Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2591-2601    DOI: 10.1016/j.jia.2022.09.016
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular diagnosis and direct quantification of cereal cyst nematode (Heterodera filipjevi) from field soil using TaqMan real-time PCR
JIAN Jin-zhuo1, 2, HUANG Wen-kun1, KONG Ling-an1, JIAN Heng2, Sulaiman ABDULSALAM1,3, PENG De-liang1, PENG Huan1# 

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

2 Key Laboratory of Plant Pathology of Ministry of Agriculture and Rural Affairs, College of Plant Protection, China Agricultural University, Beijing 100193, P.R.China

3 Division of Agricultural Colleges/Department of Crop Protection, Ahmadu Bello University, Zaria 810107, Nigeria

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

【目的】菲利普孢囊线虫(Heterodera filipjevi)是全球小麦生产上的一种重要病原物,早期快速确的检测对于小麦孢囊线虫病的防控至关重要。本研究基于TaqMan探针法的实时荧光定量PCRreal-time fluorescent quantitative PCR with TaqMan probes, TaqMan-qPCR)技术建立了一种直接从田间土壤中快速检测和定量分析H. filipjevi的方法。【方法】根据 H. filipjeviRAPD-SCAR 序列(KC529338)设计TaqMan-qPCR特异性的引物和探针,利用已鉴定的27个线虫群体DNA进行引物特异性检测利用单条 J2 DNA稀释液(4-0,4-1,4-2,4-3,4-4,4-5,4-6  4-7)和单个雌虫DNA稀释液(10-0,10-1,10-2,10-3,10-4,10-5,10-610-7),以及基因组 DNA 的稀释100 μg.μL-1,10 μg.μL-1,1 μg.μL-1,0.1 μg.μL-1,0.01 μg.μL-1,0.001 μg.μL-1,100 pg.μL-1  10 pg.μL-1引物的灵敏度进行检测。通过人工将不同数量(0.1, 1, 10, 100和1000条) H. filipjevi添加到灭菌土中,建立了线虫数量的对数与CT值的标准曲线和回归方程32份田间土壤样品H. filipjevi数量进行了评估,并对实时荧光定量PCR检测方法与传统定量方法进行了相关性分析。【结果】本研究建立的菲利普孢囊线虫TaqMan-qPCR检测技术具有极高的特异性和灵敏度,能够从13 27 个线虫种群中特异的检测出菲利普孢囊线虫,检测阈值低至4-3单条J2 DNA10-3单条雌虫DNA0.01μg. μL-1基因组DNA田间土壤样品检测发现,实时荧光定量PCR定量检测方法传统定量检测法呈现出较好的线性关系(R²= 0.8259)。【结论】本研究建立的TaqMan-qPCR检测H. filipjevi技术特异性强、灵敏度高,能广泛适用于田间土壤开展H. filipjevi快速检测和定量分析。

Abstract  Heterodera filipjevi continues to be a major threat to wheat production worldwide. Rapid detection and quantification of cyst nematodes are essential for more effective control against this nematode disease. In the present study, a TaqManminor groove binder (TaqMan-MGB) probe-based fluorescence quantitative real-time PCR (qPCR) was successfully developed and used for quantifying H. filipjevi from DNA extracts of soil. The primers and probe designed from the obtained RAPD-SCAR marker fragments of H. filipjevi showed high specificity to H. filipjevi using DNA from isolatesconfirmed species of 23 Heterodera spp., 1 Globodera spp. and 3 Pratylenchus spp. The qPCR assay is highly sensitive and provides improved H. filipjevi detection sensitivity of as low as 4–3 single second-stage juvenile (J2) DNAs, 10–3 female DNAs, and 0.01 μg μL–1 genomic DNAs. A standard curve relating to the threshold cycle and log values of nematode numbers was generated and validated from artificially infested soils and was used to quantify H. filipjevi in naturally infested field soils. There was a high correlation between the H. filipjevi numbers estimated from 32 naturally infested field soils by both conventional methods and the numbers quantified using the qPCR assay. qPCR potentially provides a useful platform for the efficient detection and quantification of H. filipjevi directly from field soils and to quantify this species directly from DNA extracts of field soils
Keywords:  cereal cyst nematode       Heterodera filipjevi       molecular diagnosis       quantification       TaqMan real-time PCR  
Received: 23 March 2022   Accepted: 06 August 2022
Fund: This research was financially supported by the National Natural Science Foundation of China (31972247), the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences (ASTIP-2016-IPP-04), and the Special Fund for Agro-scientific Research in the Public Interest, China (201503114).
About author:  JIAN Jin-zhuo, E-mail:; #Correspondence PENG Huan, Tel: +86-10-62815576, E-mail:

Cite this article: 

JIAN Jin-zhuo, HUANG Wen-kun, KONG Ling-an, JIAN Heng, Sulaiman ABDULSALAM, PENG De-liang, PENG Huan. 2023. Molecular diagnosis and direct quantification of cereal cyst nematode (Heterodera filipjevi) from field soil using TaqMan real-time PCR. Journal of Integrative Agriculture, 22(8): 2591-2601.

Baidoo R, Yan G P. 2021. Developing a real-time PCR assay for direct identification and quantification of soybean cyst nematode, Heterodera glycines, in soil and its discrimination from sugar beet cyst nematode, Heterodera schachtiiPlant Disease105, 3848–3857.

Baidoo R, Yan G P, Nagachandrabose S, Skantar A M. 2017a. Developing a real-time PCR assay for direct identification and quantification of Pratylenchus penetrans in soil. Plant Disease101, 1432–1441.

Baidoo R, Yan G P, Nelson B, Skantar A M, Chen S Y. 2017b. Use of chemical flocculation and nested PCR for Heterodera glycines detection in DNA extracts from field soils with low population densities. Plant Disease101, 1153–1161.

Berry S D, Fargette M, Spaull V W, Morand S, Cadet P. 2008. Detection and quantification of root-knot nematode (Meloidogyne javanica), lesion nematode (Pratylenchus zeae) and dagger nematode (Xiphinema elongatum) parasites of sugarcane using real-time PCR. Molecular and Cellular Probes22, 168–176.

Cui J K, Ren H H, Zhou B, Chen K Y, Peng D L, Li M M, Meng H G, Jiang S J. 2021. First report of Heterodera filipjevi on winter wheat from Hebei Province in North China. Plant Disease105, 1861.

Dababat A A, Erginbas-Orakci G, Toktay H, Imren M, Akin B, Braun H J, Dreisigacker S, Elekcioglu I H, Morgounov A. 2014. Resistance of winter wheat to Heterodera filipjevi in Turkey. Turkish Journal of Agriculture and Forestry38, 180–186.

Dababat A A, Fourie H. 2018. Nematode parasites of cerealsIn: Plant-Parasitic Nematodes in Subtropical and Tropical Agriculture. Commonwealth Agricultural Bureaux International, Wallingford, UK. pp. 163–221.

Dababat A A, Imren M, Erginbas-Orakci G, Ashrafi S, Yavuzaslanoglu E, Toktay H, Pariyar S R, Elekcioglu H I, Morgounov A, Mekete T. 2015. The importance and management strategies of cereal cyst nematodes, Heterodera spp., in Turkey. Euphytica202, 173–188.

Dababat A A, İmren M, Pridannikov M, Ozer G, Zhapayev R, Mokrini F, Otemissova A, Yerimbetova A, Morgounov A. 2020. Plant-parasitic nematodes on cereals in northern Kazakhstan. Journal of Plant Diseases and Protection127, 641–649.

Ding Z, Namphueng J, He X F, Peng D L, Huang W K. 2012. First report of the cyst nematode (Heterodera elachista) on rice in Hunan Province, China. Plant Disease96, 151.

Dong L Q, Zhang K Q. 2006. Microbial control of plant-parasitic nematodes: A five-party interaction. Plant and Soil288, 31–45.

Gasser R B, Newton S E. 2000. Genomic and genetic research on bursate nematodes: Significance, implications and prospects. International Journal for Parasitology30, 509–534.

Goto K, Sato E, Toyota K. 2009. A novel detection method for the soybean cyst nematode Heterodera glycines using soil compaction and real-time PCR. Japanese Journal of Nematology39, 1–7.

Huang D Q, Yan G P, Gudmestad N, Skantar A. 2017. Quantification of Paratrichodorus allius in DNA extracted from soil using TaqMan probe and SYBR Green real-time PCR assays. Nematology19, 987–1001.

Huang D Q, Yan G P. 2017. Specific detection of the root-lesion nematode Pratylenchus scribneri using conventional and real-time PCR. Plant Disease101, 359–365.

Imren M, Waeyenberge L, Koca A S, Duman NYildiz SDababat A A. 2017. Genetic variation and population dynamics of the cereal cyst nematode, Heterodera filipjevi in wheat areas of Bolu, Turkey. Tropical Plant Pathology42, 362–369.

Imren M, Yildiz S, Ciftci V, Dababat A. 2020. Effect of cereal cyst nematode Heterodera filipjevi on wheat yields in Turkey. Turkish Journal of Agriculture and Forestry44, 39–45.

Jenkins W R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Disease Reporter48, 692

Jiang C, Zhang Y D, Yao K, Abdulsalam S, Li G K, Gao H F, Li K M, Huang W K, Kong L A, Peng D L, Peng H. 2021. Development of a species-specific SCAR-PCR assay for direct detection of sugar beet cyst nematode (Heterodera schachtii) from infected roots and soil samples. Life (Basel), 11, 1358.

Karimipour Fard H, Pourjam E, Tanha Maafi Z, Safaie N. 2018. Assessment of yield loss of wheat cultivars caused by Heterodera filipjevi under field conditions. Journal of Phytopathology166, 299–304.

Kumari S, Subbotin S A. 2012. Molecular characterization and diagnostics of stubby root and virus vector nematodes of the family Trichodoridae (Nematoda: Triplonchida) using ribosomal RNA genes. Plant Pathology61, 1021–1031.

Li Y, Lawrence G W, Lu S, Balbalian C, Klink V P. 2014. Quantitative field testing Heterodera glycines from metagenomic DNA samples isolated directly from soil under agronomic production. PLoS ONE9, e89887.

Lopez-Nicora H D, Craig J P, Gao X B, Lambert K N, Niblack T L. 2012. Evaluation of cultivar resistance to soybean cyst nematode with a quantitative polymerase chain reaction assay. Plant Disease96, 1556–1563.

Madani M, Subbotin S A, Moens M. 2005. Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using real-time PCR with SYBR green I dye. Molecular and Cellular Probes19, 81–86.

Mondino E A, Covacevich F, Studdert G A, Pimentel J P, Berbara R L L. 2015. Extracting DNA of nematodes communities from Argentine Pampas agricultural soils. Annals of the Brazilian Academy of Sciences87, 691–697.

Nicol J M, Rivoal R. 2008. Global knowledge and its application for the integrated control and management of nematodes on wheat. In: Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes, vol. 2. Springer, Dordrecht. pp. 243–287.

Okubara P A, Schroeder K L, Paulitz T C. 2008. Identification and quantification of Rhizoctonia solani and Roryzae using real-time polymerase chain reaction. Phytopathology98, 837–847.

Ophel-Keller K, McKay A, Hartley D, Herdina, Curran J. 2008. Development of a routine DNA-based testing service for soilborne diseases in Australia. Australasian Plant Pathology37, 243–253.

Ou S Q, Peng D L, Liu X M, Li Y, Moens M. 2008. Identification of Heterodera glycines using PCR with sequence characterized amplified region (SCAR) primers. Nematology10, 397–403.

Peng D L, Subbotin S A, Moens M. 2003. rDNA restriction fragment length polymorphism of Heterodera avenae in China. Acta Phytopathologica Sinica33, 323–329. (in Chinese)

Peng D L, Ye W X, Peng H, Gu X C. 2010. First report of the cyst nematode (Heterodera filipjevi) on wheat in Henan Province, China. Plant Disease94, 1262.

Peng H, Li X, Cui J K, Peng D L, Huang W K, He W T, L A. 2016. First report of cereal cyst nematode, Heterodera filipjevi, on winter wheat from Anhui province, China. Plant Disease100, 536.

Peng H, Qi X L, Peng D L, Long H B, He X F, Huang W K, He W T. 2013. Sensitive and direct detection of Heterodera filipjevi in soil and wheat roots by species-specific SCAR-PCR assays. Plant Disease97, 1288–1294.

Peng H, Zhang Y D, Cui J K, Huang W K, Kong L A, He W T, D L. 2018. First report of cereal cyst nematode (Heterodera filipjevi) on winter wheat in Xinjiang Uygur Autonomous Region, China. Plant Disease102, 454.

Qi X L, Peng D L, Peng H, Long H B, He W T. 2012. Rapid molecular diagnosis based on SCAR marker system for cereal cyst nematode. Scientia Agricultura Sinica45, 4388–4395. (in Chinese)

Qin X, Wang Y D, Li H M, Li R, Wang X. 2020. Molecular identification and geographical distribution of Pratylenchus species on wheat in China. Journal of Triticeae Crops40, 251–259. (in Chinese)

Rivoal R, Valette S, Bekal S, Gauthier J P, Yahyaoui A. 2003. Genetic and phenotypic diversity in the graminaceous cyst nematode complex, inferred from PCR-RFLP of ribosomal DNA and morphometric analysis. European Journal of Plant Pathology109, 227–241.

Sato E, Min Y Y, Shirakashi T, Wada S, Toyota K. 2007. Detection of the root-lesion nematode, Pratylenchus penetrans (Cobb), in a nematode community using real-time PCR. Nematological Research37, 87–92.

Schroeder K L, Okubara P A, Tambong J T, Lévesque C A, Paulitz T C. 2006. Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Phytopathology96, 637–647.

Thompson J, Brendler A, Staines H, Salmond R, Bezginova T, Palfreyman J, Krivtsov V. 2002. Comparison of two methods for nematode extraction. In: IV International Nematology Symposium. Brill, Tenerife, Spain. pp. 79-80.

Toumi F, Waeyenberge L, Viaene N, Dababat A, Nicol J M, Ogbonnaya F, Moens M. 2013. Development of two species-specific primer sets to detect the cereal cyst nematodes Heterodera avenae and Heterodera filipjeviEuropean Journal of Plant Pathology136, 613–624.

Wang X, Liang Z W, Pei S A, Le X H, Peng D L. 2010. Sequences analysis of rDNA-ITS region of cereal cyst nematodes on wheat from Jiangsu Province. Journal of Nanjing Agricultural University33, 55–62. (in Chinese)

Wu H Y, Qiu Z Q, Mo A S, Li J Q, Peng D L. 2017. First report of Heterodera zeae on maize in China. Plant Disease101, 1330–1330.

Yan G P, Smiley R W, Okubara P A. 2012. Detection and quantification of Pratylenchus thornei in DNA extracted from soil using real-time PCR. Phytopathology102, 14–22.

Yan G P, Smiley R W, Okubara P A, Skantar A M. 2013. Species-specific PCR assays for differentiating Heterodera filipjevi and HavenaePlant Disease97, 1611–1619.

Ye W M. 2012. Development of primetime-real-time PCR for species identification of soybean cyst nematode (Heterodera glycines Ichinohe, 1952) in North Carolina. Journal of Nematology44, 284–290.

Zhen H Y, Peng H, Zhao H H, Qi Y H. 2018. First report of cereal cyst nematode (Heterodera filipjevi) on winter wheat in Shandong Province, China. Journal of Integrative Agriculture17, 1912–1913.

[1] ZHANG Yong-fang, ZHANG Chun-yan, ZHANG Bo, YIN Man, HONG Hui-long, YU Li-li, GAO Hua-wei, GU Yong-zhe, LIU Zhang-xiong, LI Fu-heng, QIU Li-juan. Establishment and application of an accurate identification method for fragrant soybeans[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1193-1203.
[2] CHEN Chang-long, LIU Shu-sen, LIU Qian, NIU Jun-hai, LIU Pei, ZHAO Jian-long, LIU Zhi-yong, LI Hong-jie, JIAN Heng . Host status of Brachypodium distachyon to the cereal cyst nematode[J]. >Journal of Integrative Agriculture, 2018, 17(2): 381-388.
[3] LI Qiang, WANG Zheng-rui, LI Ding, WEI Jian-wei, QIAO Wen-chen, MENG Xiang-hai, SUN Shu-luan, LI Hui-min, ZHAO Ming-hui, CHEN Xiu-min, ZHAO Feng-wu. Evaluation of a new method for quantification of heat tolerance in different wheat cultivars[J]. >Journal of Integrative Agriculture, 2018, 17(04): 786-795.
[4] CUI Yong, YANG Ming-ming, DONG Jian, ZHAO Wan-chun, GAO Xiang. iTRAQ-based quantitative proteome characterization of wheat grains during filling stages[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2156-2167.
[5] CUI Jiang-kuan, PENG Huan, LIU Shi-ming, Gul Erginbas Orakci, HUANG Wen-kun, Mustafa Imren, Abdelfattah Amer Dababat, PENG De-liang . Occurrence, identification and phylogenetic analyses of cereal cyst nematodes (Heterodera spp.) in Turkey[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1767-1776.
[6] Farzad Aslani, Abdul Shukor Juraimi, Muhammad Saiful Ahmad-Hamdani, Farahnaz Sadat Golestan Hashemi, Md Amirul Alam, Md Abdul Hakim, Md Kamal Uddin. Effects of Tinospora tuberculata leaf methanol extract on seedling growth of rice and associated weed species in hydroponic culture[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1521-1531.
[7] WEI Yan-di, PEI Xing-yao, ZHANG Yuan, YU Chen-fang, SUN Hong-lei, LIU Jin-hua, PU Juan. Nested RT-PCR method for the detection of European avian-like H1 swine influenza A virus[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1095-1102.
[8] CUI Jiang-kuan, HUANG Wen-kun, PENG Huan, LIU Shi-ming, WANG Gao-feng, KONG Lin-an, PENG De-liang. A new pathotype characterization of Daxing and Huangyuan populations of cereal cyst nematode (Heterodera avenae) in China[J]. >Journal of Integrative Agriculture, 2015, 14(4): 724-731.
No Suggested Reading articles found!