Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2295-2305    DOI: 10.1016/j.jia.2023.02.006
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)
GUO Bao-jian1, 2*, SUN Hong-wei1*, QI Jiang1, HUANG Xin-yu1, HONG Yi1, HOU Jian1LÜ Chao1, WANG Yu-lin2, WANG Fei-fei1, ZHU Juan1, GUO Gang-gang3, XU Ru-gen1
1 Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics, Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P.R.China
2 State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement/Tibet Academy of Agricultural and Animal Husbandry Sciences (TAAAS), Lhasa 850002, P.R.China
3 Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture/National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在高等植物中,茎尖分生组织以规则的间隔(叶序)和时间(叶间期)生成侧生器官。对叶序和叶间期相关突变体分析将加深对植物茎尖结构发育机制的理解。本研究中,扬农啤5EMS诱变获得一个出叶速率变快、节间数目增多和矮化突变体,命名为mnd8ynp5。利用图位克隆的方法,mnd8基因定位于5H染色体长臂6.7kb的基因组区间。序列分析表明,HORVU5Hr1G118820在第一个外显子953位发生了CT单核苷酸突变,导致编码蛋白第318位氨基酸由丙氨酸(Ala)变为缬氨酸(Val)。HORVU5Hr1G118820作为MND8基因的候选基因,编码514个氨基酸,包含两个多药和有毒化合物挤压结构域(MATE),与玉米Bige1高度同源,具有通过控制叶片起始速率来调控植物发育的保守功能。现代大麦品种单倍型分析表明,Hap-1是被全世界大麦育种中应用的主要单倍型。总之,mnd8ynp5作为HORVU5Hr1G118820基因的新等位基因,调控了大麦叶间期和矮秆多节表型。



Abstract  In higher plants, the shoot apical meristem produces lateral organs in a regular spacing (phyllotaxy) and timing (plastochron).  The molecular analysis of mutants associated with phyllotaxy and plastochron would increase our understanding of the mechanism of shoot architecture formation.  In this study, we identified mutant mnd8ynp5 that shows an increased rate of leaf emergence and a larger number of nodes in combination with a dwarfed growth habit from an EMS-treated population of the elite barley cultivar Yangnongpi 5.  Using a map-based cloning strategy, the mnd8 gene was narrowed down to a 6.7-kb genomic interval on the long arm of chromosome 5H.  Sequence analysis revealed that a C to T single-nucleotide mutation occurred at the first exon (position 953) of HORVU5Hr1G118820, leading to an alanine (Ala) to valine (Val) substitution at the 318th amino acid site.  Next, HORVU5Hr1G118820 was defined as the candidate gene of MND8 encoding 514 amino acids and containing two multidrug and toxic compound extrusion (MATE) domains.  It is highly homologous to maize Bige1 and has a conserved function in the regulation of plant development by controlling the leaf initiation rate.  Examination of modern barely varieties showed that Hap-1 was the dominant haplotype and was selected in barley breeding around the world.  Collectively, our results indicated that mnd8ynp5 is a novel allele of the HORVU5Hr1G118820 gene that is possibly responsible for the shortened plastochron and many noded dwarf phenotype in barley.
Keywords:  barley       EMS        plastochron        many noded dwarf        MATE transporter        shoot architecture  
Received: 28 August 2022   Accepted: 10 November 2022
Fund: 

This work was funded by the Open Project Program of State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement, China (XZNKY-2021-C-014-K01), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA560005), the China Agriculture Research System (CARS-05), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

About author:  GUO Bao-jian, E-mail: bjguo@yzu.edu.cn; SUN Hong-wei, E-mail: 2939067986@qq.com; #Correspondence XU Ru-gen, Tel: +86-514-87979254, E-mail: rgxu@yzu.edu.cn * These authors contributed equally to this study.

Cite this article: 

GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen. 2023. A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.). Journal of Integrative Agriculture, 22(8): 2295-2305.

Caldwell D G, Mccallum N, Shaw P, Muehlbauer G J, Marshall D F, Waugh R. 2004. A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant Journal40, 143–150.

Clarke J D. 2009. Cetyltrimethyl Ammonium Bromide (CTAB) DNA Miniprep for Plant DNA IsolationCold Spring Harbor Protocols. Issue 3, vol. 4. Cold Spring Harbor Laboratory Press, New York, America.

Feng G N, Zhang C Q, Zhao D S, Zhu K Z, Tu H Z, Xu C W, Liu Q Q. 2013. Fine mapping and cloning of leafy head mutant gene pla1–5 in rice. Rice Science20, 329–335.

Finn R D, Clements J, Arndt W, Miller B, Wheeler T J, Schreiber F, Bateman A, Eddy S R. 2015. HMMER web server: 2015 update. Nucleic Acids Research43, W30–W38.

Guo B J, Qi J, Li D F, Sun H W, Lv C, Wang F F, Zhu J, Guo G G, Xu R G. 2022. Genetic analysis and gene mapping of a dwarf and liguleless mutation in barley. The Crop Journal10, 1094–1102.

Hibara K, Miya M, Benvenuto S A, Matsuo N H, Mimura M, Toshikawa T, Suzuki M, Kusaba M, Taketa S, Ltoh J I. 2021. Regulation of the plastochron by three many noded dwarf genes in barley. PLoS Genetics17, e1009292.

Huang J J, An W J, Wang K J, Jiang T H, Ren Q, Liang W H, Wang H H. 2019. Expression profile analysis of MATE gene family in rice. Biologia Plantarum63, 556–564.

Itoh J I, Hasegawa A, Kitano H, Nagato Y. 1998. A recessive heterochronic mutation, plastochron1, shortens the plastochron and elongates the vegetative phase in rice. Plant Cell10, 1511–1521.

Jayakodi M, Padmarasu S, Haberer G, Bonthala V S, Gundlach H, Monat C, Lux T, Kamal N, Lang D, Himmelbach A, Ens J, Zhang X, Angessa T T, Zhou G, Tan C, Hill C, Wang P, Schreiber M, Boston L B, Plott C, et al. 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature588, 284–289.

Kawakatsu T, Itoh J I, Miyoshi K, Kurate N, Alvarez N, Veit B, Nagato Y. 2006. PLASTOCHRON2 regulates leaf initiation and maturation in rice. Plant Cell18, 612–625.

Kawakatsu T, Taramino G, Itoh J I, Allen J, Sato Y, Hong S K, Yule R, Nagasawa N, Kojima M, Kusaba M, Sakakibara H, Sakai H, Nagato Y. 2009. PLASTOCHRON3/GOLIATH encodes a glutamate carboxypeptidase required for proper development in rice. Plant Journal58, 1028–1040.

Liu R, Hou J, Li H, Xu P, Zhang Z, Zhang X. 2021. Association of TaD14–4D, a gene involved in strigolactone signaling, with yield contributing traits in wheat. International Journal of Molecular Sciences22, 3748.

Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S O, Wicker T, Radchuk V, Dockter C, Hedley P E, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X Q, Zhang Q, Barrero R A, Li L, Taudien S, Groth M, et al. 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature544, 427–433.

Mascher M, Jost M, Kuon J E, Himmelbach A, Abfalg A, Beier S, Scholz U, Graner A, Stein N. 2014. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biology15, 1–15.

McSteen P, Leyser O. 2005. Shoot branching. Annual Review of Plant Biology56, 353–374.

Mimura M, Itoh J. 2014. Genetic interaction between rice PLASTOCHRON genes and the gibberellin pathway in leaf development. Rice7, 25.

Mimura M, Nagato Y, Itoh J. 2012. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway. Planta235, 1081–1089.

Miyoshi K, Ahn B O, Kawakatsu T, Nori K. 2004. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proceedings of the National Academy of Sciences of the United States of America101, 875–880.

Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannanh L C, Kojima M, Sakakibara H, Mccarty D R. 2008. The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiology146, 1193–1206.

Suzuki M, Sato Y, Wu S, Kang B H, Mccarty D R. 2015. Conserved functions of the MATE transporter BIG EMBRYO1 in regulation of lateral organ size and initiation rate. Plant Cell27, 2288–2300.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution30, 2725–2729.

Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research25, 4876–4882.

Traas J. 2013. Phyllotaxis. Development140, 249–253.

Veit B, Briggs S P, Schmidt R J, Yanofsky M F, Hake S. 1998. Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature393, 166–168.

Walla A, Wilma E G, Kirschner G K, Guo G G, Brunje A, Finkemeier I, Simon R, Korff M V. 2020. An acyl-CoA N-acyltransferase regulates meristem phase change and plant architecture in barley. Plant Physiology183, 1088–1109.

Wang B, Smith S M, Li J Y. 2018. Genetic regulation of shoot architecture. Annual Review of Plant Biology69, 437–471.

Xiong G S, Hu X M, Jiao Y Q, Yu Y C, Chu C C, Li J Y, Qian Q, Wang Y H. 2006. LEAFY HEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Cell Research16, 267–276.

[1] Asad RIAZ, Ahmad M. ALQUDAH, Farah KANWAL, Klaus PILLEN, YE Ling-zhen, DAI Fei, ZHANG Guo-ping. Advances in studies on the physiological and molecular regulation of barley tillering[J]. >Journal of Integrative Agriculture, 2023, 22(1): 1-13.
[2] Yan Jia-hui, Jia Jian-ping, JIANG Li-ling, Peng De-liang, Liu Shi-ming, Hou Sheng-ying, YU Jing-wen, Li Hui-xia, Huang Wen-kun. Resistance of barley varieties to Heterodera avenae in the Qinghai–Tibet Plateau, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1401-1413.
[3] XING Ting-ting, CAI An-dong, LU Chang-ai, YE Hong-ling, WU Hong-liang, HUAI Sheng-chang, WANG Jin-yu, XU Ming-gang, LIN Qi-mei . Increasing soil microbial biomass nitrogen in crop rotation systems by improving nitrogen resources under nitrogen application[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1488-1500.
[4] HONG Ye, ZHANG Guo-ping. The influence of drought stress on malt quality traits of the wild and cultivated barleys[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2009-2015.
[5] NI sheng-jing, ZHAO Hui-fang, ZHANG Guo-ping. Effects of post-heading high temperature on some quality traits of malt barley[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2674-2679.
[6] May Oo kHINE, brozenká MICHAELA, LIU Yan, Jiban kumar kUNDU, WANG Xi-feng. Molecular diversity of barley yellow dwarf virus-PAV from China and the Czech Republic[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2736-2745.
[7] GAO Shang-qing, CHEN Guang-deng, HU De-yi, ZHANG Xi-zhou, LI Ting-xuan, LIU Shi-hang, LIU Chun-ji. A major quantitative trait locus controlling phosphorus utilization efficiency under different phytate-P conditions at vegetative stage in barley[J]. >Journal of Integrative Agriculture, 2018, 17(2): 285-295.
[8] WANG Xiao-dong, BI Wei-shuai, GAO Jing, YU Xiu-mei, WANG Hai-yan, LIU Da-qun. Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2468-2476.
[9] LUO Shu-jie, KONG Ling-an, PENG Huan, HUANG Wen-kun, CUI Jiang-kuan, LIU Jing, QIAO Fen, JIAN Heng, PENG De-liang . Golden Promise barley (Hordeum vulgare) is a suitable candidate model host for investigation interaction with Heterodera avenae[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1537-1546.
[10] Jawad Munawar Shah, Syed Asad Hussain Bukhari, ZENG Jian-bin, QUAN Xiao-yan, Essa Ali, Noor Muhammad, ZHANG Guo-ping . Nitrogen (N) metabolism related enzyme activities, cell ultrastructure and nutrient contents as affected by N level and barley genotype[J]. >Journal of Integrative Agriculture, 2017, 16(01): 190-198.
[11] Jan Bocianowski, Katarzyna Górczak, Kamila Nowosad, Wojciech Rybiński, Dariusz Piesik. Path analysis and estimation of additive and epistatic gene effects of barley SSD lines[J]. >Journal of Integrative Agriculture, 2016, 15(9): 1983-1990.
[12] ZHOU Yu, CHAO Gui-mei, LIU Jia-jia, ZHU Ming-qi, WANG Yang, FENG Bai-li. Genetic diversity of Ustilago hordei in Tibetan areas as revealed by RAPD and SSR[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2299-2308.
[13] Pietro D Spanu. Messages from Powdery Mildew DNA: How the Interplay with a Host Moulds Pathogen Genomes[J]. >Journal of Integrative Agriculture, 2014, 13(2): 233-236.
[14] Roger Wise, Priyanka Surana, Greg Fuerst, Ruo Xu, Divya Mistry, Julie Dickerson. Flor Revisited (Again): eQTL and Mutational Analysis of NB-LRR Mediated Immunity to Powdery Mildew in Barley[J]. >Journal of Integrative Agriculture, 2014, 13(2): 237-243.
[15] ZHANG Xiao-qin, XUE Da-wei, WU Fei-bo , ZHANG Guo-ping. Genotypic and Environmental Variations of Arabinoxylan Content and Endoxylanase Activity in Barley Grains[J]. >Journal of Integrative Agriculture, 2013, 12(8): 1489-1494.
No Suggested Reading articles found!