Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2309-2321.doi: 10.3864/j.issn.0578-1752.2024.12.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Distribution Characteristics of Photosynthetic Products of Nanjing Series of Super Rice During Filling Stage

WEI XiaoDong(), SONG XueMei, WANG Ning, ZHAO QingYong, ZHU Zhen, CHEN Tao, ZHAO Ling, WANG CaiLin, ZHANG YaDong()   

  1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice Research and Development Center/Nanjing Branch of China National Center for Rice Improvement/East China Center of National Salt and Alkali Tolerant Rice Technology Innovation Center, Nanjing 210014
  • Received:2023-12-06 Accepted:2024-03-15 Online:2024-06-16 Published:2024-06-25
  • Contact: ZHANG YaDong

Abstract:

【Objective】 The aim of this study was to investigate the characteristics of the transport and distribution of photosynthetic products and related gene expression levels during the grain filling period of the Nanjing series of super rice, as well as the differences with the control varieties, to summarize the physiological advantages of high-yield in the Nanjing series super rice, so as to provide the theoretical basis for the development of high-quality and high-yield japonica rice.【Method】Nanjing 5718, Nanjingjinggu, Nanjing 3908, and Nanjing 5055 were used as the research materials, with Huaidao 5 as the control. The photosynthetic rate of flag leaves, distribution and transportation of aboveground dry matter, and expression levels of photosynthetic product transport related genes at different stages of flag leaf and seed development were measured every 7 days during the booting stage, flowering stage, and flowering to maturity stage, and yield differences were statistically analyzed too.【Result】The yield and 1000-grain weight of the Nanjing series of super rice were higher than those of Huaidao 5, and its net photosynthetic rate of flag leaves was significantly higher than that in Huaidao 5 during the booting stage and 28 days after flowering. In terms of photosynthetic product transport, the stem and leaf dry weight, leaf output, output rate, and transport rate of the Nanjing series super rice were significantly higher than those of Huaidao 5 after flowering, with Nanjing 5718 having the highest leaf output and output rate. The expression of genes related to starch degradation and carbohydrate metabolism (OsSPS1, OsSUT2, and OsGWD1) in the flag leaves of Nanjing 5718 was initiated earlier than other varieties, and the highest expression level was also higher than other varieties. The SWEET gene in grains played an important role in early sucrose transport during grain filling, while the OsPK3, OsSUT1, and OsSUT2 genes played an important role in sugar transport and unloading during the middle and late filling stages. The OsAGPL2 and OsDPE1 genes played the important roles in starch synthesis during the middle and late filling stages. The expression levels of genes related to starch synthesis and sugar transport in grains of Nanjing 5718, Nanjingjinggu, and Nanjing 3908 were significantly higher than those of Huaidao 5 at different stages. 【Conclusion】 The higher yield of the Nanjing series of super rice was mainly characterized by the following characteristics in terms of material transport: a large accumulation of dry matter in stem, leaf and panicles, and a high transport rate of leaf and stem dry matter; the high expression levels of genes related to sucrose metabolism and transport in leaves were beneficial for the synthesis, loading, and transport of sucrose at the source end; the high expression levels of genes related to sucrose transport and starch synthesis in grains were conducive to the unloading of sucrose at the storage end and the synthesis of starch in grains.

Key words: super rice, photosynthetic products, gene expression, products distribution, sucrose transport, high yield breeding

Table 1

Primers used in this study"

基因 Gene 正向引物 Forward peimer (5'-3') 反向引物 Reverse primer (3'-5')
Actin ACCATTGGTGCTGAGCGTTT CGCAGCTTCCATTCCTATGAA
OsAGPL2 AGTTCGATTCAAGACGGATAGC CGACTTCCACAGGCAGCTTATT
OsDPE1 ATAGCAGAAGACCTGGGGGT AGAACTGCCATTCCAGGAGC
OsGWD1 ATGGCTTACTCCGTGACTTGG CGTTCAGGAGAGCCAAGGAG
OsPK3 GAGCCCATTGGAGTCTCTCG GGGACGATACTTGGCAACCA
OsSPS1 AGATTCGGAGCAAGGTGGTG GCGAACCTGGTACTGAGCAT
OsSUT1 CTCAAAATGGGGAAGACGAAG AAATCACAGCCACCAGAAATG
OsSUT2 TCACCCTAGCACAGAACAGG CATCAGACCAAAAGAACCCA
OsSWEET4 TTTAGCTAAGCCGTCCCAAAG CACGGCATGATGATGATATTG

Table 2

Yield and its components of the tested rice varieties"

品种
Variety
穗数
No. of panicles
(×104·hm-2)
每穗粒数
Spikelets per
panicle
结实率
Seed -setting
rate (%)
千粒重
1000-grain
weight (g)
实收产量
Harvest yield
(kg·hm−2)
南粳5718 Nanjing 5718 351.0±26.3a 127.4±21.3a 88.9±3.4ab 28.3±0.2a 11392.8±189.3a
南粳3908 Nanjing 3908 237.3±9.1b 137.3±6.5a 95.0±2.4a 28.2±0.3a 11524.8±90.9a
南粳晶谷Nanjingjinggu 237.3±27.2b 135.8±26.5a 91.2±0.5a 26.8±0.1b 12066.0±229.9a
南粳5055 Nanjing 5055 243.1±10.0b 133.2±17.4a 92.6±0.5a 27.6±0.2b 10621.6±329.3b
淮稻5号 Huaidao 5 362.7±10.9a 118.8±17.7b 84.2±2.0b 25.7±0.4c 9760.5±125.6c

Fig. 1

Net photosynthetic rate of flag leaves of the tested rice varieties in different growth stages DAF: Days after flower. Different letters in the figure indicate a significant difference at 5% probability level between different varieties at the same period. The same as below"

Fig. 2

Dry weight of stem and leaf panicle for different rice varieties in different growth stages"

Table 3

Output and transport rates in leaves and stems of different rice varieties"

品种
Variety
叶片Leaf 茎秆Stem
输出量
Output (g)
输出率
Output rate (%)
转运率
Transport rate (%)
输出量
Output (g)
输出率
Output rate (%)
转运率
Transport rate (%)
南粳5718 Nanjing 5718 0.59±0.04a 35.37±4.78a 10.88±1.24a 1.05±0.07a 32.75±5.90a 19.23±1.05a
南粳3908 Nanjing 3908 0.42±0.06b 27.92±3.78b 12.10±1.27a 0.43±0.04c 14.56±4.60c 11.88±1.39b
南粳5055 Nanjing 5055 0.30±0.03c 23.18±4.07b 8.62±1.22b 0.14±0.08e 6.70±2.32d 4.12±1.61c
南粳晶谷 Nanjingjinggu 0.36±0.03d 24.25±4.64b 8.61±1.39b 0.80±0.06b 24.26±4.83b 18.02±2.19a
淮稻5号 Huaidao 5 0.24±0.08e 19.40±1.23c 6.21±0.59c 0.36±0.03d 15.61±1.92c 9.65±1.79b

Fig. 3

Change of genes expression related to photosynthetic product in flag leaves of different rice varieties"

Fig. 4

Changes of gene expression levels related to grain filling in different rice varieties"

[1]
谢聪. 湖南省超级杂交稻研究推广现状及问题分析[D]. 长沙: 湖南农业大学, 2015.
XIE C. Analysis for the present situation and problems of super hybrid rice research and promotion in Hunan Province[D]. Changsha: Hunan Agricultural University, 2015. (in Chinese)
[2]
田红刚, 刘永巍, 樊冬生, 黄少锋, 孙伟, 李建华. 超高产水稻生育后期剑叶光合生理特性变化的研究. 中国农学通报, 2008, 24(10): 268-271.
TIAN H G, LIU Y W, FAN D S, HUANG S F, SUN W, LI J H. Study on the changes of photosynthetic characters in flag leaf after full heading stage of super rice. Chinese Agricultural Science Bulletin, 2008, 24(10): 268-271. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2008-0588
[3]
殷春渊, 杨海霞, 杜彦修, 张静, 李俊周, 孙红正, 彭廷, 赵全志. 水稻不同部位伤流强度的差异及其与籽粒充实的关系. 作物学报, 2013, 39(1): 153-163.
YIN C Y, YANG H X, DU Y X, ZHANG J, LI J Z, SUN H Z, PENG T, ZHAO Q Z. Difference of bleeding intensity in different parts of rice plant and its relationship with grain plumpness. Acta Agronomica Sinica, 2013, 39(1): 153-163. (in Chinese)
[4]
林文雄, 李忠, 陈军, 张志兴, 陈婷. 水稻籽粒灌浆的发育遗传与分子生态特性研究. 中国生态农业学报, 2011, 19(6): 1237-1242.
LIN W X, LI Z, CHEN J, ZHANG Z X, CHEN T. Developmental genetic and molecular ecological properties of rice(Oryza sativa L.) grain filling. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1237-1242. (in Chinese)
[5]
陈孙禄, 詹成芳, 蒋红, 李琳涵, 张红生. 水稻籽粒灌浆速率的分子机制与遗传调控研究进展. 植物学报, 2021, 56(1): 80-89.
CHEN S L, ZHAN C F, JIANG H, LI L H, ZHANG H S. Advances in the molecular mechanism and genetic regulation of grain-filling rate in rice. Chinese Bulletin of Botany, 2021, 56(1): 80-89. (in Chinese)
[6]
李银银, 陈静, 周群, 许更文, 芮梦凯, 徐心杰, 张耗. 水稻籽粒灌浆的研究进展与展望. 中国稻米, 2015, 21(4): 20-24.

doi: 10.3969/j.issn.1006-8082.2015.04.004
LI Y Y, CHEN J, ZHOU Q, XU G W, RUI M K, XU X J, ZHANG H. Progress and prospects of rice grain-filling. China Rice, 2015, 21(4): 20-24. (in Chinese)
[7]
李晓光. 水稻定向选择后代表型特性及淀粉合成关键酶基因表达分析[D]. 哈尔滨: 东北农业大学, 2010.
LI X G. The characteristics of phenotype and the expression of genes involved in starch synthesis in rice progenies by directional selection[D]. Harbin: Northeast Agricultural University, 2010. (in Chinese)
[8]
蔡珊兰, 廖炳创, 潘丽朴, 朱国辉. 基因芯片分析水稻灌浆期籽粒淀粉合成相关基因的表达. 华南农业大学学报, 2013, 34(2): 187-191.
CAI S L, LIAO B C, PAN L P, ZHU G H. Comprehensive expression analysis of starch biosynthesis related genes in the developing rice grains using DNA microarrays. Journal of South China Agricultural University, 2013, 34(2): 187-191. (in Chinese)
[9]
陈婷婷, 许更文, 钱希旸, 王志琴, 张耗, 杨建昌. 花后轻干-湿交替灌溉提高水稻籽粒淀粉合成相关基因的表达. 中国农业科学, 2015, 48(7): 1288-1299. doi: 10.3864/j.issn.0578-1752.2015.07.04.
CHEN T T, XU G W, QIAN X Y, WANG Z Q, ZHANG H, YANG J C. Post-anthesis alternate wetting and moderate soil drying irrigation enhance gene expressions of enzymes involved in starch synthesis in rice grains. Scientia Agricultura Sinica, 2015, 48(7): 1288-1299. doi: 10.3864/j.issn.0578-1752.2015.07.04. (in Chinese)
[10]
杨占烈, 林泽川, 戴高兴, 曹立勇. 水稻籽粒灌浆充实研究进展. 西南农业学报, 2013, 26(3): 1286-1290.
YANG Z L, LIN Z C, DAI G X, CAO L Y. Advances in rice grain filling. Southwest China Journal of Agricultural Sciences, 2013, 26(3): 1286-1290. (in Chinese)
[11]
丁一, 韩娟英, 傅吉, 张宁, 舒小丽, 吴殿星. 水稻籽粒灌浆的影响因素及相关基因和蛋白研究进展. 中国稻米, 2018, 24(3): 1-6.

doi: 10.3969/j.issn.1006-8082.2018.03.001
DING Y, HAN J Y, FU J, ZHANG N, SHU X L, WU D X. Research progress on influence factors of rice grain filling and its related genes and proteins. China Rice, 2018, 24(3): 1-6. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2018.03.001
[12]
金正勋, 朱方旭, 郭雪冬, 张忠臣. 不同施氮方法对粳稻灌浆成熟期蔗糖代谢相关酶活性及品质性状影响. 东北农业大学学报, 2016, 47(6): 1-7.
JIN Z X, ZHU F X, GUO X D, ZHANG Z C. Effect of different nitrogen application methods on activity of sucrose metabolism correlation enzymes and quality in rice at filling stage. Journal of Northeast Agricultural University, 2016, 47(6): 1-7. (in Chinese)
[13]
OSORIO S, RUAN Y L, FERNIE A R. An update on source-to-sink carbon partitioning in tomato. Frontiers in Plant Science, 2014, 5: 516.

doi: 10.3389/fpls.2014.00516 pmid: 25339963
[14]
DOEHLERT D C. Sink strength: dynamic with source strength. Plant, Cell & Environment, 1993, 16(9): 1027-1028.
[15]
李国辉, 崔克辉. 氮对水稻叶蔗糖磷酸合成酶的影响及其与同化物积累和产量的关系. 植物生理学报, 2018, 54(7): 1195-1204.
LI G H, CUI K H. The effect of nitrogen on leaf sucrose phosphate synthase and its relationships with assimilate accumulation and yield in rice. Plant Physiology Journal, 2018, 54(7): 1195-1204. (in Chinese)
[16]
韦还和, 张翔, 朱旺, 耿孝宇, 马唯一, 左博源, 孟天瑶, 高平磊, 陈英龙, 许轲, 戴其根. 盐胁迫对水稻籽粒灌浆特性及产量形成的影响. 作物学报. 2024, 50(3): 734-746.

doi: 10.3724/SP.J.1006.2024.32021
WEI H H, ZHANG X, ZHU W, GENG X Y, MA W Y, ZUO B Y, MENG T Y, GAO P L, CHEN Y L, XU K, DAI Q G. Effects of salinity stress on grain-filling characteristics and yield of rice. Acta Agronomica Sinica. 2024, 50(3): 734-746. (in Chinese)
[17]
魏晓东, 张亚东, 宋雪梅, 陈涛, 朱镇, 赵庆勇, 赵凌, 路凯, 梁文化, 赫磊, 黄胜东, 谢寅峰, 王才林. 南粳3908生育后期剑叶PSⅡ荧光日变化特性及叶绿体超微结构观察. 江苏农业学报, 2022, 38(6): 1441-1452.
WEI X D, ZHANG Y D, SONG X M, CHEN T, ZHU Z, ZHAO Q Y, ZHAO L, LU K, LIANG W H, HE L, HUANG S D, XIE Y F, WANG C L. Diurnal variation of PS Ⅱ fluorescence and chloroplast ultrastructure in flag leaves of Nanjing 3908 at the late growth stage. Jiangsu Journal of Agricultural Sciences, 2022, 38(6): 1441-1452. (in Chinese)
[18]
魏晓东, 张亚东, 宋雪梅, 陈涛, 朱镇, 赵庆勇, 赵凌, 路凯, 梁文化, 赫磊, 黄胜东, 谢寅峰, 王才林. 高产粳稻品种南粳晶谷的光合生理特性研究. 中国水稻科学, 2022, 36(6): 611-622.

doi: 10.16819/j.1001-7216.2022.220202
WEI X D, ZHANG Y D, SONG X M, CHEN T, ZHU Z, ZHAO Q Y, ZHAO L, LU K, LIANG W H, HE L, HUANG S D, XIE Y F, WANG C L. Photosynthetic and physiological characteristics of high yield japonica rice variety nanjingjinggu. Chinese Journal of Rice Science, 2022, 36(6): 611-622. (in Chinese)
[19]
张亚东, 朱镇, 陈涛, 赵庆勇, 冯凯华, 姚姝, 周丽慧, 赵凌, 赵春芳, 梁文化, 路凯, 王才林. 优良食味粳稻南粳5718的选育及主要特征特性. 中国稻米, 2020, 26(4): 100-102.

doi: 10.3969/j.issn.1006-8082.2020.04.023
ZHANG Y D, ZHU Z, CHEN T, ZHAO Q Y, FENG K H, YAO S, ZHOU L H, ZHAO L, ZHAO C F, LIANG W H, LU K, WANG C L. Breeding and characteristics of a new Japonica rice variety Nangeng 5718 with good eating quality. China Rice, 2020, 26(4): 100-102. (in Chinese)
[20]
梁建生, 曹显祖, 徐生, 朱庆森, 宋平. 水稻籽粒库强与其淀粉积累之间关系的研究, 作物学报, 1994, 20(6): 685-691.
LIANG J S, CAO X Z, XU S, ZHU Q S, SONG P. Studies on the relation between the grain sink strength and it’s starch accumulation in rice. Acta Agronomica Sinica, 1994, 20(6): 685-691. (in Chinese)
[21]
魏晓东, 张亚东, 宋雪梅, 陈涛, 朱镇, 赵庆勇, 赵凌, 路凯, 梁文化, 赫磊, 黄胜东, 谢寅峰, 王才林. 超级稻品种南粳5718高产的光合生理特性研究. 作物学报, 2022, 48(11): 2879-2890.

doi: 10.3724/SP.J.1006.2022.12078
WEI X D, ZHANG Y D, SONG X M, CHEN T, ZHU Z, ZHAO Q Y, ZHAO L, LU K, LIANG W H, HE L, HUANG S D, XIE Y F, WANG C L. Photosynthetic physiological characteristics of high yield super rice variety Nanjing 5718. Acta Agronomica Sinica, 2022, 48(11): 2879-2890. (in Chinese)
[22]
CHEN Y L, SUN X, ZHOU X, HEBELSTRUP K H, BLENNOW A, BAO J S. Highly phosphorylated functionalized rice starch produced by transgenic rice expressing the potato GWD1 gene. Scientific Reports, 2017, 7(1): 3339.
[23]
WANG Z, WEI K, XIONG M, WANG J D, ZHANG C Q, FAN X L, HUANG L C, ZHAO D S, LIU Q Q, LI Q F. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. Plant Biotechnology Journal, 2021, 19(12): 2606-2618.

doi: 10.1111/pbi.13686 pmid: 34416068
[24]
SKEFFINGTON A W, GRAF A, DUXBURY Z, GRUISSEM W, SMITH A M. Glucan, water dikinase exerts little control over starch degradation in Arabidopsis leaves at night. Plant Physiology, 2014, 165(2): 866-879.
[25]
EOM J S, CHO J I, REINDERS A, LEE S W, YOO Y, TUAN P Q, CHOI S B, BANG G, PARK Y I, CHO M H, BHOO S H, AN G, HAHN T R, WARD J M, JEON J S. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiology, 2011, 157(1): 109-119.
[26]
胡丽. 丙酮酸激酶复合体调控水稻籽粒灌浆的分子机制研究[D]. 雅安: 四川农业大学, 2020.
HU L. Molecular mechanism of pyruvate kinase complexes regulating grain filling in rice[D]. Yaan: Sichuan Agricultural University, 2020. (in Chinese)
[27]
李国辉, 周驰燕, 郭保卫, 魏海燕, 霍中洋, 戴其根, 张洪程, 许轲. 水稻蔗糖韧皮部装载及其与产量形成的关系, 植物生理学报, 2019, 55(7): 891-901.
LI G H, ZHOU C Y, GUO B W, WEI H Y, HUO Z Y, DAI Q G, ZHANG H C. Sucrose phloem loading and its relationship with grain yield formation in rice. Plant Physiology Journal, 2019, 55(7): 891-901. (in Chinese)
[28]
王军可, 王亚梁, 陈惠哲, 向镜, 张义凯, 朱德峰, 张玉屏. 灌浆初期高温影响水稻籽粒碳氮代谢的机理. 中国农业气象, 2020, 41(12): 774-784.
WANG J K, WANG Y L, CHEN H Z, XIANG J, ZHANG Y K, ZHU D F, ZHANG Y P. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling. Chinese Journal of Agrometeorology, 2020, 41(12): 774-784. (in Chinese)

doi: 10.3969/j.issn.1000-6362.2020.12.003
[29]
孙学武. 生育后期过表达OsSUT1基因对水稻碳水化合物与粒重的影响[D]. 长沙: 中南大学, 2013.
SUN X W. Effects of overexpression of OsSUT1 gene on carbohydrate and grain weight of rice in late growth stage[D]. Changsha: Central South University, 2013. (in Chinese)
[30]
WEI X J, Jiao GA, Lin H Y, Sheng Z H, Shao G N, Xie L H, Tang S Q, Xu Q G, Hu P S. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development. Journal Integrative Plant Biology, 2017(2):134-153.
[31]
徐锡明. 气象和遗传因素对籼粳稻重组自交系(RIL)群体支链淀粉和质构特性的影响[D]. 沈阳: 沈阳农业大学, 2020.
XU X M. Effects of meteorological and genetic factors on amylopectin and texture properties of indica-Japonica recombinant inbred lines[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[32]
DONG X B, ZHANG D, LIU J, LIU Q Q, LIU H L, TIAN L H, JIANG L, QU L Q. Plastidial disproportionating enzyme participates in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. Plant Physiology, 2015, 169(4): 2496-2512.

doi: 10.1104/pp.15.01411 pmid: 26471894
[1] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[2] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[3] YANG HaoRong, JIA Fan, HU Xu, MU Rong, LIU WeiNa, LIU ChangYun, WANG ShanZhi, SUN XianChao, MA GuanHua, CHEN GuoKang. BnJAZ7 Promotes Sclerotinia sclerotiorum Infection by Affecting the Antioxidant Pathway in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(19): 3799-3809.
[4] HU DanDan, LUO RunQi, LIANG RuiYing, WANG Lei, LIANG Lin, SI HongBin, DING JiaBo, TANG XinMing. Research Progress of ApiAP2 Transcription Factors in Regulating the Growth and Development of Toxoplasma gondii [J]. Scientia Agricultura Sinica, 2024, 57(13): 2687-2697.
[5] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[6] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[7] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[8] LI MeiXuan, ZHANG XiangKun, WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang. The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods [J]. Scientia Agricultura Sinica, 2023, 56(21): 4234-4244.
[9] YANG Li, CAO HongBo, ZHANG XueYing, ZHAI HanHan, LI XinMiao, PENG JiaWei, TIAN Yi, CHEN HaiJiang. Functional Identification of Peach Gene PpSAUR73 [J]. Scientia Agricultura Sinica, 2023, 56(20): 4072-4086.
[10] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[11] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[12] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[13] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[14] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[15] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!