Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (8): 2306-2322    DOI: 10.1016/j.jia.2023.01.002
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers
GUO Kai1*, GAO Wei2*, ZHANG Tao-rui1, WANG Zu-ying1, SUN Xiao-ting1, YANG Peng1, LONG Lu2, LIU Xue-ying1, WANG Wen-wen1, TENG Zhong-hua1, LIU Da-jun1, LIU De-xin1, TU Li-li3, ZHANG Zheng-sheng1#
1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, P.R.China
2 State Key Laboratory of Cotton Biology/Henan Key Laboratory of Plant Stress Biology/School of Life Sciences, Henan University,
Kaifeng 475001, P.R.China
3 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

Ca2+离子在维持细胞壁以及细胞膜的完整性中具有重要作用,是植物生长和发育中必不可少的矿质营养元素之一。解析Ca2+离子在糖代谢和脂代谢中的作用能够为理解棉花纤维快速伸长阶段细胞膜和细胞壁的动态变化提供有意义的参考。本研究利用胚珠培养系统发现缺Ca2+会促进纤维和胚珠细胞的膨大,但同时也会诱导组织的褐化。RNA-seq差异表达基因分析发现缺Ca2+使细胞处于一个较高的氧化态,并且激活与糖代谢和脂代谢相关的基因的表达。尤其以糖酵解途径变化最为显著,其代谢途径中的9个酶相关的基因上调表达,缺Ca2+处理细胞中的葡萄糖含量显著下降,改变了糖酵解途径的流动。低K+能够恢复缺Ca2+诱导糖酵解途径相关基因的表达以及葡萄糖的含量。采用电喷雾电离串联质谱技术检测了不同Ca2+K+离子处理条件下细胞中脂质组成分的动态变化。缺Ca2+处理细胞中自由脂肪酸(FA)、二酰甘油(DAG)和糖脂含量降低,三酰甘油(DAG)磷脂酰乙醇胺(PE)、磷脂酰甘油(PG)、磷脂酰胆碱(PC含量增加。低K+与缺Ca2+的互作信号能够恢复FA、磷脂、糖脂含量至正常水平,有效缓解缺Ca2+效应。本研究通过在转录和代谢水平的比较分析,揭示了Ca2+K+信号互作在维持纤维快速伸长过程中糖酵解和脂代谢中发挥着重要作用。



Abstract  Calcium (Ca2+) plays an important role in determining plant growth and development because it maintains cell wall and
membrane integrity. Therefore, understanding the role of Ca2+ in carbon and lipid metabolism could provide insights
into the dynamic changes in cell membranes and cell walls during the rapid elongation of cotton fibers. In the present
study, we found that the lack of Ca2+ promoted fiber elongation and rapid ovule expansion, but it also caused tissue
browning in the ovule culture system. RNA-sequencing revealed that Ca2+ deficiency induced cells to be highly oxidized,
and the expression of genes related to carbon metabolism and lipid metabolism was activated significantly. All gene
members of nine key enzymes involved in glycolysis were up-regulated, and glucose was significantly reduced in Ca2+
deficiency-treated tissues. Ca2+ deficiency adjusted the flowing of glycolysis metabolic. However, low K+ recovered
the expression levels of glycolysis genes and glucose content caused by Ca2+ deficiency. Electrospray ionizationtandem
mass spectrometry technology was applied to uncover the dynamic profile of lipidome under Ca2+ and K+
interacted conditions. Ca2+ deficiency led to the decrease of fatty acid (FA), diacylglycerol (DAG), glycolipid and the
significant increase of triacylglycerol (TAG), phospholipid phosphatidylethanolamine (PE), phosphatidylglycerol (PG),
and PC (phosphatidylcholine). Low K+ restored the contents of FA, phospholipids, and glycolipids, effectively relieved
the symptoms caused by Ca2+ deficiency, and recovered the development of fiber cells. This study revealed dynamic
changes in transcript and metabolic levels and uncovered the signaling interaction of Ca2+ deficiency and low K+ in
glycolysis and lipid metabolism during fiber development.
Keywords:  cotton fiber        glycolysis       lipidome        calcium        potassium  
Received: 10 August 2022   Accepted: 12 October 2022
Fund: 

This project was supported by the National Natural Science Foundation of China (31901577), the Fundamental Research Funds for the Central Universities, China (SWU-KT22035), and the State Key Laboratory of Cotton Biology Open Fund, China (CB2021A32).

About author:  #Correspondence ZHANG Zheng-sheng, E-mail: zhangzs@swu.edu.cn * These authors contributed equally to this study.

Cite this article: 

GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. 2023. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers. Journal of Integrative Agriculture, 22(8): 2306-2322.

Armengaud P, Breitling R, Amtmann A. 2010. Coronatine-insensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Molecular Plant3, 390–405.

Avci U, Pattathil S, Singh B, Brown V L, Hahn M G, Haigler C H. 2013. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan. PLoS ONE8, e56315.

de Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. 2021. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist229, 2446–2469.

Cui J, Davanture M, Lamade E, Zivy M, Tcherkez G. 2021. Plant low-K responses are partly due to Ca prevalence and the low-K biomarker putrescine does not protect from Ca side effects but acts as a metabolic regulator. Plant & Cell Physiology44, 1565–1579.

Denness L, McKenna J F, Segonzac C, Wormit A, Madhou P, Bennett M, Mansfield J, Zipfel C, Hamann T. 2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in ArabidopsisPlant Physiology156, 1364–1374.

Ding X, Li X, Wang L, Zeng J, Huang L, Xiong L, Song S, Zhao J, Hou L, Wang F, Pei Y. 2021. Sucrose enhanced reactive oxygen species generation promotes cotton fibre initiation and secondary cell wall deposition. Plant Biotechnology Journal19, 1092–1094.

Doyle J W, Nambeesan S U, Malladi A. 2021. Physiology of nitrogen and calcium nutrition in blueberry (Vaccinium sp.). Agronomy (Basel), 11, 765.

Guo K, Du X, Tu L, Tang W, Wang P, Wang M, Liu Z, Zhang X. 2016. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). Journal of Experimental Botany67, 3289–3301.

Guo K, Tu L, He Y, Deng J, Wang M, Huang H, Li Z, Zhang X. 2017. Interaction between calcium and potassium modulates elongation rate in cotton fiber cells. Journal of Experimental Botany68, 5161–5175.

Haigler C H, Betancur L, Stiff M R, Tuttle J R. 2012. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Frontiers in Plant Science3, 104.

Hocking B, Tyerman S D, Burton R A, Gilliham M. 2016. Fruit calcium: Transport and physiology. Frontiers in Plant Science7, 569.

Hu W, Chen L, Qiu X, Wei J, Lu H, Sun G, Ma X, Yang Z, Zhu C, Hou Y, Han X, Sun C, Hu R, Cai Y, Zhang H, Li F, Shen G. 2020. AKR2A participates in the regulation of cotton fibre development by modulating biosynthesis of very-long-chain fatty acids. Plant Biotechnology Journal18, 526–539.

Huang G, Huang J Q, Chen X Y, Zhu Y X. 2021. Recent advances and future perspectives in cotton research. Annual Review of Plant Biology72, 437–462.

Huang G, Zhu Y X. 2021. Breeding cotton with superior fiber quality: identification and utilization of multiple elite loci and exotic genetic resources. Science China (Life Science), 64, 1197–1198.

Huang H, Liu B, Liu L Y, Song S S. 2017. Jasmonate action in plant growth and development. Journal of Experimental Botany68, 1349–1359.

Huang Y Q, Wang J, Zhang LD, Zuo K J. 2013. A cotton annexin protein AnxGb6 regulates fiber elongation through its interaction with Actin 1. PLoS ONE8, e66160.

Lee J, Burns T H, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen R D. 2010. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta232, 1191–1205.

Li B, Li D D, Zhang J, Xia H, Wang X L, Li Y, Li X B. 2013. Cotton AnnGh3 encoding an annexin protein is preferentially expressed in fibers and promotes initiation and elongation of leaf trichomes in transgenic ArabidopsisJournal of Integrative Plant Biology55, 902–916.

Li D D, Ruan X M, Zhang J, Wu YJ, Wang X L, Li X B. 2013. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. New Phytologist199, 695–707.

Li X, Liu W, Ren Z, Wang X, Liu J, Yang Z, Zhao J, Pei X, Liu Y, He K, Zhang F, Zhang Z, Yang D, Ma X, Li W. 2022. Glucose regulates cotton fiber elongation by interacting with brassinosteroid. Journal of Experimental Botany73, 711–726.

Li Y, Tu L L, Pettolino F A, Ji S M, Hao J, Yuan D J, Deng F L, Tan J F, Hu H Y, Wang Q, Llewellyn D J, Zhang X L. 2016. GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. Plant Biotechnology Journal14, 951–963.

Liu C, Pan B F, Cao W Q, Lu Y, Huang H, Chen L, Liu X Q, Wu X, Hong F S. 2008. Influences of calcium deficiency and cerium on growth of spinach plants. Biological Trace Element Research121, 266–275.

Mestre TC, Garcia-Sanchez F, Rubio F, Martinez V, Rivero R M. 2012. Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits. Journal of Plant Physiology169, 1719–1727.

Michailidis M, Karagiannis E, Tanou G, Karamanoli K, Lazaridou A, Matsi T, Molassiotis A. 2017. Metabolomic and physico-chemical approach unravel dynamic regulation of calcium in sweet cherry fruit physiology. Plant Physiology and Biochemistry116, 68–79.

Morard P, Pujos A, Bernadac A, Bertoni G. 1996. Effect of temporary calcium deficiency on tomato growth and mineral nutrition. Journal of Plant Nutrition19, 115–127.

Olle M, Bender I. 2009. Causes and control of calcium deficiency disorders in vegetables: A review. Journal of Horticultural Science & Biotechnology84, 577–584.

Paiva E A S. 2019. Are calcium oxalate crystals a dynamic calcium store in plants? New Phytologist223, 1707–1711.

Pugh D A, Offler C E, Talbot M J, Ruan Y L. 2010. Evidence for the role of transfer cells in the evolutionary increase in seed and fiber biomass yield in cotton. Molecular Plant3, 1075–1086.

Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. 2007. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. The Plant Cell19, 3692–3704.

Qin Y M, Zhu Y X. 2011. How cotton fibers elongate: A tale of linear cell-growth mode. Current Opinion in Plant Biology14, 106–111.

Ruan Y L, Llewellyn D J, Furbank R T. 2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. The Plant Cell13, 47–60.

Ruan Y L, Llewellyn D J, Furbank R T. 2003. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. The Plant Cell15, 952–964.

da Silva D L, Prado R D, Tenesaca L F L, da Silva J L F, Mattiuz B H. 2021. Silicon attenuates calcium deficiency by increasing ascorbic acid content, growth and quality of cabbage leaves. Scientific Reports11, 1770.

Sun J, Sun Y, Zhu Q H. 2021. Breeding next-generation naturally colored cotton. Trends in Plant Science26, 539–542.

Tang W, He Y, Tu L, Wang M, Li Y, Ruan Y L, Zhang X. 2014a. Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca2+ influx at the cell apex. Plant Molecular Biology85, 613–625.

Tang W, Tu L, Yang X, Tan J, Deng F, Hao J, Guo K, Lindsey K, Zhang X. 2014b. The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytologist202, 509–520.

Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. 2011. Differential expression in RNA-seq: A matter of depth. Genome Research21, 2213–2223.

Troufflard S, Mullen W, Larson T R, Graham I A, Crozier A, Amtmann A, Armengaud P. 2010. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thalianaBMC Plant Biology10, 172.

Wang L, Cook A, Patrick J W, Chen X Y, Ruan Y L. 2014. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling. The Plant Journal78, 686–696.

Wang L, Li X R, Lian H, Ni D A, He Y K, Chen X Y, Ruan Y L. 2010. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiology154, 744–756.

Wang X P, Hao L, Zhu B P, Jiang Z H. 2018. Plant calcium signaling in response to potassium deficiency. International Journal of Molecular Sciences19, 3456.

Wang Y, Wu W H. 2013. Potassium transport and signaling in higher plants. Annual Review of Plant Biology64, 451–476.

Wasternack C, Feussner I. 2018. The oxylipin pathways: Biochemistry and function. Annual Review of Plant Biology69, 363–386.

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Annals of Botany111, 1021–1058.

Wasternack C, Song S S. 2017. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. Journal of Experimental Botany68, 1303–1321.

White P J. 2001. The pathways of calcium movement to the xylem. Journal of Experimental Botany52, 891–899.

Winkler A, Knoche M. 2019. Calcium and the physiology of sweet cherries: A review. Scientia Horticulturae245, 107–115.

Xiao G, Zhao P, Zhang Y. 2019. A pivotal role of hormones in regulating cotton fiber development. Frontiers in Plant Science10, 87.

Xu F, Chen Q, Huang L, Luo M. 2021. Advances about the roles of membranes in cotton fiber development. Membranes (Basel), 11, 471.

Yu J, Zhu M T, Wang M J, Xu Y S, Chen W T, Yang G S. 2020. Transcriptome analysis of calcium-induced accumulation of anthocyanins in grape skin. Scientia Horticulturae260, 27.

Yu Y, Wu S, Nowak J, Wang G, Han L, Feng Z, Mendrinna A, Ma Y, Wang H, Zhang X, Tian J, Dong L, Nikoloski Z, Persson S, Kong Z. 2019. Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nature Plants5, 498–504.

Zhang M, Zeng J Y, Long H, Xiao Y H, Yan X Y, Pei Y. 2017. Auxin regulates cotton fiber initiation via GhPIN-mediated auxin transport. Plant & Cell Physiology58, 385–397.

Zhou L, Duan J, Wang X M, Zhang H M, Duan M X, Liu J Y. 2011. Characterization of a novel annexin gene from cotton (Gossypium hirsutum cv. CRI 35) and antioxidative role of its recombinant protein. Journal of Integrative Plant Biology53, 347–357.

Zhu L, Dou L, Shang H, Li H, Yu J, Xiao G. 2021. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience24, 102199.

[1] TIAN Jing-shan, HU Yuan-yuan, GAN Xiu-xia, ZHANG Ya-li, HU Xiao-bing, GOU Ling, LUO Hong-hai. Effects of Increased Night Temperature on Cellulose Synthesis and the Activity of Sucrose Metabolism Enzymes in Cotton Fiber[J]. >Journal of Integrative Agriculture, 2013, 12(6): 979-988.
[2] HU Ming-yu, LUO Ming, XIAO Yue-hua, LI Xian-bi, TAN Kun-ling, HOU Lei, DONG Jing, LI De-mou, SONG Shui-qing, ZHAO Juan, ZANG Zhen-le, LI Bao-li , PEI Yan. Brassinosteroids and Auxin Down-Regulate DELLA Genes in Fiber Initiation and Elongation of Cotton[J]. >Journal of Integrative Agriculture, 2011, 10(8): 1168-1176.
No Suggested Reading articles found!