Top Read

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    First record of the little fire ant, Wasmannia auropunctata (Hymenoptera: Formicidae), in Chinese mainland
    CHEN Si-qi, ZHAO Yi, LU Yong-yue, RAN Hao, XU Yi-juan
    2022, 21(6): 1825-1829.   DOI: 10.1016/S2095-3119(22)63903-0
    In January 2022, we received ant specimens collected from three field colonies from Shantou City, Guangdong Province, China.  They were identified as the little fire ant, Wasmannia auropunctata, through morphological and molecular analyses.  Wasmannia auropunctata is listed as one of the 100 most dangerous invasive species by the International Union for Conservation of Nature (IUCN) and has spread from its native range in South America to every continent except Antarctica.  DNA analysis of mitochondrial cytochrome c oxidase subunit I (COI) in nine specimens of W. auropunctata found that they had a close genetic relationship with specimens from Argentina.  This study represents the first formal record of the establishment of W. auropunctata outdoor in Chinese mainland.  However, the invasion stage and occurrence degree of W. auropunctata in China are not clear to date.  The implementation of quarantine measures, investigation of the occurrence and distribution, and development of monitoring and control strategies are needed to actively respond to the threat posed by this highly invasive ant.
    Reference | Related Articles | Metrics
    Indigenous arbuscular mycorrhizal fungi play a role in phosphorus depletion in organic manure amended high fertility soil
    HUO Wei-ge, CHAI Xiao-fen, WANG Xi-he, William David BATCHELOR, Arjun KAFLE, FENG Gu
    2022, 21(10): 0-.   DOI: 10.1016/j.jia.2022.07.045

    The species richness and propagule number of arbuscular mycorrhizal fungi (AMF) are high in intensively managed agricultural soils. Past research has shown that AMF improve crop phosphorus (P) uptake under low soil P conditions, however it is unclear if AMF play a role in high Olsen-P soils. In this study, we investigated whether native fungal benefits exist under high P input field conditions in-situ and contribute to P utilization. We installed in-grow tubes which were sealed with different membrane pore sizes (30 or 0.45 µm) to allow or prevent AMF hyphae access to the hyphal compartment and prevent cotton roots from penetrating the chamber. We used the depletion of soil available P (Olsen-P) in the hyphae accessed compartment to indicate P uptake by the native AMF community. Our results showed that the native AMF mediated P depletion and microbial biomass P (MBP) turnover and caused the largest Olsen-P depletion ratio and MBP turnover ratio in the high P treatments (Olsen-P: 78.29 mg kg-1). The cotton roots in each fertilization regime were colonized by a unique AMF community and Glomus and Paraglomus were the dominant genera, implying the long-term fertilization regimes domesticated the AMF community. We conclude that native AMF caused the P depletion and P turnover even under high soil Olsen-P conditions.

    Reference | Related Articles | Metrics
    Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review
    LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng
    2022, 21(9): 2465-2476.   DOI: 10.1016/j.jia.2022.07.013
    Maize (Zea mays L.) can exhibit yield penalties as a result of unfavorable changes to growing conditions.  The main threat to current and future global maize production is heat stress.  Maize may suffer from heat stress in all of the growth stages, either continuously or separately.  In order to manage the impact of climate driven heat stress on the different growth stages of maize, there is an urgent need to understand the similarities and differences in how heat stress affects maize growth and yield in the different growth stages.  For the purposes of this review, the maize growth cycle was divided into seven growth stages, namely the germination and seedling stage, early ear expansion stage, late vegetative growth stage before flowering, flowering stage, lag phase, effective grain-filling stage, and late grain-filling stage.  The main focus of this review is on the yield penalty and the potential physiological changes caused by heat stress in these seven different stages.  The commonalities and differences in heat stress related impacts on various physiological processes in the different growth stages are also compared and discussed.  Finally, a framework is proposed to describe the main influences on yield components in different stages, which can serve as a useful guide for identifying management interventions to mitigate heat stress related declines in maize yield.
    Reference | Related Articles | Metrics
    Effects of exogenous paclobutrazol and sampling time on the efficiency of in vitro embryo rescue in the breeding of new seedless grape varieties
    XU Teng-fei, GUO Yu-rui, YUAN Xiao-jian, CHU Yan-nan, WANG Xiao-wei, HAN Yu-lei, WANG Wen-yuan, WANG Yue-jin, SONG Rui, FANG Yu-lin, WANG Lu-jun, XU Yan
    2022, 21(6): 1633-1644.   DOI: 10.1016/S2095-3119(21)63815-7

    Embryo rescue technology plays an important role in seedless grape breeding.  However, the efficiency of embryo rescue, including the embryo formation, germination, and seedling rates, is closely related to the parental genotypes, degree of abortion, growth medium, and plant growth regulators.  In this study, we investigated the effects of different concentrations of paclobutrazol (PAC), a plant growth regulator, and embryo collection times on the embryo formation, germination, and seedling rates for different hybrid combinations of grape breeding varieties used for their aroma and cold-resistance traits.  The results showed that the different PAC concentrations had varying impacts on the development of ovules and embryos from the different grape varieties.  The embryo formation rates of the ‘Sultanina Rose’בBeibinghong’ and ‘Kunxiang Seedless’בTaishan-2’ crosses were the highest under the 5.1 μmol L–1 PAC treatment.  The 1.0 μmol L–1 PAC treatment was optimal for the germination and seedling development of the ‘Sultanina Rose’בBeibinghong’ embryos, whereas the 0.2 μmol L–1 PAC treatment induced the highest germination rate for the ‘Sultanina Rose’בKunxiang Seedless’ cross.  The optimal sampling times for each cross varied as 39 d after pollination (DAP) for the ‘Flame Seedless’בMuscat Hamburg’ cross, 46 DAP for the ‘Kunxiang Seedless’בBeibinghong’ cross, and 41 DAP for the ‘Ruby Seedless’בBeibinghong’ and ‘Fantasy Seedless’בShuangyou’ crosses.  Moreover, the medium modified with 0.5 g L–1 of indole-3-butyric acid allowed the malformed seedlings to develop into plantlets and achieve larger progenies.  This study provides a useful basis for further studies into grape embryo rescue and could improve breeding efforts for new seedless grape varieties.

    Reference | Related Articles | Metrics
    Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses
    ZENG Xian-ying, HE Xin-wen, MENG Fei, MA Qi, WANG Yan, BAO Hong-mei, LIU Yan-jing, DENG Guo-hua, SHI Jian-zhong, LI Yan-bing, TIAN Guo-bin, CHEN Hua-lan
    2022, 21(7): 2086-2094.   DOI: 10.1016/S2095-3119(22)63904-2

    Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains (H5-Re11 and H5-Re12) used in China.  In this study, we generated three new recombinant vaccine seed viruses by using reverse genetics and used them for vaccine production.  The vaccine strain H5-Re13 contains the hemagglutinin (HA) and neuraminidase (NA) genes of an H5N6 virus that bears the clade HA gene, H5-Re14 contains the HA and NA genes of an H5N8 virus that bears the clade HA gene, and H7-Re4 contains the HA and NA genes of H7N9 virus detected in 2021.  We evaluated the protective efficacy of the novel H5/H7 trivalent inactivated vaccine in chickens, ducks, and geese.  The inactivated vaccine was immunogenic and induced substantial antibody responses in the birds tested.  Three weeks after vaccination, chickens were challenged with five different viruses detected in 2020 and 2021: three viruses (an H5N1 virus, an H5N6 virus, and an H5N8 virus) bearing the clade HA gene, an H5N6 virus bearing the clade HA gene, and an H7N9 virus.  All of the control birds shed high titers of virus and died within 4 days post-challenge, whereas the vaccinated chickens were completely protected from these viruses.  Similar protective efficacy against H5 viruses bearing the clade or HA gene was observed in ducks and geese.  Our study indicates that the newly updated H5/H7 vaccine can provide solid protection against the H5 and H7N9 viruses that are currently circulating in nature.  

    Reference | Related Articles | Metrics
    Genome-wide characterization and expression analysis of WRKY family genes during development and resistance to Colletotrichum fructicola in cultivated strawberry (Fragaria×ananassa Duch.)
    ZOU Xiao-hua, DONG Chao, LIU Hai-ting, GAO Qing-hua
    2022, 21(6): 1658-1672.   DOI: 10.1016/S2095-3119(21)63816-9
    Based on the recently published whole-genome sequence of cultivated strawberry ‘Camarosa’, in this study, 222 FaWRKY genes were identified in the ‘Camarosa’ genome.  Phylogenetic analysis showed that the 222 FaWRKY candidate genes were classified into three groups, of which 41 were in group I, 142 were in group II, and 39 were in group III.  The 222 FaWRKY genes were evenly distributed among the seven chromosomes.  The exon–intron structures and motifs of the WRKY genes had evolutionary diversity in different cultivated strawberry genomes.  Regarding differential expression, the expression of FaWRKY133 was relatively high in leaves, while FaWRKY63 was specifically expressed in roots.  FaWRKY207, 59, 46, 182, 156, 58, 39, 62 and 115 were up-regulated during achene development from the green to red fruit transition.  FaWRK181, 166 and 211 were highly expressed in receptacles at the ripe fruit stage.  One interesting finding was that FaWRKY179 and 205 were significantly repressed after Colletotrichum fructicola inoculation in both ‘Benihoppe’ and ‘Sweet Charlie’ compared with Mock.  The data reported here provide a foundation for further comparative genomics and analyses of the distinct expression patterns of FaWRKY genes in various tissues and in response to C. fructicola inoculation.
    Reference | Related Articles | Metrics
    Identification of genetic locus with resistance to take-all in the wheat-Psathyrostachys huashanica Keng introgression line H148
    BAI Sheng-sheng, ZHANG Han-bing, HAN Jing, WU Jian-hui, LI Jia-chuang, GENG Xing-xia, LÜ Bo-ya, XIE Song-feng, HAN De-jun, ZHAO Ji-xin, YANG Qun-hui, WU Jun, CHEN Xin-hong
    2021, 20(12): 3101-3113.   DOI: 10.1016/S2095-3119(20)63340-8
    Take-all is a devastating soil-borne disease of wheat (Triticum aestivum L.).  Cultivating resistant line is an important measure to control this disease.  Psathyrostachys huashanica Keng is a valuable germplasm resource with high resistance to take-all.  This study reported on a wheat-P. huashanica introgression line H148 with improved take-all resistance compared with its susceptible parent 7182.  To elucidate the genetic mechanism of resistance in H148, the F2 genetic segregating population of H148×XN585 was constructed.  The mixed genetic model analysis showed that the take-all resistance was controlled by two major genes with additive, dominant and epistasis effects.  Bulked segregant analysis combined with wheat axiom 660K genotyping array analysis showed the polymorphic SNPs with take-all resistance from P. huashanica alien introgression were mainly distributed on the chromosome 2A.  Genotyping of the F2 population using the KASP marker mapped a major QTL in an interval of 68.8–70.1 Mb on 2AS.  Sixty-two genes were found in the target interval of the Chinese Spring reference genome sequence.  According to the functional annotation of genes, two protein genes that can improve the systematic resistance of plant roots were predicted as candidate genes.  The development of wheat-P. huashanica introgression line H148 and the resistant QTL mapping information are expected to provide some valuable references for the fine mapping of disease-resistance gene and development of take-all resistant varieties through molecular marker-assisted selection.
    Reference | Related Articles | Metrics
    Control of cotton pests and diseases by intercropping: A review
    CHI Bao-jie, ZHANG Dong-mei, DONG He-zhong
    2021, 20(12): 3089-3100.   DOI: 10.1016/S2095-3119(20)63318-4
    Cotton (Gossypium hirsutum L.) is a globally important crop that is often damaged by pests and diseases.  Current cotton pests and diseases management is dependent on chemical pesticides.  Although chemical pesticides are usually effective, long-term application of these pesticides often leads to increased insecticide resistance in the pests, fewer natural enemies, reduced natural control, and a degraded environment.  Because of increased environmental awareness and the need for sustainable cotton production, the control of cotton pests and diseases using biological means like intercropping is increasingly receiving attention.  Intercropping of cotton with other crops can often boost the total yield and output of the intercropping system and provide significant economic benefits without sacrificing cotton quality.  Intercropping also increases the number of natural enemies, and reduces the occurrence of cotton pests and diseases by altering the ecological structure and environmental conditions in the fields.  Cotton-based intercropping is an effective strategy to reduce the competition between cotton and grain or other economic crops for arable land.  It is also an important way to increase the populations of natural enemies in cotton fields for the management of pests and diseases.  However, inappropriate intercropping can also increase labor requirements and even result in inadequate control of pests and diseases.  This review focuses on the performance and the mechanisms of intercropping for reducing cotton pests and disease as well as on the effective management of intercropping systems.  The risks and limitations, as well as the study approaches needed and the prospects of intercropping for the control of cotton pests and diseases, are also discussed.  This information is intended to aid researchers and growers in designing economically viable and ecologically friendly pest and disease management strategies that will reduce the use of chemicals and the cost of cotton production.
    Reference | Related Articles | Metrics
    Roles of mushroom polysaccharides in chronic disease management
    ZHANG Shan, LEI Lin, ZHOU Yun, YE Fa-yin, ZHAO Guo-hua
    2022, 21(7): 1839-1866.   DOI: 10.1016/S2095-3119(21)63871-6
    Chronic diseases have drawn much attention as the primary cause of death and disability.  In exploring novel side-effect-free agents against chronic diseases, significant efforts have been devoted to mushroom polysaccharides due to their diverse biological activities.  This work reviewed the structural features, biological performances and molecular mechanisms of mushroom polysaccharides in managing cancers, diabetes mellitus and cardiovascular diseases.  The potentials of mushroom polysaccharides against chronic diseases highly depend on their structural features, including monosaccharide composition, molecular weight, the type and configuration of glycosidic bonds, degree of branching, the type of substituent pattern and chain conformation.  Regarding their working mechanisms, shared and disease-specific pathways were found.  The three chronic diseases shared the regulation of specific signalling pathways and the adjustment of gut microbiota.  In addition, the roles of transcription factors, receptors, enzymes, hormones and other functional proteins involved in the molecular mechanisms of mushroom polysaccharides against chronic diseases are first elaborated herein.  The present review describes the state of the art of mushroom polysaccharides in treating chronic diseases and addresses the perspectives, and will further promote research on this topic.
    Reference | Related Articles | Metrics
    Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China
    XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long
    2022, 21(6): 1539-1550.   DOI: 10.1016/S2095-3119(21)63701-2
    Milling and appearance quality are important contributors to rice grain quality.  Abundant genetic diversity and a suitable environment are crucial for rice improvement.  In this study, we investigated the milling and appearance quality-related traits in a panel of 200 japonica rice cultivars selected from Liaoning, Jilin and Heilongjiang provinces in Northeast China.  Pedigree assessment and genetic diversity analysis indicated that cultivars from Jilin harbored the highest genetic diversity among the three geographic regions.  An evaluation of grain quality indicated that cultivars from Liaoning showed superior milling quality, whereas cultivars from Heilongjiang tended to exhibit superior appearance quality.  Single- and multi-locus genome-wide association studies (GWAS) were conducted to identify loci associated with milling and appearance quality-related traits.  Ninety-nine significant single-nucleotide polymorphisms (SNPs) were detected.  Three common SNPs were detected using the mixed linear model (MLM), mrMLM, and FASTmrMLM methods.  Linkage disequilibrium decay was estimated and indicated three candidate regions (qBRR-1, qBRR-9 and qDEC-3) for further candidate gene analysis.  More than 300 genes were located in these candidate regions.  Gene Ontology (GO) analysis was performed to discover the potential candidate genes.  Genetic diversity analysis of the candidate regions revealed that qBRR-9 may have been subject to strong selection during breeding.  These results provide information that will be valuable for the improvement of grain quality in rice breeding.
    Reference | Related Articles | Metrics
    Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China
    FENG Lu, CHI Bao-jie, DONG He-zhong
    2022, 21(3): 597-609.   DOI: 10.1016/S2095-3119(20)63457-8
    Since the founding of the People’s Republic of China in 1949, significant achievements have been made in cotton production in China.  China has maintained its position as the world’s largest cotton producer for 33 years (1983–2015), with average annual increases of 3.5 and 3.9% in the unit yield and total output of cotton, respectively.  Cotton production has played an extremely important role in the development of the national economy and the improvement of living standards.  Although the cotton planting area has been reduced in recent years, the total output has remained relatively unchanged due to the continuous increase in the unit yield.  China’s dominant position in global cotton production is undoubtedly attributed to the progress and development of cotton cultivation technology.  Over the past 70 years, China has established a high-yielding and high-efficiency cotton cultivation mode that corresponds to its national conditions, including a large population and a limited land area.  Furthermore, cotton cultivation technology is constantly being innovated and developed to keep pace with the times.  In this paper, we review the development of cotton production and cultivation in China over the past 70 years, with a particular focus on the innovation and development of cotton cultivation technology with Chinese characteristics.  This review is intended to provide guidance for the sustainable development of China’s cotton production in the future and to provide a reference for global cotton production.

    Reference | Related Articles | Metrics
    Quantification and prediction of enteric methane emissions from Chinese lactating Holstein dairy cows fed diets with different dietary neutral detergent fiber/non-fibrous carbohydrate (NDF/NFC) ratios
    DONG Li-feng, JIA Peng, LI Bin-chang, WANG Bei, YANG Chun-lei, LIU Zhi-hao, DIAO Qi-yu
    2022, 21(3): 797-811.   DOI: 10.1016/S2095-3119(21)63825-X
    Methane (CH4) emissions from ruminant production are a significant source of anthropogenic greenhouse gas production, but few studies have examined the enteric CH4 emissions of lactating dairy cows under different feeding regimes in China.  This study aimed to investigate the influence of different dietary neutral detergent fiber/non-fibrous carbohydrate (NDF/NFC) ratios on production performance, nutrient digestibility, and CH4 emissions for Holstein dairy cows at various stages of lactation. It evaluated the performance of CH4 prediction equations developed using local dietary and milk production variables compared to previously published prediction equations developed in other production regimes.  For this purpose, 36 lactating cows were assigned to one of three treatments with differing dietary NDF/NFC ratios: low (NDF/NFC=1.19), medium (NDF/NFC=1.54), and high (NDF/NFC=1.68).  A modified acid-insoluble ash method was used to determine nutrient digestibility, while the sulfur hexafluoride technique was used to measure enteric CH4 emissions.  The results showed that the dry matter (DM) intake of cows at the early, middle, and late stages of lactation decreased significantly (P<0.01) from 20.9 to 15.4 kg d–1, 15.3 to 11.6 kg d–1, and 16.4 to 15.0 kg d–1, respectively, as dietary NDF/NFC ratios increased.  Across all three treatments, DM and gross energy (GE) digestibility values were the highest (P<0.05) for cows at the middle and late lactation stages.  Daily CH4 emissions increased linearly (P<0.05), from 325.2 to 391.9 kg d–1, 261.0 to 399.8 kg d–1, and 241.8 to 390.6 kg d–1, respectively, as dietary NDF/NFC ratios increased during the early, middle, and late stages of lactation.  CH4 emissions expressed per unit of metabolic body weight, DM intake, NDF intake, or fat-corrected milk yield increased with increasing dietary NDF/NFC ratios.  In addition, CH4 emissions expressed per unit of GE intake increased significantly (P<0.05), from 4.87 to 8.12%, 5.16 to 9.25%, and 5.06 to 8.17% respectively, as dietary NDF/NFC ratios increased during the early, middle, and late lactation stages.  The modelling results showed that the equation using DM intake as the single variable yielded a greater R2 than equations using other dietary or milk production variables.  When data obtained from each lactation stage were combined, DM intake remained a better predictor of CH4 emissions (R2=0.786, P=0.026) than any other variables tested.  Compared to the prediction equations developed herein, previously published equations had a greater root mean square prediction error, reflecting their inability to predict CH4 emissions for Chinese Holstein dairy cows accurately.  The quantification of CH4 production by lactating dairy cows under Chinese production systems and the development of associated prediction equations will help  establish regional or national CH4 inventories and improve mitigation approaches to dairy production.

    Reference | Related Articles | Metrics
    Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs
    LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou
    2022, 21(9): 2675-2690.   DOI: 10.1016/j.jia.2022.07.014

    Follistatin (FST) is an important regulator of skeletal muscle growth and adipose deposition through its ability to bind to several members of the transforming growth factor-β (TGF-β) superfamily, and thus may be a good candidate for future animal breeding programs.  However, the molecular mechanisms underlying the phenotypic changes have yet to be clarified in pig.  We generated transgenic (TG) pigs that express human FST specifically in skeletal muscle tissues and characterized the phenotypic changes compared with the same tissues in wild-type pigs.  The TG pigs showed increased skeletal muscle growth, decreased adipose deposition, and improved metabolism status (P<0.05).  Transcriptome analysis detected important roles of the PIK3–AKT signaling pathway, calcium-mediated signaling pathway, and amino acid metabolism pathway in FST-induced skeletal muscle hypertrophy, and depot-specific oxidative metabolism changes in psoas major muscle.  Furthermore, the lipid metabolism-related process was changed in adipose tissue in the TG pigs.  Gene set enrichment analysis revealed that genes related to lipid synthesis, lipid catabolism, and lipid storage were down-regulated (P<0.01) in the TG pigs for subcutaneous fat, whereas genes related to lipid catabolism were significantly up-regulated (P<0.05) in the TG pigs for retroperitoneal fat compared with their expression levels in wild-type pigs.  In liver, genes related to the TGF-β signaling pathway were over-represented in the TG pigs, which is consistent with the inhibitory role of FST in regulating TGF-β signaling.  Together, these results provide new insights into the molecular mechanisms underlying the phenotypic changes in pig.

    Reference | Related Articles | Metrics
    Influence of high-molecular-weight glutenin subunit deletions at the Glu-A1 and Glu-D1 loci on protein body development, protein components and dough properties of wheat (Triticum aestivum L.)
    LIU Da-tong, ZHANG Xiao, JIANG Wei, LI Man, WU Xu-jiang, GAO De-rong, BIE Tong-de, LU Cheng-bin
    2022, 21(7): 1867-1876.   DOI: 10.1016/S2095-3119(21)63605-5
    High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat.  As the organelle where proteins are stored, the development of protein bodies (PBs) reflects the status of protein synthesis and also affects grain quality to a great extent.  In this study, with special materials of four near-isogenic lines in a Yangmai 18 background we created, the effects of Glu-A1 and Glu-D1 loci deletions on the development and morphological properties of the protein body, protein components and dough properties were investigated.  The results showed that the deletion of the HMW-GS subunit delayed the development process of the PBs, and slowed the increases of volume and area of PBs from 10 days after anthesis (DAA) onwards.  In contrast, the areas of PBs at 25 DAA, the middle or late stage of endosperm development, showed no distinguishable differences among the four lines.  Compared to the wild type and single null type in Glu-A1, the ratios of HMW-GSs to low-molecular-weight glutenin subunits (LMW-GSs), glutenin macropolymer (GMP) content, mixograph parameters as well as extension parameters decreased in the single null type in Glu-D1 and double null type in Glu-A1 and Glu-D1, while the ratios of gliadins (Gli)/glutenins (Glu) in those types increased.  The absence of Glu-D1 subunits decreased both dough strength and extensibility significantly compared to the Glu-A1 deletion type.  These results provide a detailed description of the effect of HMW-GS deletion on PBs, protein traits and dough properties, and contribute to the utilization of Glu-D1 deletion germplasm in weak gluten wheat improvement for use in cookies, cakes and southern steamed bread in China and liquor processing. 
    Reference | Related Articles | Metrics
    Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy
    Busiswa NDABA, Ashira ROOPNARAIN, Haripriya RAMA, Malik MAAZA
    2022, 21(5): 1225-1242.   DOI: 10.1016/S2095-3119(21)63751-6
    Nanofertilizers increase efficiency and sustainability of agricultural crop production.  Due to their nanosize properties, they have been shown to increase productivity through target delivery or slow release of nutrients, thereby limiting the rate of fertilizer application required.  Nanofertilizers can be synthesized via different approaches ranging from physical and chemical to green (biological) synthesis.  The green approach is preferable because it makes use of less chemicals, thereby producing less chemical contamination and it is safer in comparison to physicochemical approaches.  Hence, discussion on the use of green synthesized nanoparticles as nanofertilizers is pertinent for a sustainable approach in agriculture.  This review discusses recent developments and applications of biologically synthesized metallic nanoparticles that can also be used as nanofertilizers, as well as their uptake mechanisms for plant growth.  Toxicity concerns of nanoparticle applications in agriculture are also discussed.
    Reference | Related Articles | Metrics
    First record of the golden potato nematode Globodera rostochiensis in Yunnan and Sichuan provinces of China
    JIANG Ru, PENG Huan, LI Yun-qing, LIU Hui, ZHAO Shou-qi, LONG Hai-bo, HU Xian-qi, GE Jian-jun, LI Xing-yue, LIU Miao-yan, SHAO Bao-lin, PENG De-liang
    2022, 21(3): 898-899.   DOI: 10.1016/S2095-3119(21)63845-5
    The potato cyst nematodes (PCN) Globodera rostochiensis (Wollenweber) Skarbilovich, 1959 is considered the most damaging nematode pest of potato worldwide that causes significant yield losses, and this nematode is recognized and listed as a quarantine nematode in many countries (EPPO 2017).  China is currently the largest producer of potato in the world, while the total production is also the highest (Guan and Cai 2019).  The survey for cyst nematodes on potato were conducted in Yunnan and Sichuan provinces of China during 2018–2020, numerous cysts were observed on potato roots in Huize County and Ludian County of Yunnan Province, Zhaojue County and Yuexi County of Sichuan Province.  Cysts and second-stage juveniles (J2s) were isolated from each soil sample using the Cobb decanting and sieving method.  The morphology of cysts and J2s and molecular analysis established the identity of this species as golden cyst nematode Globodera rostochiensis (Subbotin et al. 2010).  For morphological analysis, the cysts were characterized by smoothly rounded with a small projecting neck, brown and golden color, terminal cone was absent and circumfenestrate.  The key morphometrics of cysts (n=25) were: length excluding neck 705±24 (689–747) μm, width 698±28 (678–759) μm, number of cuticular ridges between anus and vulval fenestra 17.3±1.7 (14–19); fenestral diameter 13.6±1.1 (12.25–15.45) μm; distance from anus to the edge of fenestra 63.7±11.3 (48.23–79.14) μm; Granek’s ratio 4.7±0.7 (3.92–5.75).  The key morphometrics of J2s (n=25): body length 453.9±16.6 (440–496) μm, stylet length 21.9±1.0 (20.3–24.3) μm, tail length 51.1±3.2 (45.5–55.5) μm, and hyaline region length 24.4±2.5 (21.7–29.9) μm.  Morphology of the cysts and J2 were consistent with those of G. rostochiensis (Subbotin et al. 2010; EPPO 2017).  Moreover, the identification result was confirmed by PCR using universal primers TW81 (5´-GTTTCCGTAGGTGAACCTGC-3´) and AB28 (5´-ATATGCTTAAGTTCAGCGGGT-3´) for ITS region and D2A (5´-TTTTTTGGGCATCCTGAGGTTTAT-3´) D3B (5´-AGCACCTAAACTTAAAACATAATGAAAATG-3´) for rDNA-28S region, respectively.  The ITS rDNA sequences (GenBank accessions MZ042365, MZ042366, MZ042369, and MZ042370) exhibited 99.83% identity match to G. rostochiensis sequences available in the GenBank (GQ294513).  Sequence from the 28S region (GenBank accessions MZ057595, MZ057596, MZ057599, and MZ057600) was 99.33% similar to those of G. rostochiensis isolate from MF773722.  The species was also confirmed with species-specific primers ITS5 (5´-GGAAGTAAAAGTCGTAACAAGG-3´) and PITSr3 (5´-AGCGCAGACATGCCGCAA-3´) (Bulman and Marshall 1997), a single 434-bp fragment was obtained from Huize, Ludian, Zhaojue and Yuexi populations.  The pathog enicity testing of Huize, Ludian, Zhaojue and Yuexi, three weeks-old potato plants (cv. Qinshu 9)

    were inoculated with 2 000 eggs, and cultured in an incubator at 23°C/20°C with a 16 h/8 h light/dark photoperiod.  After three months inoculation, 36±7.2 cysts and females were extracted from the infested potato roots, no females and cysts were observed on control plants.  

    This is the first report of potato golden cyst nematode G. rostochiensis in China.  

    Reference | Related Articles | Metrics
    Recent advances in immunocastration in sheep and goat and its animal welfare benefits: A review
    ZENG Fan-mei, DING Yi, Teketay WASSIE, JING Hai-jing, Sohail AHMED, LIU Gui-qiong, JIANG Xun-ping
    2022, 21(2): 299-309.   DOI: 10.1016/S2095-3119(21)63670-5
    Castration of male animals is a common practice in the meat industry aimed at reducing aggressive behavior, preventing unpleasant flavor, and controlling undesirable breeding.  For many years, mechanical castration and surgical castration have been practiced to sterilize the animals.  However, these castration methods are not humane because of the associated risk of death, pain, and stress.  Recently, immunocastration targeting the hypothalamic-pituitary-gonadal axis (HPG) axis has been reported as an animal-friendly approach that circumvents many of the concerns with conventional castration, and suggested by researches as an alternative to surgical castration.  However, there is no compilation of updated information on the use of immunocastration in sheep and goats.  Therefore, this review aims to summarize the developmental process from traditional surgical castration to immunocastration and to screen the process of immune targets.  It also compares the respective advantages and disadvantages of traditional castration technologies and immunocastration, in particular including analyses in the characteristics, features application and welfare benefits of immunocastration in sheep and goats were also analyzed.
    Reference | Related Articles | Metrics
    Identification and characterization of long-InDels through whole genome resequencing to facilitate fine-mapping of a QTL for plant height in soybean (Glycine max L. Merr.)
    LIU Chen, TIAN Yu, LIU Zhang-xiong, GU Yong-zhe, ZHANG Bo, LI Ying-hui, NA Jie, QIU Li-juan
    2022, 21(7): 1903-1912.   DOI: 10.1016/S2095-3119(21)63675-4
    With the development of sequencing technology, insertions-deletions (InDels) have been increasingly reported to be involved in the genetic deter mination of agronomical traits.  However, most studies have focused on the identification and application of short-InDels (1–15 bp) for genetic analysis.  The objective of this study was to deeply deploy long-InDels (>15 bp) for the genetic analysis of important agronomic traits in soybean.  A total of 13 573 polymorphic long-InDels were identified between parents Zhongpin 03-5373 (ZP) and Zhonghuang 13 (ZH), which were unevenly distributed on 20 chromosomes of soybean, varying from 321 in Chr11 to 1 246 in Chr18.  Consistent with the distribution pattern of annotated genes, the average density of long-InDels in arm regions was significantly higher than that in pericentromeric regions at the P=0.01 level.  A total of 2 704 (19.9% of total) long-InDels were located in genic regions, including 319 large-effect long-InDels, which resulted in truncated or elongated protein sequences.  A previously identified QTL (qPH16) underlying plant height was further analyzed, and it was found that 26 out of 35 (74.3%) long-InDel markers located in the qPH16 region showed clear polymorphisms between parents ZP and ZH.  Seven markers, including three long-InDels and four previously reported SNP markers, were used to genotype 242 recombinant inbred lines derived from ZP×ZH.  As a result, the qPH16 locus was narrowed from a 960-kb region to a 477.55-kb region, containing 65 annotated genes.  Therefore, these long-InDels are a complementary genetic resource of SNPs and short-InDels for plant height and can facilitate genetic studies and molecular assisted selection breeding in soybean.
    Reference | Related Articles | Metrics
    Heterosis and heterotic patterns of maize germplasm revealed by a multiple-hybrid population under well-watered and drought-stressed conditions
    SANG Zhi-qin, ZHANG Zhan-qin, YANG Yu-xin, LI Zhi-wei, LIU Xiao-gang, XU Yunbi, LI Wei-hua
    2022, 21(9): 2477-2491.   DOI: 10.1016/j.jia.2022.07.006
    Understanding the heterosis in multiple environments between different heterotic groups is of fundamental importance in successful maize breeding.  A total of 737 hybrids derived from 41 maize inbreds were evaluated over two years, with the aim of assessing the genetic diversity and their performance between heterotic groups under drought-stressed (DS) and well-watered (WW) treatments.  A total of 38 737 SNPs were employed to assess the genetic diversity.  The genetic distance (GD) between the parents ranged from 0.05 to 0.74, and the 41 inbreds were classified into five heterotic groups.  According to the hybrid performance (high yield and early maturity between heterotic groups), the heterosis and heterotic patterns of Iowa Stiff Stalk Synthetic (BSSS)×Non-Stiff Stalk (NSS), NSS×Sipingtou (SPT) and BSSS×SPT were identified to be useful options in China’s maize breeding.  The relative importance of general and specific combining abilities (GCA and SCA) suggests the importance of the additive genetic effects for grain yield traits under the WW treatment, but the non-additive effects under the DS treatment.  At least one of the parental lines with drought tolerance and a high GCA effect would be required to achieve the ideal hybrid performance under drought conditions.  GD showed a positive correlation with yield and yield heterosis in within-group hybrids over a certain range of GD.  The present investigation suggests that the heterosis is due to the combined accumulation of superior genes/alleles in parents and the optimal genetic distance between parents, and that yield heterosis under DS treatment was mainly determined by the non-additive effects.
    Reference | Related Articles | Metrics
    Tomato mottle mosaic virus: characterization, resistance gene effectiveness, and quintuplex RT-PCR detection system
    Carlos Kwesi TETTEY, YAN Zhi-yong, MA Hua-yu, ZHAO Mei-sheng, GENG Chao, TIAN Yan-ping, LI Xiang-dong
    2022, 21(9): 2641-2651.   DOI: 10.1016/j.jia.2022.07.020

    Tomato mottle mosaic virus (ToMMV), an economically important species of the genus Tobamovirus, causes significant loss in yield and quality of tomato fruits.  Here, we identified the Shandong isolate of ToMMV (ToMMV-SD) collected from symptomatic tomato fruits in Weifang, Shandong Province of China.  ToMMV-SD caused symptoms such as severe mosaic, mottling, and necrosis of tomato leaves, yellow spot and necrotic lesions on tomato fruits.  The obtained full genome of ToMMV-SD was 6 399 nucleotides (accession number MW373515) and had the highest identity of 99.5% with that of isolate SC13-051 from the United States of America at the genomic level.  The infectious clone of ToMMV-SD was constructed and induced clear mosaic and necrotic symptoms onto Nicotiana benthamiana leaves.  Several commercial tomato cultivars, harboring Tm-22 resistance gene, and pepper cultivars, containing L resistance gene, were susceptible to ToMMV-SD.  Plants of Solanum melongena (eggplant) and Brassica pekinensis (napa cabbage) showed mottling symptoms, while Ntabacum cv. Zhongyan 100 displayed latent infection.  ToMMV-SD did not infect plants of N. tabacum cv. Xanthi NN, Brassica rapa ssp. chinensis (bok choy), Raphanus sativus (radish), Vigna unguiculata cv. Yuanzhong 28-2 (cowpea), or Tm-22 transgenic N. benthamiana.  A quintuplex RT-PCR system differentiated ToMMV from tomato mosaic virus, tomato brown rugose fruit virus, tobacco mosaic virus, and tomato spotted wilt virus, with the threshold amount of 0.02 pg.  These results highlight the threat posed by ToMMV to tomato and pepper cultivation and offer an efficient detection system for the simultaneous detection of four tobamoviruses and tomato spotted wilt virus infecting tomato plants in the field. 

    Reference | Related Articles | Metrics