Top Read

    Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails

    Herbicidal activity and biochemical characteristics of the botanical drupacine against Amaranthus retroflexus L.

    YU Hua-long, TIAN Ci, SHEN Rong-yan, ZHAO Han, YANG Juan, DONG Jin-gao, ZHANG Li-hui, MA Shu-jie
    2023, 22 (5): 1434-1444.   DOI: 10.1016/j.jia.2022.08.120
    Abstract581)      PDF in ScienceDirect      

    Botanical herbicide has been a hot topic in the research and development of novel pesticides.  The herbicidal activity and biochemical characteristics of the botanical compound drupacine were studied by evaluating its effects on seed germination, seedling growth, morphological and physiological characteristics of Amaranthus retroflexus.  Drupacine inhibited seed germination and seedling growth, and had a median inhibition concentration (IC50) value of 38.99 mg L−1 against Aretroflexus root.  The α-amylase activity and soluble sugar content in treated plants were significantly lower than that of the control.  The expression of α-amylase gene was dosage-dependently inhibited compared to the untreated control.  This suggested that inhibition of α-amylase activity was a mode of action on seed germination.  The root hairs were significantly decreased and part of the root cap fell off after treatment with drupacine.  The ultrastructure observation showed that cell damage of root tips increased with the treatment time.  Drupacine also increased the relative conductivity and malondialdehyde (MDA) content.  Peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) activities were significantly enhanced in the treatment compared to the control.  These findings indicated that the physiological and biochemical reaction changes leading to morphological and membrane injuries were the main effects of drupacine on the inhibition of seedling growth.  Drupacine can be developed as a botanical herbicide. 

    Reference | Related Articles | Metrics
    Analyses and identifications of quantitative trait loci and candidate genes controlling mesocotyl elongation in rice
    ZHANG Xi-juan, LAI Yong-cai, MENG Ying, TANG Ao, DONG Wen-jun, LIU You-hong, LIU Kai, WANG Li-zhi, YANG Xian-li, WANG Wen-long, DING Guo-hua, JIANG Hui, REN Yang, JIANG Shu-kun
    2023, 22 (2): 325-340.   DOI: 10.1016/j.jia.2022.08.080
    Abstract452)      PDF in ScienceDirect      

    Rice direct seeding has the significant potential to save labor and water, conserve environmental resources, and reduce greenhouse gas emissions tremendously.  Therefore, rice direct seeding is becoming the major cultivation technology applied to rice production in many countries.  Identifying and utilizing genes controlling mesocotyl elongation is an effective approach to accelerate breeding procedures and meet the requirements for direct-seeded rice (DSR) production.  This study used a permanent mapping population with 144 recombinant inbred lines (RILs) and 2 828 bin-markers to detect quantitative trait loci (QTLs) associated with mesocotyl length in 2019 and 2020.  The mesocotyl lengths of the rice RILs and their parents, Lijiangxintuanheigu (LTH) and Shennong 265 (SN265), were measured in a growth chamber at 30°C in a dark environment.  A total of 16 QTLs for mesocotyl length were identified on chromosomes 1(2), 2(4), 3(2), 4, 5, 6, 7, 9, 11(2), and 12.  Seven of these QTLs, including qML1a, qML1b, qML2d, qML3a, qML3b, qML5, and qML11b, were reproducibly detected in both years via the interval mapping method.  The major QTL, qML3a, was reidentified in two years via the composite interval mapping method.  A total of 10 to 413 annotated genes for each QTL were identified in their smallest genetic intervals of 37.69 kb to 2.78 Mb, respectively.  Thirteen predicted genes within a relatively small genetic interval (88.18 kb) of the major mesocotyl elongation QTL, qML3a, were more thoroughly analyzed.  Finally, the coding DNA sequence variations among SN265, LTH, and Nipponbare indicated that the LOC_Os03g50550 gene was the strongest candidate gene for the qML3a QTL controlling the mesocotyl elongation.  This LOC_Os03g50550 gene encodes a mitogen-activated protein kinase.  Relative gene expression analysis using qRT-RCR further revealed that the expression levels of the LOC_Os03g50550 gene in the mesocotyl of LTH were significantly lower than in the mesocotyl of SN265.  In conclusion, these results further strengthen our knowledge about rice’s genetic mechanisms of mesocotyl elongation.  This investigation’s discoveries will help to accelerate breeding programs for new DSR variety development.

    Reference | Related Articles | Metrics
    Border effects of the main and ratoon crops in rice ratooning system
    ZHENG Chang, WANG Yue-chao, XU Wen-ba, YANG De-sheng, YANG Guo-dong, YANG Chen, HUANG Jian-liang, PENG Shao-bing
    2023, 22 (1): 80-91.   DOI: 10.1016/j.jia.2022.08.048
    Abstract378)      PDF in ScienceDirect      

    The border effect (BE) is widely observed in crop field experiments, and it has been extensively studied in many crops.  However, only limited attention has been paid to the BE of ratoon rice.  We conducted field experiments on ratoon rice in Qichun County, Hubei Province, Central China in 2018 and 2019 to compare the BE in the main and ratoon crops, and to quantify the contribution of BE in the main crop to that in the ratoon crop.  The BE of two hybrid varieties was measured for the outermost, second outermost, and third outermost rows in each plot of both crops.  To determine the contribution of BE between the two crops, portions of hills in the outermost and second outermost rows were uprooted during the harvest of the main crop so that the second and third outermost rows then became the outermost rows in the ratoon crop.  Overall, the BE on grain yield was greater in the main crop than in the ratoon crop.  In the main crop, the BE on grain yield was 98.3% in the outermost row, which was explained by the BE on panicles m–2, spikelets/panicle, spikelets m–2, and total dry weight.  In the ratoon crop, the BE on grain yield was reduced to 60.9 and 27.6% with and without the contribution of the BE in the main crop, respectively.  Consequently, 55.1% of the BE on grain yield in the ratoon crop was contributed from the main crop.  High stubble dry weight and non-structural carbohydrate (NSC) accumulation at the harvest of the main crop were responsible for the contribution of BE in the main crop to that in the ratoon crop.  Our results suggest that increases in stubble dry weight and NSC accumulation at the harvest of the main crop could be important strategies for developing high-yielding cropping practices in the rice ratooning system.

    Reference | Related Articles | Metrics
    The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings
    CHI Qing, DU Lin-ying, MA Wen, NIU Ruo-yu, WU Bao-wei, GUO Li-jian, MA Meng, LIU Xiang-li, ZHAO Hui-xian
    2023, 22 (4): 981-998.   DOI: 10.1016/j.jia.2022.08.016
    Abstract310)      PDF in ScienceDirect      

    Previous studies have revealed the miR164 family and the miR164-targeted NAC transcription factor genes in rice (Oryza sativa) and Arabidopsis that play versatile roles in developmental processes and stress responses.  In wheat (Triticum aestivum L.), we found nine genetic loci of tae-miR164 (tae-MIR164 a to i) producing two mature sequences that down-regulate the expression of three newly identified target genes of TaNACs (TaNAC1, TaNAC11, and TaNAC14) by the cleavage of the respective mRNAs.  Overexpression of tae-miR164 or one of its target genes (TaNAC14) demonstrated that the miR164-TaNAC14 module greatly affects root growth and development and stress (drought and salinity) tolerance in wheat seedlings, and TaNAC14 promotes root growth and development in wheat seedlings and enhances drought tolerance, while tae-miR164 inhibits root development and reduces drought and salinity tolerance by down-regulating the expression of TaNAC14.  These findings identify the miR164-TaNAC14 module as well as other tae-miR164-regulated genes which can serve as new genetic resources for stress-resistance wheat breeding.

    Reference | Related Articles | Metrics

    Maleness-on-the-Y (MoY) orthologue is a key regulator of male sex determination in Zeugodacus cucurbitae (Diptera: Tephritidae)

    FAN Zi-zhen, MA Qin, MA Si-ya, CAO Feng-qin, YAN Ri-hui, LIN Xian-wu
    2023, 22 (2): 505-513.   DOI: 10.1016/j.jia.2022.08.007
    Abstract305)      PDF in ScienceDirect      

    The initiation of sex differentiation in insects is regulated by primary sex determination signals.  In the Medfly Ceratitis capitata and other Tephritids, Maleness-on-the-Y (MoY) is the master gene for male sex determination.  However, the primary signal in Zeugodacus cucurbitae (Coquillett), a very destructive Tephritid pest across the world, remains ambiguous.  In this study, we have isolated and characterized the Medfly MoY homolog in Zcucurbitae, ZcMoY.  ZcMOY protein shows high sequence conservation to its homologs in Bactrocera species.  ZcMoY transcription begins and peaks at very early embryonic stages and then becomes undetectable except the testes and heads of day 1 male adults.  Silencing ZcMoY in early embryos by RNAi causes abnormal external genitalia and interior reproductive organs, giving rise to intersexes and feminization of XY individuals.  The expression pattern and knockdown phenotypes of ZcMoY indicate that ZcMoY plays a key role in regulating sex determination of Zcucurbitae males.  Our findings will help the understanding of sex determination in Zcucurbitae and facilitate the development of genetic sexing strains in its biological control.

    Reference | Related Articles | Metrics
    Effect of high-molecular-weight glutenin subunit Dy10 on wheat dough properties and end-use quality
    WANG Yan, GUO Zhen-ru, CHEN Qing, LI Yang, ZHAO Kan, WAN Yong-fang, Malcolm J. HAWKESFORD, JIANG Yun-feng, KONG Li, PU Zhi-en, DENG Mei, JIANG Qian-tao, LAN Xiu-jin, WANG Ji-rui, CHEN Guo-yue, MA Jian, ZHENG You-liang, WEI Yu-ming, QI Peng-fei
    2023, 22 (6): 1609-1617.   DOI: 10.1016/j.jia.2022.08.041
    Abstract290)      PDF in ScienceDirect      
    High-molecular-weight glutenin subunits (HMW-GSs) are the most critical grain storage proteins that determine the unique processing qualities of wheat. Although it is a part of the superior HMW-GS pair (Dx5+Dy10), the contribution of the Dy10 subunit to wheat processing quality remains unclear. In this study, we elucidated the effect of Dy10 on wheat processing quality by generating and analyzing a deletion mutant (with the Dy10-null allele), and by elucidating the changes to wheat flour following the incorporation of purified Dy10. The Dy10-null allele was transcribed normally, but the Dy10 subunit was lacking. These findings implied that the Dy10-null allele reduced the glutenin:gliadin ratio and negatively affected dough strength (i.e., Zeleny sedimentation value, gluten index, and dough development and stability times) and the bread-making quality; however, it positively affected the biscuit-making quality. The incorporation of various amounts of purified Dy10 into wheat flour had a detrimental effect on biscuit-making quality. The results of this study demonstrate that the Dy10 subunit is essential for maintaining wheat dough strength. Furthermore, the Dy10-null allele may be exploited by soft wheat breeding programs.
    Reference | Related Articles | Metrics
    Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance
    LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong
    2023, 22 (5): 1291-1307.   DOI: 10.1016/j.jia.2022.08.039
    Abstract283)      PDF in ScienceDirect      

    Rye (Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits.  The 1RS chromosome from the German cultivated rye variety Petkus is critical in wheat breeding.  However, its weakened disease resistance highlights the need to identify new resources.  In the present study, a novel derived line called D27 was developed from common wheat and Mexico Rye.  Cytological observations characterized the karyotype of D27 as 2n=42=21 II.  Genomic in situ hybridization indicated that a pair of whole-arm translocated Mexico Rye chromosomes were inherited typically in the mitotic and meiosis stages of D27.  Experiments using fluorescence in situ hybridization (FISH) and gliadin electrophoresis showed that D27 lacked wheat 1DS chromosomes.  They were replaced by 1RS chromosomes of Mexico Rye, supported by wheat simple-sequence repeat markers, rye sequence characterized amplified region markers, and wheat 40K SNP array analysis.  The wheat 1DS chromosomes could not be detected by molecular markers and wheat SNP array, but the presence of rye 1RS chromosomes was confirmed.  Agronomic trait assessments indicated that D27 had a higher tiller number and enhanced stripe rust and powdery mildew resistance.  In addition, dough properties analysis showed that replacing 1DS led to higher viscosity and lower dough elasticity in D27, which was beneficial for cake making.  In conclusion, the novel cytogenetically stable common wheat–Mexico Rye T1DL·1RS translocation line D27 offers excellent potential as outstanding germplasm in wheat breeding programs focusing on disease resistance and yield improvement.  Additionally, it can be valuable for researching the rye 1RS chromosome’s genetic diversity. 

    Reference | Related Articles | Metrics
    Evidence of silk growth hampering in maize at high planting density using phenotypic and transcriptional analysis
    ZHANG Min, XING Li-juan, REN Xiao-tian, ZOU Jun-jie, SONG Fu-peng, WANG Lei, XU Miao-yun
    2022, 21 (11): 3148-3157.   DOI: 10.1016/j.jia.2022.08.083
    Abstract280)      PDF in ScienceDirect      
    Increasing the planting density is an effective way to increase the yield of maize (Zea mays L.), although it can also aggravate ovary apical abortion-induced bald tips of the ears, which might, in turn, reduce the yield.  While the mechanism underlying the regulation of drought-related abortion in maize is well established, high planting density-related abortion in maize remains poorly understood.  Therefore, the present study was designed to investigate the mechanism underlying the ovary apical abortion response to high density.  This was achieved by evaluating the effects of four different plant densities (60 000 plants ha–1 (60 k), 90 k, 120 k, and 150 k) on plant traits related to plant architecture, the plant ear, flowering time, and silk development in two inbred lines (Zheng58 and PH4CV) and two hybrid lines (Zhengdan958 and Xianyu335).  The phenotypes of both inbred and hybrid plants were observed under different planting density treatments, and the high planting density was found to increase the phenotypic performance values of the evaluated traits.  The anthesis–silking interval (ASI) was extended, and the amount of the silk extruded from husks was reduced upon increasing the planting density.  Delayed silk emergence resulted in asynchronous flowering and ear bald tips.  Observations of the silk cells revealed that the silk cells became smaller as planting density increased.  The changes in transcript abundances in the silks involved the genes associated with expansive growth rather than carbon metabolism.  These findings further our understanding of silk growth regulation under high planting density and provide a theoretical basis for further research on improving high planting density breeding in maize.  
    Reference | Related Articles | Metrics
    Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies
    DONG Suo-meng, ZHOU Shao-qun
    2022, 21 (12): 3456-3466.   DOI: 10.1016/j.jia.2022.08.060
    Abstract272)      PDF in ScienceDirect      

    Over 170 years after the infamous Irish Potato Famine, potato late blight (PLB) caused by Phytophthora infestans remains the single most devastating disease of global potato production, causing up to 10 billion USD in yield loss and management costs.  Through decades of research, growers and agronomists in the field as well as laboratory scientists have made significant progress in understanding the molecular pathogenesis process of this critical pathosystem and effective management strategies to control PLB.  Yet, the need to feed an ever-increasing global population under changing climate demands continued improvement in efficient and sustainable PLB management schemes that can be implemented across a broad economic spectrum.  In this review, we briefly summarize the current understanding of the molecular interaction between P. infestans and its host plants, highlight the current integrated pest management strategy to control PLB on local and continental scales, and discuss the potential of further improvement of sustainable PLB control through genetic enhancement of crop resistance and emerging crop protection technologies.

    Reference | Related Articles | Metrics
    Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton
    TIAN Xiao-min, HAN Peng, WANG Jing, SHAO Pan-xia, AN Qiu-shuang, Nurimanguli AINI, YANG Qing-yong, YOU Chun-yuan, LIN Hai-rong, ZHU Long-fu, PAN Zhen-yuan, NIE Xin-hui
    2023, 22 (5): 1324-1337.   DOI: 10.1016/j.jia.2022.08.034
    Abstract270)      PDF in ScienceDirect      

    Lignin metabolism plays a pivotal role in plant defense against pathogens and is always positively correlated as a response to pathogen infection.  Thus, understanding resistance genes against pathogens in plants depends on a genetic analysis of lignin response.  In the study, eight upland cotton lines were used to construct a multi-parent advanced generation intercross (MAGIC) population (n=280), which exhibited peculiar characteristics from the convergence of various alleles coding for advantageous traits.  To measure the lignin response to Verticillium wilt (LRVW), artificial disease nursery (ADN) and rotation nursery (RN) were prepared for MAGIC population planting in four environments.  The stem lignin contents were collected, and the LRVW was measured with the lignin value of ADN/RN in each environment, which showed great variation.  A total of 9323 high-quality single-nucleotide polymorphism (SNP) markers obtained from the Cotton-SNP63K array were employed for genotyping the MAGIC population.  The SNPs were distributed through the whole genome with 4.78 SNP/Mb density, ranging from 1.14 (ChrA06) to 10.08 (ChrD08).  A genome-wide association study was performed using a mixed linear model (MLM) for LRVW, and three stable quantitative trait loci (QTLs), qLRVW-A04, qLRVW-A10 and qLRVW-D05, were identified in more than two environments.  Two key candidate genes, Ghi_D05G01046 and Ghi_D05G01221, were selected within the QTLs through the combination of variations in the coding sequence, induced expression patterns, and function annotations, both of which presented nonsynonymous mutations in coding regions and were strongly induced by Verticillium dahliae. Ghi_D05G01046 encodes a leucine-rich extensin (LRx) protein, which is involved in Arabidopsis cell wall biosynthesis and organization.  Ghi_D05G01221 encodes a transcriptional co-repressor novel interactor of jaz (NINJA), which functions in the jasmonic acid (JA) signaling pathway.  In summary, the study creates valuable genetic resources for breeding and QTL mapping and opens up a new perspective to uncover the genetic basis of VW resistance in upland cotton.

    Reference | Related Articles | Metrics
    Integrated pest management programme for cereal blast fungus Magnaporthe oryza
    ZHANG Hai-feng, Tofazzal ISLAM, LIU Wen-de
    2022, 21 (12): 3420-3433.   DOI: 10.1016/j.jia.2022.08.056
    Abstract266)      PDF in ScienceDirect      

    Magnaporthe oryzae, the causal agent of blast diseases, is a destructive filamentous fungus that infects many plants including most economically important food crops, rice, wheat, pearl millet and finger millet.  Magnaporthe oryzae has numerous pathotypes because of its high host-specificity in the field.  The Oryza pathotype (MoO) of Moryzae is the most devastating pathogen of rice, causing 10–30% yield loss in the world.  On the other hand, the Triticum pathotype (MoT) causes blast disease in wheat, which is now a serious threat to wheat production in some South American countries, Bangladesh and Zambia.  Because of low fungicide efficacy against the blast diseases and lack of availability of resistant varieties, control of rice and wheat blast diseases is difficult.  Therefore, an integrated management programme should be adopted to control these two diseases in the field.  Here, we introduced and summarized the classification, geographical distribution, host range, disease symptoms, biology and ecology, economic impact, and integrated pest management (IPM) programme of both rice and wheat blast diseases.Magnaporthe oryzae, the causal agent of blast diseases, is a destructive filamentous fungus that infects many plants including most economically important food crops, rice, wheat, pearl millet and finger millet.  Magnaporthe oryzae has numerous pathotypes because of its high host-specificity in the field.  The Oryza pathotype (MoO) of Moryzae is the most devastating pathogen of rice, causing 10–30% yield loss in the world.  On the other hand, the Triticum pathotype (MoT) causes blast disease in wheat, which is now a serious threat to wheat production in some South American countries, Bangladesh and Zambia.  Because of low fungicide efficacy against the blast diseases and lack of availability of resistant varieties, control of rice and wheat blast diseases is difficult.  Therefore, an integrated management programme should be adopted to control these two diseases in the field.  Here, we introduced and summarized the classification, geographical distribution, host range, disease symptoms, biology and ecology, economic impact, and integrated pest management (IPM) programme of both rice and wheat blast diseases.


    Reference | Related Articles | Metrics
    Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates
    ZHOU Qun, YUAN Rui, ZHANG Wei-yang, GU Jun-fei, LIU Li-jun, ZHANG Hao, WANG Zhi-qin, YANG Jian-chang
    2023, 22 (1): 63-79.   DOI: 10.1016/j.jia.2022.08.076
    Abstract265)      PDF in ScienceDirect      

    Utilizing the heterosis of indica/japonica hybrid rice (IJHR) is an effective way to further increase rice grain yield.  Rational application of nitrogen (N) fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.  However, the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.  The purpose of this study was to clarify these issues.  Three rice cultivars currently used in rice production, an IJHR cultivar Yongyou 2640 (YY2640), a japonica cultivar Lianjing 7 (LJ-7) and an indica cultivar Yangdao 6 (YD-6), were grown in the field with six N rates (0, 100, 200, 300, 400, and 500 kg ha–1) in 2018 and 2019.  The results showed that with the increase in N application rates, the grain yield of each test cultivar increased at first and then decreased, and the highest grain yield was at the N rate of 400 kg ha–1 for YY2640, with a grain yield of 13.4 t ha–1, and at 300 kg ha–1 for LJ-7 and YD-6, with grain yields of 9.4–10.6 t ha–1.  The grain yield and N use efficiency (NUE) of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate, especially at the higher N rates.  When compared with LJ-7 or YD-6, YY2640 exhibited better physiological traits, including greater root oxidation activity and leaf photosynthetic rate, higher cytokinin content in the roots and leaves, and more remobilization of assimilates from the stem to the grain during grain filling.  The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.  Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE, and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes. 

    Reference | Related Articles | Metrics
    OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice
    CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui
    2023, 22 (3): 669-678.   DOI: 10.1016/j.jia.2022.08.005
    Abstract261)      PDF in ScienceDirect      

    Plant chlorophyll biosynthesis and chloroplast development are two complex processes that are regulated by exogenous and endogenous factors.  In this study, we identified OsDXR, a gene encoding a reductoisomerase that positively regulates chlorophyll biosynthesis and chloroplast development in rice.  OsDXR knock-out lines displayed the albino phenotype and could not complete the whole life cycle process.  OsDXR was highly expressed in rice leaves, and subcellular localization indicated that OsDXR is a chloroplast protein.  Many genes involved in chlorophyll biosynthesis and chloroplast development were differentially expressed in the OsDXR knock-out lines compared to the wild type.  Moreover, we found that the RNA editing efficiencies of ndhA-1019 and rpl2-1 were significantly reduced in the OsDXR knock-out lines.  Furthermore, OsDXR interacted with the RNA editing factor OsMORF1 in a yeast two-hybrid screen and bimolecular fluorescence complementation assay.  Finally, disruption of the plastidial 2-C-methyl-derythritol-4-phosphate pathway resulted in defects in chloroplast development and the RNA editing of chloroplast genes.

    Reference | Related Articles | Metrics
    Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity
    DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong
    2023, 22 (6): 1631-1644.   DOI: 10.1016/j.jia.2022.08.035
    Abstract245)      PDF in ScienceDirect      
    The yield of wheat in wheat–rice rotation cropping systems in the Yangtze River Plain, China, is adversely impacted by waterlogging. A raised bed planting (RBP) pattern may reduce waterlogging and increase the wheat yield after rice cultivation by improving the grain number per spike. However, the physiological basis for grain formation under RBP conditions remains poorly understood. The present study was performed over two growing seasons (2018/2019 and 2019/2020) to examine the effects of the planting pattern (i.e., RBP and flat planting (FP)) on the floret and grain formation features and leaf photosynthetic source characteristics of wheat. The results indicated that implementation of the RBP pattern improved the soil–plant nitrogen (N) supply during floret development, which facilitated balanced floret development, resulting in a 9.5% increase in the number of fertile florets per spike. Moreover, the RBP pattern delayed wheat leaf senescence and increased the photosynthetic source capacity by 13.9%, which produced more assimilates for grain filling. Delayed leaf senescence was attributed to the resultant high leaf N content and enhanced antioxidant metabolism. Correspondingly, under RBP conditions, 7.6–8.6% more grains per spike were recorded, and the grain yield was ultimately enhanced by 10.4–12.7%. These results demonstrate that the improvement of the spike differentiation process and the enhancement of the leaf photosynthetic capacity were the main reasons for the increased grain number per spike of wheat under the RBP pattern, and additional improvements in this technique should be achievable through further investigation.
    Reference | Related Articles | Metrics
    A 314-bp SINE Insertion in the ZNF2 promoter region may act as a repressor related to regulation of fat deposition in pigs
    GU Hao, DU Zhan-yu, Eduard MURANI, Enrico D’ALESSANDRO, CHEN Cai, WANG Xiao-yan, MAO Jiu-de, Klaus WIMMERS, SONG Cheng-yi
    2023, 22 (2): 526-536.   DOI: 10.1016/j.jia.2022.08.128
    Abstract240)      PDF in ScienceDirect      

    Retrotransposons, a type of DNA fragment that can mobilize itself on genome, can generate genetic variations and develop for molecular markers based on the insertion polymorphism.  Zinc finger proteins (ZNFs) are among the most abundant proteins in eukaryotic animals, and their functions are extraordinarily diverse and particularly important in gene regulation.  In the current study, bioinformatic prediction was performed to screen for retrotransposon insertion polymorphisms (RIPs) in six ZNF genes (ZNF2, ZNF3, ZNF7, ZNF8, ZNF10 and ZNF12).  Six RIPs in these ZNFs, including one short interspersed nuclear element (SINE) RIP in intron 1 and one long interspersed nuclear element 1 (L1) RIP in intron 3 of ZNF2, one SINE RIP in 5´ flanking region and one SINE RIP in intron 2 of ZNF3, one SINE RIP in 3´ UTR of ZNF7 and one L1 RIP in intron 2 of ZNF12, were discovered and their presence was confirmed by PCR.  The impact of the SINE RIP in the first intron of ZNF2, which is close to the core promoter of ZNF2, on the gene activity was investigated by dual-luciferase assay in three cell lines.  Our results showed that the SINE insertion in the intron 1 of ZNF2 repressed the core promoter activity extremely significantly (P<0.01) in cervical cancer cells and porcine primary embryonic fibroblasts (HeLa and PEF), thus SINE may act as a repressor.  This SINE RIP also significantly (P<0.05) affected the corrected back fat thickness in Yorkshire pigs.  The corrected back fat thickness of individuals with SINE insertion in the first intron of ZNF2 was significantly (P<0.05) higher than that of individuals without SINE insertion.  In summary, our data suggested that RIPs play important roles in the genetic variations of these ZNF genes and SINE RIP in the intron 1 of ZNF2 may provide a useful molecular marker for the screening of fat deposition in the pig breeding.

    Reference | Related Articles | Metrics
    Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin
    CHEN Hong-yan, ZHU Zhu, WANG Xiao-wen, LI Yang-yang, HU Dan-ling, ZHANG Xue-fei, JIA Lu-qi, CUI Zhi-bo, SANG Xian-chun
    2023, 22 (1): 31-40.   DOI: 10.1016/j.jia.2022.08.101
    Abstract237)      PDF in ScienceDirect      
    The trichomes of rice leaves are formed by the differentiation and development of epidermal cells.  Plant trichomes play an important role in stress resistance and protection against direct ultraviolet irradiation.  However, the development of rice trichomes remains poorly understood.  In this study, we conducted ethylmethane sulfonate (EMS)-mediated mutagenesis on the wild-type (WT) indica rice ‘Xida 1B’.  Phenotypic analysis led to the screening of a mutant that is defective in trichome development, designated lhl1 (less hairy leaf 1).  We performed map-based cloning and localized the mutated gene to the 70-kb interval between the molecular markers V-9 and V-10 on chromosome 2.  The locus LOC_Os02g25230 was identified as the candidate gene by sequencing.  We constructed RNA interference (LHL1-RNAi) and overexpression lines (LHL1-OE) to verity the candidate gene.  The leaves of the LHL1-RNAi lines showed the same trichome developmental defects as the lhl1 mutant, whereas the trichome morphology on the leaf surface of the LHL1-OE lines was similar to that of the WT, although the number of trichomes was significantly higher.  Quantitative real-time PCR (RT-qPCR) analysis revealed that the expression levels of auxin-related genes and positive regulators of trichome development in the lhl1 mutant were down-regulated compared with the WT.  Hormone response analysis revealed that LHL1 expression was affected by auxin.  The results indicate that the influence of LHL1 on trichome development in rice leaves may be associated with an auxin pathway.
    Reference | Related Articles | Metrics
    An integrated pest management program for managing fusarium head blight disease in cereals
    CHEN A-hai, Tofazzal ISLAM, MA Zhong-hua
    2022, 21 (12): 3434-3444.   DOI: 10.1016/j.jia.2022.08.053
    Abstract236)      PDF in ScienceDirect      

    Fusarium head blight (FHB) is a worldwide devastating disease of small grain cereals and Fusarium graminearum species complex (FGSC) is the major pathogen causing the disease.  The epidemics of FHB lead to the reduction of grain yield and economic losses.  Additionally, mycotoxins produced by the FHB pathogens are hazardous to the health of human and livestock.  In this review, we summarize the epidemiology of FHB, and introduce effects of this disease on economy, environment and food safety.  We focus on the integrated management approaches for controlling FHB including agronomic practices, resistant cultivars, chemical control, and biocontrol.  In addition, we also discuss the potential novel management strategies against FHB and mycotoxin.


    Reference | Related Articles | Metrics

    OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice

    WANG Fei-bing, WAN Chen-zhong, NIU Hao-fei, QI Ming-yang, LI Gang, ZHANG Fan, HU Lai-bao, YE Yu-xiu, WANG Zun-xin, PEI Bao-lei, CHEN Xin-hong, YUAN Cai-yuan
    2023, 22 (2): 341-359.   DOI: 10.1016/j.jia.2022.08.077
    Abstract232)      PDF in ScienceDirect      

    Drought and salt stresses, the major environmental abiotic stresses in agriculture worldwide, affect plant growth, crop productivity, and quality.  Therefore, developing crops with higher drought and salt tolerance is highly desirable.  This study reported the isolation, biological function, and molecular characterization of a novel maspardin gene, OsMas1, from rice.  The OsMas1 protein was localized to the cytoplasm.  The expression levels of OsMas1 were up-regulated under mannitol, PEG6000, NaCl, and abscisic acid (ABA) treatments in rice.  The OsMas1 gene was introduced into the rice cultivar Zhonghua 11 (wild type, WT).  OsMas1-overexpression (OsMas1-OE) plants exhibited significantly enhanced salt and drought tolerance; in contrast, OsMas1-interference (OsMas1-RNAi) plants exhibited decreased tolerance to salt and drought stresses, compared with WT.  OsMas1-OE plants exhibited enhanced hypersensitivity, while OsMas1-RNAi plants showed less sensitivity to exogenous ABA treatment at both germination and post-germination stages.  ABA, proline and K+ contents and superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and photosynthesis activities were significantly increased.  In contrast, malonaldehyde (MDA), hydrogen peroxide (H2O2), superoxide anion radical (O2-·), and Na+ contents were significantly decreased in OsMas1-OE plants compared with OsMas1-RNAi and WT plants.  Overexpression of OsMas1 up-regulated the genes involved in ABA signaling, proline biosynthesis, reactive oxygen species (ROS)-scavenging system, photosynthesis, and ion transport under salt and drought stresses.  Our results indicate that the OsMas1 gene improves salt and drought tolerance in rice, which may serve as a candidate gene for enhancing crop resistance to abiotic stresses.

    Reference | Related Articles | Metrics
    Substituting nitrogen and phosphorus fertilizer with optimal amount of crop straw improved rice grain yield, nutrient use efficiency and soil carbon sequestration
    XIE Jun, Blagodatskaya EVGENIA, ZHANG Yu, WAN Yu, HU Qi-juan, ZHANG Cheng-ming, WANG Jie, ZHANG Yue-qiang, SHI Xiao-jun
    2022, 21 (11): 3345-3355.   DOI: 10.1016/j.jia.2022.08.059
    Abstract232)      PDF in ScienceDirect      

    Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.  However, the appropriate amount of straw to substitute for fertilizer remains unclear.  A field experiment was performed from 2016 to 2018 to explore the effect of different amounts of straw to substitute for fertilizer on soil properties, soil organic carbon (SOC) storage, grain yield, yield components, nitrogen (N) use efficiency, phosphorus (P) use efficiency, N surplus, and P surplus after rice harvesting.  Relative to mineral fertilization alone, straw substitution at 5 t ha–1 improved the number of spikelets per panicle, effective panicle, seed setting rate, 1 000-grain weight, and grain yield, and also increased the aboveground N and P uptake in rice.  Straw substitution exceeding 2.5 t ha–1 increased the soil available N, P, and K concentrations as compared with mineral fertilization, and different amounts of straw substitution improved SOC storage compared with mineral fertilization.  Furthermore, straw substitution at 5 t ha–1 decreased the N surplus and P surplus by up to 68.3 and 28.9%, respectively, compared to mineral fertilization.  Rice aboveground N and P uptake and soil properties together contributed 19.3% to the variation in rice grain yield and yield components.  Straw substitution at 5 t ha–1, an optimal fertilization regime, improved soil properties, SOC storage, grain yield, yield components, N use efficiency (NUE), and P use efficiency (PUE) while simultaneously decreasing the risk of environmental contamination.

    Reference | Related Articles | Metrics
    Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth
    CHEN Zhe, REN Wei, YI Xia, LI Qiang, CAI Hong-guang, Farhan ALI, YUAN Li-xing, MI Guo-hua, PAN Qing-chun, CHEN Fan-jun
    2023, 22 (1): 235-250.   DOI: 10.1016/j.jia.2022.07.003
    Abstract227)      PDF in ScienceDirect      

    Nitrogen (N) is unevenly distributed throughout the soil and plant roots proliferate in N-rich soil patches.  However, the relationship between the root response to localized N supply and maize N uptake efficiency among different genotypes is unclear.  In this study, four maize varieties were evaluated to explore genotypic differences in the root response to local N application in relation to N uptake.  A split-root system was established for hydroponically-grown plants and two methods of local N application (local banding and local dotting) were examined in the field.  Genotypic differences in the root length response to N were highly correlated between the hydroponic and field conditions (r>0.99).  Genotypes showing high response to N, ZD958, XY335 and XF32D22, showed 50‒63% longer lateral root length and 36‒53% greater root biomass in N-rich regions under hydroponic conditions, while the LY13 genotype did not respond to N.  Under field conditions, the root length of the high-response genotypes was found to increase by 66‒75% at 40‒60 cm soil depth, while LY13 showed smaller changes in root length.  In addition, local N application increased N uptake at the post-silking stage by 16‒88% in the high-response genotypes and increased the grain yield of ZD958 by 10‒12%.  Moreover, yield was positively correlated with root length at 40‒60 cm soil depth (r=0.39).  We conclude that local fertilization should be used for high-response genotypes, which can be rapidly identified at the seedling stage, and selection for “local-N responsive roots” can be a promising trait in maize breeding for high nitrogen uptake efficiency.  


    Reference | Related Articles | Metrics