Top Read

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Trends in the global commercialization of genetically modified crops in 2023
    Xingru Cheng, Haohui Li, Qiaoling Tang, Haiwen Zhang, Tao Liu, Youhua Wang
    2024, 23 (12): 3943-3952.   DOI: 10.1016/j.jia.2024.09.012
    Abstract569)      PDF in ScienceDirect      

    The commercialization of genetically modified (GM) crops has increased food production, improved crop quality, reduced pesticide use, promoted changes in agricultural production methods, and become an important new production strategy for dealing with insect pests and weeds while reducing the cultivated land area.  This article provides a comprehensive examination of the global distribution of GM crops in 2023.  It discusses the internal factors that are driving their adoption, such as the increasing number of GM crops and the growing variety of commodities.  This article also provides information support and application guidance for the new developments in global agricultural science and technology.

    Reference | Related Articles | Metrics
    Consensus linkage map construction and QTL mapping for eight yield-related traits in wheat using BAAFS 90K SNP array
    Lihua Liu, Pingping Qu, Yue Zhou, Hongbo Li, Yangna Liu, Mingming Zhang, Liping Zhang, Changping Zhao, Shengquan Zhang, Binshuang Pang
    2024, 23 (11): 3641-3656.   DOI: 10.1016/j.jia.2023.07.028
    Abstract333)      PDF in ScienceDirect      
    Identifying stable quantitative trait loci (QTLs) for yield-related traits across populations and environments is crucial for wheat breeding and genetic studies.  Consensus maps also play important roles in wheat genetic and genomic research.  In the present study, a wheat consensus map was constructed using a doubled haploid (DH) population derived from Jinghua 1×Xiaobaidongmai (JX), an F2 population derived from L43×Shanxibaimai (LS) and the BAAFS Wheat 90K SNP array single nucleotide polymorphism (SNP) array.  A total of 44,503 SNP markers were mapped on the constructed consensus map, and they covered 5,437.92 cM across 21 chromosomes.  The consensus map showed high collinearity with the individual maps and the wheat reference genome IWGSC RefSeq v2.1.  Phenotypic data on eight yield-related traits were collected in the JX population, as well as the F2:3 and F2:4 populations of LS, in six, two and two environments, respectively, and those data were used for QTL analysis.  Inclusive composite interval mapping (ICIM) identified 32 environmentally stable QTLs for the eight yield-related traits.  Among them, four QTLs (QPH.baafs-4B, QKNS.baafs-4B, QTGW.baafs-4B, and QSL.baafs-5A.3) were detected across mapping populations and environments, and nine stable QTLs (qKL.baafs-1D, QPH.baafs-2B, QKNS.baafs-3D, QSL.baafs-3D, QKW.baafs-4B, QPH.baafs-5D, QPH.baafs-6A.1, QSL.baafs-6A, and QSL.baafs-6D) are likely to be new.  The physical region of 17.25–44.91 Mb on chromosome 4B was associated with six yield-related traits, so it is an important region for wheat yield.  The physical region around the dwarfing gene Rht24 contained QTLs for kernel length (KL), kernel width (KW), spike length (SL), and thousand-grain weight (TGW), which are either from a pleiotropic effect of Rht24 or closely linked loci.  For the stable QTLs, 254 promising candidate genes were identified.  Among them, TraesCS5A03G1264300, TraesCS1B03G0624000 and TraesCS6A03G0697000 are particularly noteworthy since their homologous genes have similar functions for the corresponding traits.  The constructed consensus map and the identified QTLs along with their candidate genes will facilitate the genetic dissection of wheat yield-related traits and accelerate the development of wheat cultivars with desirable plant morphology and high yield.


    Reference | Related Articles | Metrics
    Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.)
    Yiwang Zhong, Xingang Li, Shasha Wang, Sansan Li, Yuhong Zeng, Yanbo Cheng, Qibin Ma, Yanyan Wang, Yuanting Pang, Hai Nian, Ke Wen
    2024, 23 (12): 3966-3982.   DOI: 10.1016/j.jia.2023.09.010
    Abstract324)      PDF in ScienceDirect      
    Soybean is one of the most important sources of vegetable oil.  The oil content and fatty acid ratio have attracted significant attention due to their impacts on the shelf-life of soybean oil products and consumer health.  In this study, a high-density genetic map derived from Guizao 1 and Brazil 13 was used to analyze the quantitative trait loci of palmitic acid (PA), stearic acid (SA), oleic acid (OA), linoleic acid (LA), linolenic acid (LNA), and oil content (OC).  A total of 54 stable QTLs were detected in the genetic map linkage analysis, which shared six bin intervals.  Among them, the bin interval on chromosome 13 (bin106–bin118 and bin123–bin125) was found to include stable QTLs in multiple environments that were linked to OA, LA, and LNA.  Eight differentially expressed genes (DEGs) within these QTL intervals were determined as candidate genes according to the combination of parental resequencing, bioinformatics and RNA sequencing data.  All these results are conducive to breeding soybean with the ideal fatty acid ratio for food, and provide the genetic basis for mining genes related to the fatty acid and oil content traits in soybean.
    Reference | Related Articles | Metrics
    Karyotype establishment and development of specific molecular markers of Aegilops geniculata Roth based on SLAF-seq 
    Yongfu Wang, Jianzhong Fan, Hong Zhang, Pingchuan Deng, Tingdong Li, Chunhuan Chen, Wanquan Ji, Yajuan Wang
    2024, 23 (12): 3953-3965.   DOI: 10.1016/j.jia.2023.09.014
    Abstract299)      PDF in ScienceDirect      

    The constant evolution of pathogens poses a threat to wheat resistance against diseases, endangering food security.  Developing resistant wheat varieties is the most practical approach for circumventing this problem.  As a close relative of wheat, Aegilops geniculata, particularly accession SY159, has evolved numerous beneficial traits that could be applied to improve wheat.  In this study, we established the karyotype of SY159 by fluorescence in situ hybridization (FISH) using the oligonucleotide probes Oligo-pTa535 and Oligo-pSc119.2 and a complete set of wheat–Ae. geniculata accession TA2899 addition lines as a reference.  Using specific-locus amplified fragment sequencing (SLAF-seq) technology, 400 specific markers were established for detecting the SY159 chromosomes with efficiencies reaching 81.5%.  The SY159-specific markers were used to classify the different homologous groups of SY159 against the wheat–Ae. geniculata addition lines.  We used these specific markers on the 7Mg chromosome after classification, and successfully confirmed their suitability for studying the different chromosomes of SY159.  This study provides a foundation for accelerating the application of SY159 in genetic breeding programs designed to improve wheat. 

    Reference | Related Articles | Metrics
    The development of a porcine 50K SNP panel using genotyping by target sequencing and its application
    Zipeng Zhang, Siyuan Xing, Ao Qiu, Ning Zhang, Wenwen Wang, Changsong Qian, Jia’nan Zhang, Chuduan Wang, Qin Zhang, Xiangdong Ding
    2025, 24 (5): 1930-1943.   DOI: 10.1016/j.jia.2023.07.033
    Abstract275)      PDF in ScienceDirect      

    Genotyping by target sequencing (GBTS) integrates the advantages of silicon-based technology (high stability and reliability) and genotyping by sequencing (high flexibility and cost-effectiveness).  However, GBTS panels are not currently available in pigs.  In this study, based on GBTS technology, we first developed a 50K panel, including 52,000 single-nucleotide polymorphisms (SNPs), in pigs, designated GBTS50K.  A total of 6,032 individuals of Large White, Landrace, and Duroc pigs from 10 breeding farms were used to assess the newly developed GBTS50K.  Our results showed that GBTS50K obtained a high genotyping ability, the SNP and individual call rates of GBTS50K were 0.997–0.998, and the average consistency rate and genotyping correlation coefficient were 0.997 and 0.993, respectively, in replicate samples.  We also evaluated the efficiencies of GBTS50K in the application of population genetic structure analysis, selection signature detection, genome-wide association studies (GWAS), genotyped imputation, genetic selection (GS), etc.  The results indicate that GBTS50K is plausible and powerful in genetic analysis and molecular breeding.  For example, GBTS50K could gain higher accuracies than the current popular GGP-Porcine bead chip in genomic selection on 2 important traits of backfat thickness at 100 kg and days to 100 kg in pigs.  Particularly, due to the multiple SNPs (mSNPs), GBTS50K generated 100K qualified SNPs without increasing genotyping cost, and our results showed that the haplotype-based method can further improve the accuracies of genomic selection on growth and reproduction traits by 2 to 6%.  Our study showed that GBTS50K could be a powerful tool for underlying genetic architecture and molecular breeding in pigs, and it is also helpful for developing SNP panels for other farm animals.

    Reference | Related Articles | Metrics
    Optimizing nitrogen management can improve stem lodging resistance and stabilize the grain yield of japonica rice in rice–crayfish coculture systems
    Qiang Xu, Jingyong Li, Hui Gao, Xinyi Yang, Zhi Dou, Xiaochun Yuan, Weiyan Gao, Hongcheng Zhang
    2024, 23 (12): 3983-3997.   DOI: 10.1016/j.jia.2024.02.002
    Abstract266)      PDF in ScienceDirect      
    Nitrogen (N) significantly affects rice yield and lodging resistance.  Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture (RM); however, few studies have performed such investigations in rice–crayfish coculture (RC).  We hypothesized that RC would increase rice lodging risk and that optimizing N application practices would improve rice lodging resistance without affecting food security.  We conducted a two-factor (rice farming mode and N management practice) field experiment from 2021 to 2022 to test our hypothesis.  The rice farming modes included RM and RC, and the N management practices included no nitrogen fertilizer, conventional N application, and optimized N treatment.  The rice yield and lodging resistance characteristics, such as morphology, mechanical and chemical characteristics, anatomic structure, and gene expression levels, were analyzed and compared among the treatments.  Under the same N application practice, RC decreased the rice yield by 11.1–24.4% and increased the lodging index by 19.6–45.6% compared with the values yielded in RM.  In RC, optimized N application decreased the plant height, panicle neck node height, center of gravity height, bending stress, and lodging index by 4.0–4.8%, 5.2–7.8%, 0.5–4.5%, 5.5–10.5%, and 1.8–19.5%, respectively, compared with those in the conventional N application practice.  Furthermore, it increased the culm diameter, culm wall thickness, breaking strength, and non-structural and structural carbohydrate content by 0.8–4.9%, 2.2–53.1%, 13.5–19.2%, 2.2–24.7%, and 31.3–87.2%, respectively.  Optimized N application increased sclerenchymal and parenchymal tissue areas of the vascular bundle at the culm wall of the base second internode.  Furthermore, optimized N application upregulated genes involved in lignin and cellulose synthesis, thereby promoting lower internodes on the rice stem and enhancing lodging resistance.  Optimized N application in RC significantly reduced the lodging index by 1.8–19.5% and stabilized the rice yield (>8,570 kg ha–1 on average).  This study systematically analyzed and compared the differences in lodging characteristics between RM and RC.  The findings will aid in the development of more efficient practices for RC that will reduce N fertilizer application.

    Reference | Related Articles | Metrics
    Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat
    Junming Liu, Zhuanyun Si, Shuang Li, Lifeng Wu, Yingying Zhang, Xiaolei Wu, Hui Cao, Yang Gao, Aiwang Duan
    2024, 23 (12): 4018-4031.   DOI: 10.1016/j.jia.2023.12.002
    Abstract256)      PDF in ScienceDirect      
    A high-efficiency mode of high-low seedbed cultivation (HLSC) has been listed as the main agricultural technology to increase land utilization ratio and grain yield in Shandong Province, China.  However, limited information is available on the optimized water and nitrogen management for yield formation, especially the grain-filling process, under HLSC mode.  A three-year field experiment with four nitrogen rates and three irrigation rates of HLSC was conducted to reveal the response of grain-filling parameters, grain weight percentage of spike weight (GPS), spike moisture content (SMC), and winter wheat yield to water and nitrogen rates.  The four nitrogen rates were N1 (360 kg ha–1 pure N), N2 (300 kg ha–1 pure N), N3 (240 kg ha–1 pure N), and N4 (180 kg ha–1 pure N), respectively, and the three irrigation quotas were W1 (120 mm), W2 (90 mm), and W3 (60 mm), respectively.  Results showed that the determinate growth function generally performed well in simulating the temporal dynamics of grain weight (0.989<R2<0.999, where R2 is the determination coefficient).  The occurrence time of maximum filling rate (Tmax) and active grain-filling period (AGP) increased with the increase in the water or nitrogen rate, whereas the average grain-filling rate (Gmean) had a decreasing trend.  The final 1,000-grain weight (FTGW) increased and then decreased with the increase in the nitrogen rates and increased with the increase in the irrigation rates.  The GPS and SMC had a highly significant quadratic polynomial relationship with grain weight and days after anthesis.  Nitrogen, irrigation, and year significantly affected the Tmax, AGP, Gmean, and FTGW.  Particularly, the AGP and FTGW were insignificantly different between high seedbed (HLSC-H) and low seedbed (HLSC-L) across the water and nitrogen levels.  Moreover, the moderate water and nitrogen supply was more beneficial for grain yield, as well as for spike number and grain number per hectare.  The principal component analysis indicated that combining 240–300 kg N ha–1 and 90–120 mm irrigation quota could improve grain-filling efficiency and yield for the HLSC-cultivated winter wheat.  


    Reference | Related Articles | Metrics
    Dietary manganese supplementation inhibits abdominal fat deposition possibly by regulating gene expression and enzyme activity involved in lipid metabolism in the abdominal fat of broilers
    Xiaoyan Cui, Ke Yang, Weiyun Zhang, Liyang Zhang, Ding Li, Wei Wu, Yun Hu, Tingting Li, Xugang Luo
    2024, 23 (12): 4161-4171.   DOI: 10.1016/j.jia.2023.08.004
    Abstract249)      PDF in ScienceDirect      
    Excessive abdominal fat deposition seriously restricts the production efficiency of broilers.  Several studies found that dietary supplemental manganese (Mn) could effectively reduce the abdominal fat deposition of broilers, but the underlying mechanisms remain unclear.  The present study aimed to investigate the effect of dietary supplementation with the inorganic or organic Mn on abdominal fat deposition, and enzyme activity and gene expression involved in lipid metabolism in the abdominal fat of male or female broilers.  A total of 420 1-d-old AA broilers (half males and half females) were randomly allotted by body weight and gender to 1 of 6 treatments with 10 replicates cages of 7 chicks per cage in a completely randomized design involving a 3 (dietary Mn addition)×2 (gender) factorial arrangement.  Male or female broilers were fed with the Mn-unsupplemented basal diets containing 17.52 mg Mn kg–1 (d 1–21) and 15.62 mg Mn kg–1 (d 22–42) by analysis or the basal diets supplemented with 110 mg Mn kg–1 (d 1–21) and 80 mg Mn kg–1 (d 22–42) as either the Mn sulfate or the Mn proteinate with moderate chelation strength (Mn-Prot M) for 42 d.  The results showed that the interaction between dietary Mn addition and gender had no impact (P>0.05) on any of the measured parameters; abdominal fat percentage of broilers was decreased (P<0.003) by Mn addition; Mn addition increased (P<0.004) adipose triglyceride lipase (ATGL) activity, while Mn-Prot M decreased (P<0.002) the fatty acid synthase (FAS) activity in the abdominal fat of broilers compared to the control; Mn addition decreased (P<0.009) diacylglycerol acyltransferase 2 (DGAT2) mRNA expression level and peroxisome proliferator-activated receptor γ (PPARγ) mRNA and protein expression levels, but up-regulated (P<0.05) the ATGL mRNA and protein expression levels in the abdominal fat of broilers.  It was concluded that dietary supplementation with Mn inhibited the abdominal fat deposition of broilers possibly via decreasing the expression of PPARγ and DGAT2 as well as increasing the expression and activity of ATGL in the abdominal fat of broilers, and Mn-Prot M was more effective in inhibiting the FAS acitivity.
    Reference | Related Articles | Metrics
    A novel secreted protein FgHrip1 from Fusarium graminearum triggers immune responses in plants
    Zhenchao Fu, Huiqian Zhuang, Vincent Ninkuu, Jianpei Yan, Guangyue Li, Xiufen Yang, Hongmei Zeng
    2024, 23 (11): 3774-3787.   DOI: 10.1016/j.jia.2023.08.009
    Abstract248)      PDF in ScienceDirect      

    Fusarium graminearum, the primary pathogenic fungus responsible for Fusarium head blight (FHB) in wheat, secretes abundant chemical compounds that interact with host plants.  In this study, a secreted protein FgHrip1, isolated from the culture filtrate of Fgraminearum, was found to induce typical cell death in tobacco.  The FgHrip1 gene was then cloned and expressed in Escherichia coli.  Further bioassay analysis showed that the recombinant FgHrip1 induced early defense induction events, such as reactive oxygen species (ROS) production, callose deposition, and up-regulation of defense-related genes in tobacco.  Furthermore, FgHrip1 significantly enhanced immunity in tobacco seedlings against Pseudomonas syringae pv. tabaci 6605 (Pst. 6605) and tobacco mosaic virus (TMV).  FgHrip1-treated wheat spikes also exhibited defense-related transcript accumulation and developed immunity against FHB infection.  Whereas the expression of FgHrip1 was induced during the infection process, the deletion of the gene impaired the virulence of F. graminearum.  Our results suggest that FgHrip1 triggers immunity and induces disease resistance in tobacco and wheat, thereby providing new insight into strategy for biocontrol of FHB.

    Reference | Related Articles | Metrics
    A novel chorismate mutase effector secreted from root-knot nematode Meloidogyne enterolobii manipulates plant immunity to promote parasitism
    Tuizi Feng, Yuan Chen, Zhourong Li, Ji Pei, Deliang Peng, Huan Peng, Haibo Long
    2024, 23 (12): 4107-4119.   DOI: 10.1016/j.jia.2023.11.039
    Abstract239)      PDF in ScienceDirect      
    Meloidogyne spp. is an economically important plant-parasitic nematode distributed worldwide.  To fight with host immune system for successful parasitism, plant parasitic nematodes secrete effectors to promote infection.  In this study, we identified one chorismate mutase (CM) effector from Menterolobii, named Me-CM.  Spatial and temporal expression assays exhibited Me-cm is expressed in esophageal glands and up-regulated at parasitic-stage juveniles.  Me-CM affects the pathogenicity of Menterolobii based on the reduced infection rate, number of galls, egg masses, eggs per mass and multiplication rate collected from RNA silencing experiments.  We showed that Me-CM localized in the cytoplasm and nucleus of plant cells and decreased the expression level of the marker gene PR1 of salicylic acid (SA) pathway.  Besides, constitutive expression of Me-cm in Arabidopsis thaliana significantly reduced salicylic acid concentration.  These results suggested that Menterolobii may secrete effector Me-CM to fight with plant immune systems via regulating SA signaling pathway when interacting with host plants, ultimately facilitating parasitism.
    Reference | Related Articles | Metrics
    Genome-wide identification, molecular evolution, and functional characterization of fructokinase gene family in apple reveal its role in improving salinity tolerance
    Jing Su, Lingcheng Zhu, Pingxing Ao, Jianhui Shao, Chunhua Ma
    2024, 23 (11): 3723-3736.   DOI: 10.1016/j.jia.2024.09.001
    Abstract230)      PDF in ScienceDirect      
    Fructokinase (FRK) is a regulator of fructose signaling in plants and gateway proteins that catalyze the initial step in fructose metabolism through phosphorylation.  Our previous study demonstrated that MdFRK2 protein exhibit not only high affinity for fructose, but also high enzymatic activity due to sorbitol.  However, genome-wide identification of the MdFRK gene family and their evolutionary dynamics in apple are yet to be reported.  A systematic genome-wide analysis in this study identified a total of nine MdFRK gene members, which could phylogenetically be clustered into seven groups.  Chromosomal location and synteny analysis of MdFRKs revealed that their expansion in the apple genome is primarily driven by tandem and segmental duplication events.  Divergent expression patterns of MdFRKs were observed in four source-sink tissues and at five different apple fruit developmental stages, which suggested their potential crucial roles in the apple fruit development and sugar accumulation.  Reverse transcription-quantitative PCR (RT-qPCR) identified candidate NaCl or drought stress responsive MdFRKs, and transgenic apple plants overexpressing MdFRK2 exhibited considerably enhanced salinity tolerance.  Our results will be useful for understanding the functions of MdFRKs in the regulation of apple fruit development and salt stress response.


    Reference | Related Articles | Metrics
    A potential hyphal fusion protein complex with an important role in development and virulence interacts with autophagy-related proteins in Fusarium pseudograminearum
    Linlin Chen, Yixuan Shan, Zaifang Dong, Yake Zhang, Mengya Peng, Hongxia Yuan, Yan Shi, Honglian Li, Xiaoping Xing
    2024, 23 (12): 4093-4106.   DOI: 10.1016/j.jia.2023.09.005
    Abstract223)      PDF in ScienceDirect      

    Hyphal fusion (anastomosis) is a common process serving many important functions at various developmental stages in the life cycle of ascomycetous fungi.  However, the biological roles and molecular mechanisms in plant pathogenic fungi were widely unknown.  In this study, a hyphal fusion protein FpHam-2 was screened from a T-DNA insertion mutant library of Fusarium pseudograminearum, and FpHam-2 interacts with another 2 hyphal fusion protein homologues FpHam-3 and FpHam-4.  Each of these 3 genes deletion mutant revealed in similar defective phenotypes compared with the WT and complemented strains, including reduction in growth rate, defects in hyphal fusion and conidiation, more sensitive for cell membrane, cell wall and oxidative stress responses, and decreased in virulence.  The yeast two-hybrid assay was used to identify that FpHam-2 interacts with 3 autophagy-related proteins, including FpAtg3, FpAtg28 and FpAtg33.  Furthermore, FpHam-2-deletion mutant showed decreased accumulation of autophagic bodies in hypha.  In conclusion, FpHam-2, FpHam-3 and FpHam-4 have an essential role for hyphal fusion and regulating the growth, conidiation and virulence in Fpseudograminearum.


    Reference | Related Articles | Metrics
    Knock-out of GhPDCT with the CRISPR/Cas9 system increases the oleic acid content in cottonseed oil
    Tingwan Li, Lu Long, Yingchao Tang, Zhongping Xu, Guanying Wang, Man Jiang, Shuangxia Jin, Wei Gao
    2024, 23 (10): 3468-3471.   DOI: 10.1016/j.jia.2024.07.030
    Abstract222)      PDF in ScienceDirect      

    Cotton is a pivotal economic crop for natural textile fibers that also serves as an important source of edible oil (Long et al. 2023). Cottonseed oil contains approximately 14% oleic acid and 59% linoleic acid. An increase in monounsaturated fatty acids, particularly oleic acid, enhances the oxidative stability and nutritional value of edible oil (Chen et al. 2021). Currently, the demand for edible oil in China is increasing in terms of both production and nutrition. Improving cottonseed oil’s storability and nutritional value is crucial for the comprehensive utilization of cotton. However, cottonseed has long been regarded as a by-product in the cotton industry, so research on improving the content and quality of cottonseed oil has lagged compared to other crop attributes.

    Phosphatidylcholine: diacylglycerol cholinephospho-transferase (PDCT) is the gate-keeping enzyme for the conversion between phosphatidylcholine and diacylglycerol (Lu et al. 2009). Studies in multiple plants have revealed increases in monounsaturated fatty acids in seeds with PDCT knock-out. To clone the PDCTs of upland cotton (Gossypium hirsutum), the protein sequences of PDCT from Arabidopsis (Lu et al. 2009), oilseed rape (Brassica napus; Bai et al. 2020), soybean (Glycine max; Li et al. 2023), peanut (Arachis hypogaea), and sesame (Sesamum indicum) were used as references for BLAST searches in CottonMD (https://yanglab.hzau.edu.cn/CottonMD; Yang et al. 2023). Four PDCT homologs in cotton were obtained and named GhPDCT1 (Gh_D06G1990), GhPDCT2 (Gh_A06G1621), GhPDCT3 (Gh_A05G3864), and GhPDCT4 (Gh_D05G1178) (Fig. 1-A). The sequence similarities between the four GhPDCTs and AtPDCT are 58.47, 60.13, 45.18, and 58.61%, respectively. Further, the phylogenetic analysis revealed that the GhPDCTs are clustered with the PDCTs of Brassica napus (Fig. 1-A).

    The heatmap of GhPDCTs in cotton tissues was built using released transcriptome data. The results showed that GhPDCT3 and GhPDCT4 had very little expression in all tissues (Fig. 1-B). GhPDCT2 was expressed in roots, stems, leaves and ovules at different developmental stages, but at relatively low levels. GhPDCT1 shared similar basal expression with GhPDCT2, but the transcript level of GhPDCT1 in ovules was significantly higher than that of GhPDCT2. Notably, the expression of GhPDCT1 was sharply up-regulated in ovules at 20 and 25 days post anthesis (DPA). The expression pattern of GhPDCT1 was further verified by RT-qPCR, which indicated that GhPDCT1 was up-regulated in the late stage of ovule development and peaked around 25 DPA. Previous reports highlighted the rapid accumulation of oil content in cotton seeds at 20–30 DPA (Zhao et al. 2018). Therefore, GhPDCT1 is considered the key candidate for regulating the seed oil content of cotton (Fig. 1-B).

    Sequence analysis showed that GhPDCT1/2 and GmPDCT1/2 contain similar conserved motifs, as well as a C-terminal PAP2_3 domain (Fig. 1-C). The GmPDCT1 and GmPDCT2 in soybean were both found to be located in the cytosol (Li et al. 2023). To study the subcellular localization of GhPDCT, a GFP-PDCT1 fusion protein was expressed in the protoplasts of cotton cotyledons (Hu et al. 2022), and the RFP-labeled transcription factor GoPGF (Zhang et al. 2024) was co-expressed to mark the nucleus. Observations with a laser scanning confocal microscope showed the green fluorescence of GFP-PDCT1 expressed in the cytoplasm (Fig. 1-D).

    Knock-out of GhPDCT was achieved with the optimized CRISPR/Cas9 system of cotton (Wang et al. 2018). Due to the high similarity (94.2%) of the coding sequences of GhPDCT1 and GhPDCT2, two sgRNAs respectively targeting two different sites of the 1st exon were designed for the simultaneous mutagenesis of GhPDCT1 and GhPDCT2 (Fig. 1-E). The Ghirsutum L. line ‘Jin668’ was used to produce the GhPDCT1/2 mutant of cotton (ghpdct) with Agrobacterium-mediated transformation (Zhu et al. 2023). The DNA of the ghpdct mutant was extracted for Hi-TOM sequencing, and the offspring of ghpdct-5 with the full mutation were planted for further studies. As shown in Fig. 1-F, ghpdct-5 has a 1 nt deletion at target 2 of GhPDCT2 (A subgenome). In addition, two types of mutations were found in GhPDCT1 (D subgenome), one with a 1 nt insertion at target 1, and the other with a 1 nt insertion and a 2 nt deletion at target 1. The wild type (WT) and ghpdct were planted in the field and a phenotypic study was conducted during the whole growing period. No obvious differences in plant growth were observed between WT and ghpdct. For example, the plant height, fiber length, seed weight of WT and ghpdct showed no statistically significant differences (Fig. 1-G–I).

    The fatty acids in seeds of WT and ghpdct were measured by gas chromatography-mass spectrometry (GC-MS) (Fig. 1-J). Oleic acid (OA, C18:1) accounted for an average of 14.46% of the total fatty acids in seeds of WT, and 16.49% in seeds of ghpdct, which indicates the up-regulation of oleic acid in the ghpdct mutant. Conversely, linoleic acid (LA, C18:2) was reduced in seeds of ghpdct (52.83%) compared to seeds of WT (59.98%). In addition, knockout of GhPDCT increased the seed content of palmitic acid (PA, C16:0) from 21.24% in WT to 25.85% in ghpdct, and the content of stearic acid (SA, C18:0) increased from 1.70% in WT seeds to 2.39% in ghpdct seeds. These results indicated that the GhPDCT mutation alters the balance of monounsaturated and polyunsaturated fatty acids in cotton seeds, with minimal impacts on growth and development beyond seed oil metabolism.

    In conclusion, we have produced the ghpdct mutant of cotton using the CRISPR/Cas9 system. Knock-out of GhPDCT1/2 affects the conversion between phosphatidylcholine and diacylglycerol in cottonseeds, and changes the contents of oleic acid, linoleic acid, palmitic acid, and stearic acid. We obtained a new germplasm with a higher oleic acid content in cottonseed oil, which can be applied to enhance the economic and nutritional value of cotton as an oil crop, thereby contributing to the industrial upgrading of cotton.

    Reference | Related Articles | Metrics
    Genetic dissection and origin of pleiotropic loci underlying multi-level fiber quality traits in upland cotton (Gossypium hirsutum L.)
    Hongge Li, Shurong Tang, Zhen Peng, Guoyong Fu, Yinhua Jia, Shoujun Wei, Baojun Chen, Muhammad Shahid Iqbal, Shoupu He, Xiongming Du
    2024, 23 (10): 3250-3263.   DOI: 10.1016/j.jia.2023.07.030
    Abstract217)      PDF in ScienceDirect      
    Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.  However, the limitations of measurement instruments have hindered the accurate evaluation of some important fiber characteristics such as fiber maturity, fineness, and neps, which in turn has impeded the genetic improvement and industrial utilization of cotton fiber.  Here, 12 single fiber quality traits were measured using Advanced Fiber Information System (AFIS) equipment among 383 accessions of upland cotton (Gossypium hirsutum L.).  In addition, eight conventional fiber quality traits were assessed by the High Volume Instrument (HVI) System.  Genome-wide association study (GWAS), linkage disequilibrium (LD) block genotyping and functional identification were conducted sequentially to uncover the associated elite loci and candidate genes of fiber quality traits.  As a result, the previously reported pleiotropic locus FL_D11 regulating fiber length-related traits was identified in this study.  More importantly, three novel pleiotropic loci (FM_A03, FF_A05, and FN_A07) regulating fiber maturity, fineness and neps, respectively, were detected based on AFIS traits.  Numerous highly promising candidate genes were screened out by integrating RNA-seq and qRT-PCR analyses, including the reported GhKRP6 for fiber length, the newly identified GhMAP8 for maturity and GhDFR for fineness.  The origin and evolutionary analysis of pleiotropic loci indicated that the selection pressure on FL_D11, FM_A03 and FF_A05 increased as the breeding period approached the present and the origins of FM_A03 and FF_A05 were traced back to cotton landraces.  These findings reveal the genetic basis underlying fiber quality and provide insight into the genetic improvement and textile utilization of fiber in Ghirsutum.


    Reference | Related Articles | Metrics
    Transcriptome analysis reveals the genetic basis of crest cushion formation in duck
    Lan Huang, Qixin Guo, Yong Jiang, Zhixiu Wang, Guohong Chen, Guobin Chang, Hao Bai
    2024, 23 (12): 4172-4185.   DOI: 10.1016/j.jia.2023.09.025
    Abstract216)      PDF in ScienceDirect      

    The Chinese crested duck is a unique duck breed having a bulbous feather shape on its duck head.  However, the mechanisms involved in its formation and development are unclear.  In the present study, RNA sequencing analysis was performed on the crested tissues of 6 Chinese crested ducks and the scalp tissues of 6 cherry valley ducks (CVs) from 2 developmental stages.  This study identified 261 differentially expressed genes (DEGs), 122 upregulated and 139 downregulated, in the E28 stage and 361 DEGs, 154 upregulated and 207 downregulated in the D42 stage between CC and CV ducks.  The subsequent results of weighted gene co-expression network analysis (WGCNA) revealed that the turquoise and cyan modules were associated with the crest trait in the D42 stage, meanwhile, the green, brown, and pink modules were associated with the crest trait in the E28 stage.  Venn analysis of the DEGs and WGCNA showed that 145 and 45 genes are associated between the D42 and E28 stages, respectively.  The expression of WNT16, BMP2, SLC35F2, SLC6A15, APOBEC2, ABHD6, TNNC2, MYL1, and TNNI2 were verified by real-time quantitative PCR.  This study provides an approach to reveal the molecular mechanisms underlying the crested trait development.


    Reference | Related Articles | Metrics
    Mechanism of mitigating on Deoxynivalenol-induced intestinal toxicity in swine and its dietary regulation strategy
    Ting Pan, Ruiting Guo, Weiwei Wang, Xing Liu, Bing Xia, Linshu Jiang, Ming Liu
    2025, 24 (7): 2449-2464.   DOI: 10.1016/j.jia.2024.07.037
    Abstract213)      PDF in ScienceDirect      

    Mycotoxins are the most widely existing pollutants in both dietary provisions and livestock feed, and they pose a series of hazards for humans and animals.  Deoxynivalenol (DON) is a prevalent mycotoxin that is primarily produced by Fusarium spp. and commonly found in various cereal products.  Feeding swine diets contaminated with trichothecene DON can lead to major adverse effects, including reduced feed intake, diminished weight gains, and compromised immune function.  Among all animal species, swine are the most sensitive to DON.  Here we explore the disruption of gut health by DON, considering aspects such as intestinal histomorphology, epithelial barrier functions,  immune system, microflora, and short-chain fatty acid production in the intestines.  Numerous additives have been documented for their potential in the detoxification of DON.  These additives can alleviate the toxic effects of DON on pigs by modulating the Nrf2-Keap1, mitogen-activated protein kinases (MAPKs) and Nuclear factor kappa-B (NF-κB) signaling pathways.  Additionally, there are additives capable of mitigating the toxicity of DON through adsorption or biotransformation.  This update has novel potential for advancing our comprehension of the mechanisms linked to DON intestinal toxicity and facilitating the formulation of innovative strategies to mitigate the impact of DON.

    Reference | Related Articles | Metrics
    Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress
    Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li
    2024, 23 (12): 4074-4092.   DOI: 10.1016/j.jia.2024.07.013
    Abstract212)      PDF in ScienceDirect      
    Salt stress is a typical abiotic stress in plants that causes slow growth, stunting, and reduced yield and fruit quality.  Fertilization is necessary to ensure proper crop growth.  However, the effect of fertilization on salt tolerance in grapevine is unclear.  In this study, we investigated the effect of nitrogen fertilizer (0.01 and 0.1 mol L–1 NH4NO3) application on the salt (200 mmol L–1 NaCl) tolerance of grapevine based on physiological indices, and transcriptomic and metabolomic analyses.  The results revealed that 0.01 mol L–1 NH4NO3 supplementation significantly reduced the accumulation of superoxide anion (O2·), enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD), and improved the levels of ascorbic acid (AsA) and glutathione (GSH) in grape leaves compared to salt treatment alone.  Specifically, joint transcriptome and metabolome analyses showed that the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were significantly enriched in the flavonoid biosynthesis pathway (ko00941) and the flavone and flavonol biosynthesis pathway (ko00944).  In particular, the relative content of quercetin (C00389) was markedly regulated by salt and nitrogen.  Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities, increased the AsA and GSH contents, and reduced the H2O2 and O2· contents.  Meanwhile, 10 hub DEGs, which had high Pearson correlations (R2>0.9) with quercetin, were repressed by nitrogen.  In conclusion, all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response, thus providing a new perspective for improving salt tolerance in grapes.


    Reference | Related Articles | Metrics
    Genome-wide association study identifies novel loci associated with feed efficiency traits in Hu lambs
    Deyin Zhang, Xiaolong Li, Fadi Li, Xiaoxue Zhang, Yuan Zhao, Yukun Zhang, Zongwu Ma, Huibin Tian, Xiuxiu Weng, Weimin Wang
    2025, 24 (4): 1259-1269.   DOI: 10.1016/j.jia.2023.10.011
    Abstract212)      PDF in ScienceDirect      
    Feed efficiency (FE) is a crucial economic trait that significantly impacts profitability in intensive sheep production, and can be evaluated by the residual feed intake (RFI) and feed conversion ratio (FCR).  However, the underlying genetic mechanisms that underlie FE-related traits in sheep are not fully understood.  Herein, we measured the FE-related traits of 1,280 Hu sheep and conducted the phenotype statistics and correlation analysis, the result showcase that there was a large variation for FE-related traits, and RFI was significant positive correlation with average daily feed intake (ADFI) and FCR.  Moreover, a genome-wide association study (GWAS) was conducted using whole-genome resequencing data to investigate the genetic associations of ADFI, FCR and RFI.  For ADFI and FCR traits, 2 and one single nucleotide polymorphisms (SNPs) exceeded the genome-wide significance threshold, whereas ten and 5 SNPs exceeded the suggestive significance threshold.  For RFI traits, only 4 SNPs exceeded the suggestive significance threshold.  Finally, a total of 8 genes (LOC101121953, LOC101110202, CTNNA3, IZUMO3, PPM1E, YIPF7, ZSCAN12 and LOC105603808) were identified as potential candidate genes for FE-related traits.  Simultaneously, we further analyzed the effects of 2 candidate SNPs associated with RFI on growth and FE traits in enlarged experimental population, the results demonstrated that these 2 SNPs was not significantly associated with growth traits (P>0.05), but significantly related to RFI traits (P<0.05).  These findings will provide valuable reference data and key genetic variants that can be used to effectively select feed-efficient individual in sheep breeding programs.


    Reference | Related Articles | Metrics
    Genome-wide identification of the pectate lyase (PEL) gene family members in Malvaceae, and their contribution to cotton fiber quality
    Qian Deng, Zeyu Dong, Zequan Chen, Zhuolin Shi, Ting Zhao, Xueying Guan, Yan Hu, Lei Fang
    2024, 23 (10): 3264-3282.   DOI: 10.1016/j.jia.2024.06.011
    Abstract207)      PDF in ScienceDirect      
    Pectin is a major constituent of the plant cell wall.  Pectate lyase (PEL, EC 4.2.2.2) uses anti-β-elimination chemistry to cleave the α-1,4 glycosidic linkage in the homogalacturonan region of pectin.  However, limited information is available on the comprehensive and evolutionary analysis of PELs in the Malvaceae.  In this study, we identified 597 PEL genes from 10 Malvaceae species.  Phylogenetic and motif analyses revealed that these PELs are classified into six subfamilies: Clades I, II, III, IV, Va, and Vb.  The two largest subfamilies, Clades I and II, contained 237 and 222 PEL members, respectively.  The members of Clades Va and Vb only contained four or five motifs, far fewer than the other subfamilies.  Gene duplication analysis showed that segmental duplication played a crucial role in the expansion of the PEL gene family in Gossypium species.  The PELs from Clades I, IV, Va, and Vb were expressed during the fiber elongation stage, but nearly all PEL genes from Clades II and III showed no expression in any of the investigated fiber developmental stages.  We further performed single-gene haplotype association analysis in 2,001 Ghirsutum accessions and 229 Gbarbadense accessions.  Interestingly, 14 PELs were significantly associated with fiber length and strength traits in Gbarbadense with superior fiber quality, while only eight GhPEL genes were found to be significantly associated with fiber quality traits in Ghirsutum.  Our findings provide important information for further evolutionary and functional research on the PEL gene family members and their potential use for fiber quality improvement in cotton.


    Reference | Related Articles | Metrics
    Whole-genome characterization of CKX genes in Prunus persica and their role in bud dormancy and regrowth 
    Xuehui Zhao, Jianting Liu, Xiling Fu, Long Xiao, Qingjie Wang, Chaoran Wang, Zhizhang Chen, Jiakui Li, Changkun Lu, Hui Cao, Ling Li
    2024, 23 (12): 4058-4073.   DOI: 10.1016/j.jia.2024.09.002
    Abstract197)      PDF in ScienceDirect      
    Bud dormancy is a complex physiological process of perennial woody plants living in temperate regions, and it can be affected by various phytohormones.  Cytokinin oxidase/dehydrogenases (CKXs) are a group of enzymes essential for maintaining cytokinin homeostasis, yet a comprehensive analysis of these enzymes in peach remains lacking.  Here, a total of 51 CKX members from different species, including six from peach, eleven from apple, nine from poplar, seven from Arabidopsis, eight from strawberry, and ten from rice, were identified using the Simple HMM Search tool of TBtools and a BLASTP program and classified into four groups using phylogenetic analysis.  Conserved motif and gene structure analysis of these 51 CKX members showed that 10 conserved motifs were identified, and each CKX gene contained at least two introns.  Cis-element analysis of PpCKXs showed that all PpCKX genes have light-responsive elements and at least one hormone-responsive element.  The changed relative expression levels of six PpCKX genes in peach buds from endodormancy to bud-break were observed by qRT-PCR.  Among them, the expression trend of PpCKX6 was almost opposite that of PpEBB1, a positive bud-break regulator in woody plants, around the bud-break stage.  Y1H, EMSA, and dual-luciferase assays indicated that PpEBB1 negatively regulated PpCKX6 through direct binding to a GCC box-like element located in the promoter region of PpCKX6.  In addition, a transient assay showed that overexpression of PpCKX6 delayed the bud-break of peach.  These results indicate that the PpCKX genes play an essential role in the dormancy-regrowth process, and PpCKX6 may act downstream of PpEBB1 directly to regulate the bud-break process, which further improves the hormone-regulatory network of dormancy-regrowth of woody plants, and provides new insights for molecular breeding and genetic engineering of peach.
    Reference | Related Articles | Metrics