Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2359-2369    DOI: 10.1016/j.jia.2023.02.002
Special Issue: 小麦耕作栽培Wheat Physiology · Biochemistry · Cultivation · Tillage
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes
CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long#, HE Ming-rong#

State Key Laboratory of Crop Biology/Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs/Agronomy College, Shandong Agricultural University, Tai’an 271018, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

业已证明,延迟播期显著影响小麦产量、产量构成因素和籽粒蛋白质含量。然而,延迟播期对小麦不同穗粒位粒数、粒重和蛋白质含量的影响尚不明确。本研究以冬小麦品种山农30为试验材料,在2019-2022年连续2个小麦生育季,分别设置108日(正常播期)和1022日(延迟播期2个播期,研究了小麦不同穗粒位粒数、粒重和蛋白质含量在播期间的差异。研究结果表明,延迟播期增加了13C同化物向穗部,尤其是顶部穗位和各小穗远端粒位的分配,进而提高了各穗位结实粒数,其中上部穗位增幅最高,基部和中部穗位次之。延迟播期对基部和中部穗位强势粒结实粒数均无显著影响,但显著提高了上部穗位强势粒结实粒数和各穗位弱势粒结实粒数。各穗粒位平均粒重在两播期间无显著差异,这主要与延迟播期后各穗粒位结实粒数的增幅与13C同化物分配量的增幅相近有关。延迟播期提高了单位面积粒数但籽粒氮素积累量保持不变,进而降低了籽粒蛋白质含量,其中基部穗位降幅最高,中部和顶部穗位次之,但蛋白质含量的降幅在强势粒和弱势粒之间并无显著差异。综上所述,播期延迟2周可通过增加顶部穗位和各穗位远端粒位结实粒数进而提高穗粒数和产量,但单位面积粒数的增加和氮素吸收量的不足导致了各穗粒位籽粒蛋白质含量的降低。



Abstract  

Delays in sowing have significant effects on the grain yield, yield components, and grain protein concentrations of winter wheat.  However, little is known about how delayed sowing affects these characteristics at different positions in the wheat spikes.  In this study, the effects of sowing date were investigated in a winter wheat cultivar, Shannong 30, which was sown in 2019 and 2020 on October 8 (normal sowing) and October 22 (late sowing) under field conditions.  Delayed sowing increased the partitioning of 13C-assimilates to spikes, particularly to florets at the apical section of a spike and those occupying distal positions on the same spikelet.  Consequently, the increase in grain number was the greatest for the apical sections, followed by the basal and central sections.  No significant differences were observed between sowing dates in the superior grain number in the basal and central sections, while the number in apical sections was significantly different.  The number of inferior grains in each section also increased substantially in response to delayed sowing.  The average grain weights in all sections remained unchanged under delayed sowing because there were parallel increases in grain number and 13C-assimilate partitioning to grains at specific positions in the spikes.  Increases in grain number m–2 resulted in reduced grain protein concentrations as the limited nitrogen supply was diluted into more grains.  Delayed sowing caused the greatest reduction in grain protein concentration in the basal sections, followed by the central and apical sections.  No significant differences in the reduction of the grain protein concentration were observed between the inferior and superior grains under delayed sowing.  In conclusion, a 2-week delay in sowing improved grain yield through increased grain number per spike, which originated principally from an increased grain number in the apical sections of spikes and in distal positions on the same spikelet.  However, grain protein concentrations declined in each section because of the increased grain number and reduced N uptake.

Keywords:  wheat       delay in sowing       grain number       grain weight       grain protein concentration  
Received: 19 September 2020   Accepted: 10 November 2023
Fund: 

Financial support was received from the National Key Research and Development Program of China (2016YFD0300403 and 2017YFD0201705).

About author:  CHU Jin-peng, Tel: +86-538-8249796, E-mail: JPchu@sdau.edu.cn; #Correspondence DAI Xing-long, Tel: +86-538-8244018, Fax: +86-538-8242226, E-mail: adaisdny@163.com; HE Ming-rong, Tel: +86-538-8244018, Fax: +86-538-8242226, E-mail: mrhe@sdau.edu.cn

Cite this article: 

CHU Jin-peng, GUO Xin-hu, ZHENG Fei-na, ZHANG Xiu, DAI Xing-long, HE Ming-rong. 2023. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes. Journal of Integrative Agriculture, 22(8): 2359-2369.

Abdullah M, Aziz-ur-Rehman, Ahmad N, Rasul I. 2007. Planting time effect on grain and quality characteristics of wheat. Pakistan Journal of Agricultural Sciences44, 200–202.

Acreche M M, Slafer G A. 2009. Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. Journal of Agricultural Science147, 657–667.

Akmal M, Shah S M, Asim M, Arif M. 2011. Causes of yield reduction by delayed planting of hexaploid wheat in Pakistan. Pakistan Journal of Botany43, 2561–2568.

Alvarez-Prado S, Gallardo J M, Kruk B C, Miralles D J. 2017. Strategies for yield determination of bread wheat and two-row barley growing under different environments: A comparative study. Field Crops Research203, 94–105.

Backhaus A E, Lister A, Tomkins M, Adamski N M, Simmonds J, Macaulay I, Morris R J, Haerty W, Uauy C. 2022. High expression of the MADS-box gene VRT2 increases the number of rudimentary basal spikelets in wheat. Plant Physiology189, 1536–1552.

Bagulho A S, Costa R, Almeida A S, Pinheiro N, Moreira J, Gomes C, Coco J, Costa A, Coutinho J, Macas B. 2015. Influence of year and sowing date on bread wheat quality under Mediterranean conditions. Emirates Journal of Food and Agriculture27, 186–199.

Barbottin A, Lecomte C, Bouchard C, Jeuffroy M. 2005. Nitrogen remobilization during grain filling in wheat: Genotypic and environmental effects. Crop Science45, 1141–1150.

Barneix A J. 2007. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. Journal of Plant Physiology164, 581–590.

Borras L, Slafer G A, Otegui M E. 2004. Seed dry weight response to source–sink manipulations in wheat, maize and soybean: A quantitative reappraisal. Field Crops Research86, 131–146.

Boz H, Gercekaslan K E, Karaoğlu M M, Kotancilar H G. 2012. Differences in some physical and chemical properties of wheat grains from different parts within the spike. Turkish Journal of Agriculture and Forestry36, 309–316.

Bramble T, Herrman T J, Loughin T, Dowell F. 2002. Single kernel protein variance structure in commercial wheat fields in western Kansas. Crop Science42, 1488–1492.

Bremner P M. 1972. Accumulation of dry matter and nitrogen by grains in different positions of the wheat ear as influenced by shading and defoliation. Australian Journal of Biological Sciences25, 657–668.

Bremner P M, Rawson H M. 1978. The weights of individual grains of the wheat ear in relation to their growth potential, the supply of assimilate and interaction between grains. Australian Journal of Plant Physiology5, 61–72.

Bustos D V, Hasan A K, Reynolds M P, Calderini D F. 2013. Combining high grain number and weight through a DH-population to improve grain yield potential of wheat in high-yielding environments. Field Crops Research145, 106–115.

Calderini D F, Ortiz-Monasterio I. 2003. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Science43, 141–151.

Calderini D F, Reynolds M P. 2000. Changes in grain weight as a consequence of de-graining treatments at pre- and post-anthesis in synthetic hexaploid lines of wheat (Triticum durum×T. tauschii). Functional Plant Biology27, 183–191.

Dai X L, Wang Y C, Dong X C, Qian T F, Yin L J, Dong S X, Chu J P, He M R. 2017. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. Crop Journal5, 541–552.

Ding D Y, Feng H, Zhao Y J, He Q, Zou Y F, Jin J M. 2016. Modifying winter wheat sowing date as an adaptation to climate change on the Loess Plateau. Agronomy Journal108, 53–63.

Ehdaie B, Waines J G. 2001. Sowing date and nitrogen rate effects on dry matter and nitrogen partitioning in bread and durum wheat. Field Crops Research73, 47–61.

Feng F, Han Y L, Wang S N, Yin S J, Peng Z Y, Zhou M, Gao W Q, Wen X X, Qin X L, Siddique K H M. 2018. The effect of grain position on genetic improvement of grain number and thousand grain weight in winter wheat in North China. Frontiers in Plant Science9, 129.

Ferrise R, Triossi A, Stratonovitch P, Bindi M, Martre P. 2010. Sowing date and nitrogen fertilization effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Research117, 245–257.

Fois S, Schlichting L, Marchylo B, Dexter J, Motzo R, Giunta F. 2011. Environmental conditions affect semolina quality in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different gluten strength and gluten protein composition. Journal of the Science of Food and Agriculture91, 2664–2673.

Ghiglione H O, González F G, Serrago R, Maldonado S B, Chilcott C, Curá J A, Miralles D J, Zhu T, Casal J J. 2008. Autophagy regulated by day length determines the number of fertile florets in wheat. Plant Journal55, 1010–1024.

González F G, Slafer G A, Miralles D J. 2005. Floret development and survival in wheat plants exposed to contrasting photoperiod and radiation environments during stem elongation. Functional Plant Biology32, 189–197.

Hasan A K, Herrera J, Lizana C, Calderini D F. 2011. Carpel weight, grain length and stabilized grain water content are physiological drivers of grain weight determination of wheat. Field Crops Research123, 241–247.

Herzog H, Stamp P. 1983. Dry matter and nitrogen accumulation in grains at different ear positions in ‘gigas’ semidwarf and normal spring wheats. Euphytica32, 511–520.

Jahan M A H S, Sen R, Ishtiaque S, Choudhury A K, Akhter S, Ahmed F, Biswas J C, Manirruzaman M, Muinnuddin Miah M, Rahman M M, Kalra N. 2018. Optimizing sowing window for wheat cultivation in Bangladesh using CERES-wheat crop simulation model. AgricultureEcosystems and Environment258, 23–29.

Jalota S K, Kaur H, Kaur S, Vashisht B B. 2013. Impact of climate change scenarios on yield, water and nitrogen-balance and -use efficiency of rice–wheat cropping system. Agricultural Water Management116, 29–38.

Kirby E J M. 1988. Analysis of leaf, stem and ear growth in wheat from terminal spikelet stage to anthesis. Field Crops Research18, 127–140.

Li Y, Cui Z Y, Ni Y L, Zheng M J, Yang D Q, Jin M, Chen J, Wang Z L, Yin Y P. 2016. Plant density effect on grain number and weight of two winter wheat cultivars at different spikelet and grain positions. PLoS ONE11, e0155351.

McLeod J G, Campbell C A, Dyck F B, Vera C L. 1992. Optimum seeding dates of winter wheat in southwestern Saskatchewan. Agronomy Journal84, 86–90.

Miralles D J, Slafer G A. 2007. Sink limitations to yield in wheat: how could it be reduced? Journal of Agricultural Science145, 187–194.

Motzo R, Fois S, Giunta F. 2007. Protein content and gluten quality of durum wheat (Triticum turgidum subsp. durum) as affected by sowing date. Journal of the Science of Food and Agriculture87, 1480–1488.

Munier-Jolain N, Salon C. 2005. Are the carbon costs of seed production related to the quantitative and qualitative performance? An appraisal for legumes and other crops. PlantCell and Environment28, 1388–1395.

Ozturk O, Topal A, Akınerdem F, Akgun N. 2008. Effects of sowing and harvesting dates on yield and some quality characteristics of crops in sugar beet/cereal rotation system. Journal of the Science of Food and Agriculture88, 141–150.

Pan J, Jiang D, Cao W X, Sun C F. 2005. Effects of spikelet and grain positions on grain number, weight and protein content of wheat spike. Acta Agronomica Sinica31, 431–437. (in Chinese)

Pei X X, Wang J A, Dang J Y, Wang X B, Zhang D Y. 2008. Effects of spikelet and grain position on fertile spikelet number, grain weight and quality of wheat. Scientia Agricultura Sinica41, 381–390. (in Chinese)

Philipp N, Weichert H, Bohra U, Weschke W, Schulthess A W, Weber H. 2018. Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. PLoS ONE13, e0205452.

Prieto P, Ochagavía H, Savin R, Griffiths S, Slafer G A. 2018. Dynamics of floret initiation/death determining spike fertility in wheat as affected by Ppd genes under field conditions. Journal of Experimental Botany69, 2633–2645.

Qu H J, Li J C, Shen X S, Li R Y, Wei F Z, Zhang Y. 2009. Effects of plant density on grain number and grain weight at different spikelets and grain positions in winter wheat cultivars. Acta Agronomica Sinica35, 1875–1883. (in Chinese)

Qu H J, Li J C, Shen X S, Wei F Z, Wu J D, Ma B. 2011. Effects of all straw returned to the field on grain number and grain weight at different spikelets and grain positions in winter wheat. Scientia Agricultura Sinica44, 2176–2183. (in Chinese)

Rajala A, Peltonen-Sainio P. 2011. Pollination dynamics, grain weight and grain cell number within the inflorescence and spikelet in oat and wheat. Agricultural Sciences2, 283–290.

Rasmussen I S, Thorup-Kristensen K. 2016. Does earlier sowing of winter wheat improve root growth and N uptake? Field Crops Research196, 10–21.

Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G. 2012. Achieving yield gains in wheat. PlantCell and Environment35, 1799–1823.

Sattar A, Cheema M A, Farooq M, Wahid M A, Wahid A, Babar B H. 2010. Evaluating the performance of wheat cultivars under late sown conditions. International Journal of Agriculture and Biology12, 561–565.

Shah F, Coulter J A, Ye C, Wu W. 2020. Yield penalty due to delayed sowing of winter wheat and the mitigatory role of increased seeding rate. European Journal of Agronomy119, 126120.

Sibony M, Pinthus M J. 1988. Floret initiation and development in spring wheat (Triticum aestivum L.). Annals of Botany4, 473–479.

Siddique K H M, Kirby E J M, Perry M W. 1989. Ear: Stem ratio in old and modern wheat varieties; relationship with improvement in number of grains per ear and yield. Field Crops Research21, 59–78.

Simmonds N W. 1995. The relation between yield and protein in cereal grain. Journal of the Science of Food and Agriculture67, 309–315.

Simmons S R, Moss D N. 1978. Nitrogen and dry matter accumulation by kernels formed at specific florets in spikelets of spring wheat. Crop Science18, 139–143.

Singh N, Virdi A S, Katyal M, Kaur A, Kaur D, Ahlawat A K, Singh A M, Sharma R K. 2021. Evaluation of heat stress through delayed sowing on physicochemical and functional characteristics of grains, whole meals and flours of India wheat. Food Chemistry344, 128725.

Slafer G A, Andrade F H, Feingold S E. 1990. Genetic improvement of bread wheat (Triticum aestivum L.) in Argentina: Relationships between nitrogen and dry matter. Euphytica50, 63–71.

Slafer G A, Andrade F H. 1993. Physiological attributes to the generation of grain yield in bread wheat cultivars released at different eras. Field Crops Research, 31, 351–367.

Slafer G A, Savin R. 1994. Source–sink relationships and grain mass at different positions within the spike in wheat. Field Crops Research37, 39–49.

Spink J H, Semere T, Sparkes D L, Whaley J M, Foulkes M J, Clare R W, Scott R K. 2000. Effect of sowing date on the optimum plant density of winter wheat. Annals of Applied Biology137, 179–188.

Stoddard F L. 1999. Variation in grain mass, grain nitrogen, and starch B-granule content within wheat heads. Cereal Chemistry76, 139–144.

Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M. 2007. Effects of harvest and sowing time on the performance of the rotation of winter wheat–summer maize in the North China Plain. Industrial Crops and Products25, 239–247.

Waddington S R , Cartwright P M, Wall P C. 1983. A quantitative scale of spike initial and pistil development in barley and wheat. Annals of Botany1, 119–130.

Weiss A, Hays C J, Won J. 2003. Assessing winter wheat responses to climate change scenarios: A simulation study in the U.S. Great Plains. Climatic Change58, 119–148.

Wu X L, Liu M, Li C S, Allen D M, Li M, Xiong T, Liu Y B, Tang Y L. 2022. Source–sink relations and responses to sink–source manipulations during grain filling in wheat. Journal of Integrative Agriculture21, 1593–1605.

Wu W, Li C J, Ma B L, Shah F, Liu Y, Liao Y. 2014. Genetic progress in wheat yield and associated traits in China since 1945 and future prospects. Euphytica196, 155–168.

Xiao D P, Tao F L, Liu Y J, Shi W J, Wang M, Liu F S, Zhang S, Zhu Z. 2013. Observed changes in winter wheat phenology in the North China Plain for 1981–2009. International Journal of Biometeorology57, 275–285.

Xie Q, Mayes S, Sparkes D L. 2015. Carpel size, grain filling, and morphology determine individual grain weight in wheat. Journal of Experimental Botany66, 6715–6730.

Xu H C, Cai T, Wang Z L, He M R. 2015. Physiological basis for the differences of productive capacity among tillers in winter wheat. Journal of Integrative Agriculture14, 1958–1970.

Yajam S, Madani H. 2013. Delay sowing date and its effect on Iranian winter wheat cultivars yield and yield components. Journal of Biological Research4, 270–275.

Yao F M, Li Q Y, Zeng R Y, Shi S Q. 2021. Effects of different agricultural treatments on narrowing winter wheat yield gap and nitrogen use efficiency in China. Journal of Integrative Agriculture20, 383–394.

Yin L J, Dai X L, He M R. 2018. Delayed sowing improves nitrogen utilization efficiency in winter wheat without impacting yield. Field Crops Research221, 90–97.

Yin L JXu H C, Dong S X, Chu J P, Dai X L, He M R. 2019. Optimised nitrogen allocation favours improvement in canopy photosynthetic nitrogen-use efficiency: Evidence from late-sown winter wheat. Environmental and Experimental Botany159, 75–86.

Youssefian S, Kirby E J M, Gale M D. 1992. Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 1. Effects on development of the ear, stem and leaves. Field Crops Research28, 179–190.

Zhang L, Takahashi T, Fujimoto K, Yamaguchi S, Matsuzawa T. 2007. Factors in the reduction in grain number in winter wheat by early-sowing in Yamaguchi. Plant Production Science10, 189–198.

Zhang P P, Chen Y L, Wang C Y, Ma G, Lv J J, Liu J B, Guo T C. 2021. Distribution and accumulation of zinc and nitrogen in wheat grain pearling fractions in response to foliar zinc and soil nitrogen applications. Journal of Integrative Agriculture20, 3277–3288.

Zhu Y G, Chu J P, Dai X L, He M R. 2019. Delayed sowing increases grain number by enhancing spike competition capacity for assimilates in winter wheat. European Journal of Agronomy104, 49–62.

[1] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[2] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[3] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[4] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[5] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[6] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[7] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[8] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[9] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[10] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[11] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[12] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[13] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[14] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[15] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
No Suggested Reading articles found!