10.1016/j.jia.2022.08.023
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change
XIAN Xiao-qing1*, ZHAO Hao-xiang1*, GUO Jian-yang1, ZHANG Gui-fen1, LIU Hui2, LIU Wan-xue1#, WAN Fang-hao1
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 The National Agro-Tech Extension and Service Center, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      



Global food security is threatened by the impacts of the spread of crop pests and changes in the complex interactions between crops and pests under climate change.  Schrankia costaestrigalis is a newly-reported potato pest in southern China.  Early-warning monitoring of this insect pest could protect domestic agriculture as it has already caused regional yield reduction and/or quality decline in potato production.  Our research aimed to confirm the potential geographical distributions (PGDs) of Scostaestrigalis in China under different climate scenarios using an optimal MaxEnt model, and to provide baseline data for preventing agricultural damage by Scostaestrigalis.  Our findings indicated that the accuracy of the optimal MaxEnt model was better than the default-setting model, and the minimum temperature of the coldest month, precipitation of the driest month, precipitation of the coldest quarter, and the human influence index were the variables significantly affecting the PGDs of Scostaestrigalis.  The highly- and moderately-suitable habitats of Scostaestrigalis were mainly located in eastern and southern China.  The PGDs of Scostaestrigalis in China will decrease under climate change.  The conversion of the highly- to moderately-suitable habitat will also be significant under climate change.  The centroid of the suitable habitat area of Scostaestrigalis under the current climate showed a general tendency to move northeast and to the middle-high latitudes in the 2030s.  The agricultural practice of plastic film mulching in potato fields will provide a favorable microclimate for Scostaestrigalis in the suitable areas.  More attention should be paid to the early warning and monitoring of Scostaestrigalis in order to prevent its further spread in the main areas in China’s winter potato planting regions.

Keywords:  climate change       potential geographical distribution        crop insect pests        Schrankia costaestrigalis        MaxEnt model  
Received: 01 February 2022   Accepted: 29 March 2023
Fund: This work was supported by the National Key R&D Program of China (2021YFC2600400 and 2021YFD-1400100).
About author:  XIAN Xiao-qing, E-mail:; ZHAO Hao-xiang, E-mail:; #Correspondence LIU Wan-xue, E-mail: * These authors contributed equally to this study.

Cite this article: 

XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. 2023. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change. Journal of Integrative Agriculture, 22(8): 2441-2455.

Allouche O, Tsoar A, Kadmo R. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology43, 1223–1232.

Bale J S, Masters G J, Hodkinson I D, Awmack C, Bezemer T M, Brown V K, Butterfield J, Buse A, Coulson J C, Farrar J, Good J E G, Harrington R, Hartley S, Jones T H, Lindroth R L, Press M C, Symrnioudis I, Watt A D, Whittakeret J B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology8, 1–16.

Bebber D P, Ramotowski M A T, Gurr S J. 2013. Crop pests and pathogens move polewards in a warming world. Nature Climate Change3, 985–988.

Bebber D P. 2022. Global warming and China’s crop pests. Nature Food3, 6–7.

Bradshaw C J A, Leroy B, Bellard C, Roiz D, Albert C, Fournier A, Barbet-Massin M, Salles J M, Simard F, Courchamp F. 2016. Massive yet grossly underestimated global costs of invasive insects. Nature Communications7, 12986.

Byeon D H, Jung S, Lee W H. 2018. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. Journal of Asia-Pacific Biodiversity11, 325–333.

Mc Carthy U, Uysal I, Badia-Melis R, Mercier S, O’Donnell C, Ktenioudaki A. 2018. Global food security - Issues, challenges and technological solutions. Trends in Food Science & Technology77, 11–20.

Chen J C, Chen R T, Chen S M, Li J H, Wang L, Qin T X, Li Y. 2019a. A new potato pest - Schrankia costaestrigalis, observation on field occurrence law and agricultural control practice. China Plant Protection39, 42–49. (in Chinese)

Chen J C, Chen R T, Qin T X, Li J H, Chen S M, Wang L, Qiu G C. 2019b. Control effect of soil preparation and film mulching on Schrankia costaestrigalisChina Plant Protection39, 42–49. (in Chinese)

da Silva R S, Fidelis E G, Amaro G, Ramos R S, Junior P A S, Picanço M C. 2020. Climate-based seasonal dynamics of the invasive red palm mite Raoiella indicaPest Management Science76, 3849–3856.

Deutsch C A, Tewksbury J J, Tigchelaar M, Battisti D S, Merrill S C, Huey R B, Naylor R L. 2018. Increase in crop losses to insect pests in a warming climate. Science361, 916–919.

dos Santos L A, Mendes M F, Krüger A P, Blauth M L, Gottschalk M S, Garcia F R M. 2017. Global potential distribution of Drosophila suzukii (Diptera, Drosophilidae). PLoS ONE12, e0174318.

Elith J, Kearney M, Phillips S. 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution1, 330–342.

FAO (Food and Agriculture Organization of the United Nations). 2022. New standards to curb the global spread of plant pests and diseases. [2022-01-01].

Gao Y. 2018. Potato tuberworm: A threat for China potatoes. EntomologyOrnithology & Herpetology (Current Research), 7, 2.

Garrett K A. 2013. Big data insights into pest spread. Nature Climate Change3, 955–957.

Grab H, Branstetter M G, Amon N, Urban-Mead K R, Park M G, Gibbs J, Blitzer E J, Poveda K, Loeb G, Danforth B N. 2019. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science363, 282–284.

Gregory P J, Johnson S N, Newton A C, Ingram J S I. 2009. Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany60, 2827–2838.

IPCC. 2021. Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu, R, Zhou B, eds., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp. 3−32.

Jalaeian M, Golizadeh A, Sarafrazi A, Naimi B. 2018. Inferring climatic controls of rice stem borers’ spatial distributions using maximum entropy modelling. Journal of Applied Entomology142, 388– 396.

Ji W, Han K, Lu Y, Wei J. 2020. Predicting the potential distribution of the vine mealybug, Planococcus ficus under climate change by MaxEnt. Crop Protection137, 105268.

Jung J M, Lee W H, Jung S. 2016. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomological Research46, 223–235.

Jung J M, Lee S G, Kim K H, Jeon S W, Jung S, Lee W H. 2020. The potential distribution of the potato tuber moth (Phthorimaea operculella) based on climate and host availability of potato. Agronomy10, 12.

Kleijn D, Kohler F, Báldi A, Batáry P, Concepción E D, Clough Y, Díaz M, Gabriel D, Holzschuh A, Knop E, Kovács A, Marshall E J P, Tscharntke T, Verhulst J. 2009. On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society (B: Biological Sciences), 276, 903–909.

Kocmánková E, Trnka M, Juroch J, Dubrovský M, Semeradova D, Mozny M, Žalud Z. 2009. Impact of climate change on the occurrence and activity of harmful organisms. Plant Protection Science45, S48–S52.

Kistner E J. 2017. Climate change impacts on the potential distribution and abundance of the brown marmorated stink bug (Hemiptera: Pentatomidae) with special reference to North America and Europe. Environmental Entomology46, 1212–1224.

Kumar S, Graham J, West A M, Evangelista P H. 2014. Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture103, 55–62.

Kumar S, Neven L G, Zhu H, Zhang R. 2015. Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. Journal of Economic Entomology108, 1708–1719.

Lantschner M V, de la Vega G, Corley J C. 2019. Predicting the distribution of harmful species and their natural enemies in agricultural, livestock and forestry systems: an overview. International Journal of Pest Management65, 190–206.

Lawrence G. 2017. Re-evaluating food systems and food security: A global perspective. Journal of Sociology53, 774–796.

Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode S D, Jepsen J U, Kalinkat G, Neuvonen S, Niemelä P, Terblanche J S, Økland B, Björkman C. 2020. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment18, 141–150.

Li C, Wang Q, Wang N, Luo X, Li Y, Zhang T, Feng H, Dong Q. 2021. Effects of different plastic film mulching on soil hydrothermal conditions and grain-filling process in an arid irrigation district. Science of the Total Environment795, 148886.

Lu J Y, Dang S D, Wen H B, Liu H R, Zeng X R, Xie Z G, Mao Q, Huang C L, Sun G Q, Zhu H H. 2020. Study on chemical control technology of new potato pest - Schrankia costaestrigalisGuangxi Plant Protection33, 1–4. (in Chinese)

Medeiros M J, Davis D O N, Howarth F G, Gillespie R. 2009. Evolution of cave living in Hawaiian schrankia (Lepidoptera: Noctuidae) with description of a remarkable new cave species. Zoological Journal of the Linnean Society156, 114–139.

Monserud R A, Leemans R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecological Modelling62, 275–293.

Muscarella R, Galante P J, Soley-Guardia M, Boria R A, Kass J M, Uriarte M, Anderson R P. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods in Ecology and Evolution5, 1198–1205.

NBSC (National Bureau of Statistics of China). 2021. China Rural Statistical Yearbook. China Statistics Press, Beijing. (in Chinese)

Oerke E C. 2006. Crop losses to pests. The Journal of Agricultural Science144, 31–43.

Peterson A T, Papeş M, Soberón J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling213, 63–72.

Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling190, 231–259.

Phillips S J, Dudík M. 2008. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography31, 161–175.

Radosavljevic A, Anderson R P. 2014. Making better MaxEnt models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography41, 629–643.

Ramasamy M, Das B, Ramesh R. 2021. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. Journal of Pest Science95, 841–854.

Ramirez-Cabral N Y Z, Kumar L, Shabani F. 2017. Future climate scenarios project a decrease in the risk of fall armyworm outbreaks. The Journal of Agricultural Science155, 1219–1238.

Santana Jr P A, Kumar L, Da Silva R S, Pereira J L, Picanço M C. 2019. Assessing the impact of climate change on the worldwide distribution of Dalbulus maidis (DeLong) using MaxEnt. Pest Management Science75, 2706–2715.

Shimwela M M, Blackburn J K, Jones J B, Nkuba J, Narouei-Khandan H A, Ploetz R C, Beed F, van Bruggen A H C. 2017. Local and regional spread of banana xanthomonas wilt (BXW) in space and time in Kagera, Tanzania. Plant Pathology66, 1003–1014.

Skendžić S, Zovko M, Živković I P, Lešić V, Lemić D. 2021. The impact of climate change on agricultural insect pests. Insects12, 440.

Staley J T, Hodgson C J, Mortimer S R, Morecroft M D, Masters G J, Brown V K, Taylor M E. 2007. Effects of summer rainfall manipulations on the abundance and vertical distribution of herbivorous soil macro-invertebrates. European Journal of Soil Biology43, 189–198.

Stojanovi D. 2006. A new species of genus Schrankia hbner (Lepidoptera: Noctuidae) for the fauna of Serbia. Acta Entomologica Serbica, 11, 83–89.

Swets J A. 1988. Measuring the accuracy of diagnostic systems. Science240, 1285–1293.

Taylor S, Kumar L. 2013. Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: A case study of Lantana camara L. in Queensland, Australia. Journal of Environmental Management114, 414–422.

Thuiller W, Albert C, Araújo M B, Berry P M, Cabeza M, Guisan A, Hickler T, Midgley G F, Patersonc J, Schurrh F M, Sykes M T, Zimmermann N E. 2008. Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant EcologyEvolution and Systematics9, 137–152.

Wagner D L. 2020. Insect declines in the anthropocene. Annual Review of Entomology65, 457–480.

Wan J, Wang R, Ren Y, McKirdy S. 2020. Potential distribution and the risks of Bactericera cockerelli and its associated plant pathogen Candidatus liberibacter solanacearum for global potato production. Insects11, 298.

Wang B, Deveson E D, Waters C, Spessa A, Lawton D, Feng P, Liu D L. 2019. Future climate change likely to reduce the Australian plague locust (Chortoicetes terminifera) seasonal outbreaks. Science of the Total Environment668, 947–957.

Wang C, Hawthorne D, Qin Y, Pan X, Li Z, Zhu S. 2017. Impact of climate and host availability on future distribution of Colorado potato beetle. Scientific Reports7, 4489.

Wang C, Wang X, Jin Z, Müller C, Pugh T A M, Chen A, Wang T, Huang L, Zhang Y, Li L X Z, Piao S L. 2022. Occurrence of crop pests and diseases has largely increased in China since 1970. Nature Food3, 57–65.

Wang C J, Wang R, Yu C M, Dang X P, Sun W G, Li Q F, Wang X T, Wan J Z. 2021. Risk assessment of insect pest expansion in alpine ecosystems under climate change. Pest Management Science77, 3165–3178.

Warren D L, Glor R E, Turelli M. 2010. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography33, 607–611.

Wei J, Peng L, He Z, Lu Y, Wang F. 2020. Potential distribution of two invasive pineapple pests under climate change. Pest Management Science76, 1652–1663.

WCS and CIESIN (Wildlife Conservation Society and Center for International Earth Science Information Network, Columbia University). 2005. Global human influence index (geographic), v2 (1995 – 2004). [2022-03-01].

Xu J, Yang Y L, Tang H, Lü H P, Fan M S, Shi Y, Dong D F, Wang G J, Wang W X, Xiong X Y, Gao Y L. 2019. Status of major diseases and insect pests of potato and pesticide usage in China. Scientia Agricultura Sinica52, 2800–2808. (in Chinese)

Yoshimatsu S, Nishioka T. 1995. Schrankia costaestrigalis (Stephens) (Lepidoptera, Noctuidae) utilizing underground spaces. The Entomological Society of Japan63, 541–550.

Zeng X, Yu Y, Gao X, Long X, Jiang X, Liu J, Wei D, Gao Y, Zhou Z. 2020. First record of a damage to potato caused by Schrankia costaestrigalis (Stephens, 1834), a new potential pest in China. Journal of Pest Science93, 555–558.

Zhang H, Song J, Zhao H, Li M, Han W. 2021. Predicting the distribution of the invasive species Leptocybe invasa: Combining maxent and geodetector models. Insects12, 92.

[1] ZHAO Hao-xiang, XIAN Xiao-qing, GUO Jian-yang, YANG Nian-wan, ZHANG Yan-ping, CHEN Bao-xiong, HUANG Hong-kun, LIU Wan-xue. Monitoring the little fire ant, Wasmannia auropunctata (Roger 1863), in the early stage of its invasion in China: Predicting its geographical distribution pattern under climate change [J]. >Journal of Integrative Agriculture, 2023, 22(9): 2783-2795.
[2] PAN Song, PENG De-liang, LI Ying-mei, CHEN Zhi-jie, ZHAI Ying-yan, LIU Chen, HONG Bo. Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2138-2150.
[3] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[4] Oluwaseyi Samuel OLANREWAJU, Olubukola Oluranti BABALOLA. The rhizosphere microbial complex in plant health: A review of interaction dynamics[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2168-2182.
[5] ZHANG Li, CHU Qing-quan, JIANG Yu-lin, CHEN Fu, LEI Yong-deng. Impacts of climate change on drought risk of winter wheat in the North China Plain[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2601-2612.
[6] WU Jian-zhai, ZHANG Jing, GE Zhang-ming, XING Li-wei, HAN Shu-qing, SHEN Chen, KONG Fan-tao . Impact of climate change on maize yield in China from 1979 to 2016[J]. >Journal of Integrative Agriculture, 2021, 20(1): 289-299.
[7] QU Chun-hong, LI Xiang-xiang, JU Hui, LIU Qin. The impacts of climate change on wheat yield in the Huang-Huai- Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1379-1391.
[8] SONG Chun-xiao, LIU Rui-feng, Les Oxley, MA Heng-yun. Do farmers care about climate change? Evidence from five major grain producing areas of China[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1402-1414.
[9] CHEN Ying-ying, ZHANG Wei, MA Gang, MA Chun-sen. More stressful event does not always depress subsequent life performance[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2321-2329.
[10] LIN Er-da, GUO Li-ping, JU Hui. Challenges to increasing the soil carbon pool of agro-ecosystems in China[J]. >Journal of Integrative Agriculture, 2018, 17(04): 723-725.
[11] Syed Adeel Zafar, Amjad Hameed, Muhammad Amjad Nawaz, MA Wei, Mehmood Ali Noor, Muzammil Hussain, Mehboob-ur-Rahman. Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario[J]. >Journal of Integrative Agriculture, 2018, 17(04): 726-738.
[12] ZHAI Shi-yan, SONG Gen-xin, QIN Yao-chen, YE Xin-yue, Leipnik Mark. Climate change and Chinese farmers: Perceptions and determinants of adaptive strategies[J]. >Journal of Integrative Agriculture, 2018, 17(04): 949-963.
[13] Vahid Karimi, Ezatollah Karami, Marzieh Keshavarz. Climate change and agriculture: Impacts and adaptive responses in Iran[J]. >Journal of Integrative Agriculture, 2018, 17(01): 1-15.
[14] LI Xiang-xiang, JU Hui, Sarah Garré, YAN Chang-rong, William D. Batchelor, LIU Qin. Spatiotemporal variation of drought characteristics in the Huang-Huai-Hai Plain, China under the climate change scenario[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2308-2322.
[15] Asmat Ullah, Ashfaq Ahmad, Tasneem Khaliq, Javaid Akhtar. Recognizing production options for pearl millet in Pakistan under changing climate scenarios[J]. >Journal of Integrative Agriculture, 2017, 16(04): 762-773.
No Suggested Reading articles found!