Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1308-1318.doi: 10.3864/j.issn.0578-1752.2024.07.008

• PLANT PROTECTION • Previous Articles     Next Articles

Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family

WANG ChengZe1(), ZHANG Yan1(), FU Wei2, JIA JingZhe1, DONG JinGao1, SHEN Shen1(), HAO ZhiMin1()   

  1. 1 College of Life Science, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/ Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Baoding 071000, Hebei
    2 Handan College, Handan 056005, Hebei
  • Received:2023-10-31 Accepted:2023-12-09 Online:2024-04-01 Published:2024-04-09
  • Contact: SHEN Shen, HAO ZhiMin

Abstract:

【Objective】The objective of this study is to perform the genome-wide identification of the maize ACO (1-aminocyclopropane- 1-carboxylate oxidase) gene family, analyze its expression patterns in different organs and developmental stages of maize, as well as in response to exogenous hormones and pathogen infection, and to lay the foundation for clarifying the function of the maize ACO gene family.【Method】Using bioinformatics methods, the ACO was identified in the genome of maize B73 inbred line, and its gene structure, protein physicochemical properties, phylogenetic relationships among family members, and conserved motifs were analyzed. The expression patterns of the ZmACO gene family were analyzed using real-time fluorescence quantitative PCR (qRT-PCR) technology.【Result】Except for ZmACO11, all members of the ZmACO family have Fe2+ binding sites and substrate ascorbic acid binding sites. The phylogenetic tree showed that ZmACO2 and ScACO are in the same branch and have a close genetic relationship, with a Bootstrap value of 98. The gene expression analysis indicated that ZmACO2, 5, 9, 15, 20 and 35 were actively expressed at various developmental stages and exhibited dominant expression in leaves, so the six genes mentioned above were selected for the next step of testing. Spraying ethephon resulted in fluctuations in the expression of all six genes mentioned above, the expression level of ZmACO2 was significantly affected, with a variation multiple of about 8 times. The expression levels of these six genes fluctuated within 0-24 h of ethephon treatment. But after 24 h of treatment, all gene expression levels were close to 0. After salicylic acid treatment, the expression level of ZmACO5 was significantly affected, with a variation multiple of about 2 times. The expression levels of other genes were close to 0 at 24 h after treatment. The expression levels of ZmACO9, 35 fluctuated between 3 to 12 h, and the expression levels of ZmACO2, 15, 20 showed a downward trend. In response to biological stress, the expression levels of ZmACO5, 9 showed the greatest changes after inoculation with the Setosphaeria turcica, and on the 10th day after inoculation, the expression levels of these two genes increased by 50 and 60 times, respectively, compared to the control group. After inoculation with the Cochlibolus heterostrophus, the expression level of ZmACO5 changed significantly, with a variation multiple of 40-90 times. After inoculation with Rhizoctonia solani, the expression levels of ZmACO5, 35 showed the greatest changes, reaching 200 times on the 3rd day of inoculation.【Conclusion】The expression changes of ZmACO2, 5, 20 and 35 are most active during the growth and development of maize; The application of exogenous ethephon and salicylic acid can significantly affect the expression level of ZmACO genes. The expression level of ZmACO genes significantly changes after bacterial infection in maize, which is closely related to the response to biological stress.

Key words: maize ACO gene family, qRT-PCR, gene expression, ethephon, salicylic acid, Setosphaeria turcica, Cochlibolus heterostrophus, Rhizoctonia solani

Table 1

Primers used for qRT-PCR"

引物Primer 序列Sequence (5′-3′)
ZmACO1-F/R TGAAAACCTTGGGCTGGACA/TCACAAGCTCTGGATGGCTG
ZmACO2-F/R CAAGATGCGTGCGAGAACTG/CGCTTGTAGTGCTCCTTGGT
ZmACO3-F/R CATCTCCGGCGGCCTAAAA/AGTTCTTTGTCGAATACTCGGT
ZmACO4-F/R CTACAACCCGGCTAACGAGG/GAATCTGGGCTCCTTGGCTT
ZmACO5-F/R TACTTCATCCAGCACCACCC/TTGAACCACGGGTGCTTGCC
ZmACO6-F/R GAGAAGATGCTGGGCGTGAT/ATAGTGGCTGACCTTGGTGC
ZmACO7-F/R GATGATGGAGTACCGCAGGG/TGACCTTGGTGCCGTAGAAG
ZmACO8-F/R AGCTGCTTCGAAGAGGTTATCAA/TGACGCCTACGGAAGGTTTAG
ZmACO9-F/R TCGGGGACCTCTTGCAGATA/AGATGCCGATGGAAACCCTG
ZmACO10-F/R AAGGTGGCAAAGTACCCCAG/GCCATCCACCTACCGTCTTT
ZmACO11-F/R CGTCTTCCGCTCCTACATCG/CAGTGAGGTACAGAGCGAGC
ZmACO12-F/R AGCTCTGTACCTCACTGGAGA/AAAACGCCTCTTGGTAAGCG
ZmACO15-F/R TGCCTTCTCCATCCTCAAGTC/CGATGACGGGAACCACCATT
ZmACO20-F/R GGGAGAGCACCTTCTTCGTC/TTCTCCGACAGCTTCTGCAC
ZmACO31-F/R AAGAAGGTGTGCTCCGACTG/GATGTCCTCCCAGTCCAGGT
ZmACO35-F/R CTGGGAGAGCACCTTCTTCG/GATCTCCGATGCGAACTGCT
UBQ9-F/R TACAGTTCTACAAGGTGGACGAC/GCAGTAGTGGCGGTCGAAGT

Table 2

The qRT-PCR reaction system"

反应组分Reaction component 反应体系Reaction system 终浓度Final concentration
2×Fast Super EvaGreen Master Mix 10 μL
正向引物Forward primer 1 μL 0.1-0.5 μmol·L-1 each
反向引物Reverse primer 1 μL 0.1-0.5 μmol·L-1 each
cDNA (500 ng·μL-1) template 1 μL
H2O 补足至20 μL Make up to 20 μL

Table 3

ZmACO family genes and the encoding proteins information"

名称
Name
基因号
Gene ID
氨基酸长度
Size (aa)
开放阅读框
ORF (bp)
基因定位
Gene mapping
分子量
Molecular weight (Da)
等电点
Isoelectric point
ZmACO1 Zm00001d036955 293 1024 scaffold_6:114257252-114258119(+) 33323.18 6.01
ZmACO2 Zm00001d020686 326 1484 scaffold_7:128315057-128316692(-) 36437.57 5.18
ZmACO3 Zm00001d024852 315 1259 scaffold_10:90656251-90657509(-) 35020.67 5.42
ZmACO4 Zm00001d024851 315 948 scaffold_10:90634003-90634950(-) 35020.67 5.42
ZmACO5 Zm00001d011208 317 1532 scaffold_8:142565914-142567685(+) 34646.05 5.06
ZmACO6 Zm00001d004718 310 1234 scaffold_2:133578506-133580227(+) 34557.35 5.13
ZmACO7 Zm00001d000163 313 1451 scaffold_4:209050198-209052191(-) 35045.80 5.01
ZmACO8 Zm00001d005927 226 681 scaffold_2:193010237-193011059(+) 25466.25 6.22
ZmACO9 Zm00001d039575 376 1526 scaffold_3:8204808-8206696(+) 40606.00 5.77
ZmACO10 Zm00001d015860 234 705 scaffold_5:127015024-127015847(+) 26546.42 6.23
ZmACO11 Zm00001d044978 123 372 scaffold_9:9100281-9102917(-) 13700.64 9.47
ZmACO12 Zm00001d046848 260 793 scaffold_9:108298093-108299643(-) 29077.46 9.52
ZmACO15 Zm00001d024853 356 1599 scaffold_10:90488171-90489769(+) 39417.55 6.03
ZmACO20 Zm00001d052136 323 1330 scaffold_4:180604677-180607029(-) 35551.08 4.97
ZmACO31 Zm00001d024843 314 945 scaffold_10:90456450-90457394(-) 34836.40 5.09
ZmACO35 Zm00001d018211 317 1342 scaffold_5:216633702-216636170(+) 35295.88 4.89

Fig. 1

The phylogenetic tree of ZmACOs and ACOs from other plants"

Fig. 2

Expression of ZmACO gene family in different organs and tissues during the growth and development of maize"

Fig. 3

Changes of ZmACOs expression after ethephon and salicylic acid treatment"

Fig. 4

Expression changes of ZmACOs after pathogen infection"

[1]
柳兵, 张辰, 王宇琪, 赵仁贵. 玉米自交系I18人工接种大斑病菌的mRNA表达分析. 东北农业科学, 2019, 44(5): 43-47.
LIU B, ZHANG C, WANG Y Q, ZHAO R G. Analysis of mRNA expression of maize inbred line I18 after artificial inoculating with Setosphaeria turcica. Journal of Northeast Agricultural Sciences, 2019, 44(5): 43-47. (in Chinese)
[2]
BURG S P, BURG E A. Ethylene action and the ripening of fruits. Science, 1965, 148(3674): 1190-1196.

pmid: 14280001
[3]
BLEECKER A B, KENDE H. Ethylene: A gaseous signal molecule in plants. Annual Review of Cell and Developmental Biology, 2000, 16: 1-18.

pmid: 11031228
[4]
WEN C K. Ethylene in Plants. Netherlands: Springer, 2015.
[5]
刘畅宇, 陈勋, 龙雨青, 陈娅, 刘湘丹, 周日宝. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展. 生物技术通报, 2019, 35(3): 171-182.

doi: 10.13560/j.cnki.biotech.bull.1985.2018-0923
LIU C Y, CHEN X, LONG Y Q, CHEN Y, LIU X D, ZHOU R B. Research advances in genes involved in ethylene biosynthesis and signal transduction during flower senescence. Biotechnology Bulletin, 2019, 35(3): 171-182. (in Chinese)
[6]
李栀恩. 番茄ACC氧化酶家族基因的表达研究及其在果实乙烯合成过程中的功能分析[D]. 重庆: 重庆大学, 2012.
LI Z E. Characterization and function analysis of ACC oxidase gene family in ethylene biosynthesis in tomato fruit[D]. Chongqing: Chongqing University, 2012. (in Chinese)
[7]
MATTOO A K, ACHILEA O, FUCHS Y, CHALUTZ E. Membrane association and some characteristics of the ethylene forming enzyme from etiolated pea seedlings. Biochemical and Biophysical Research Communications, 1982, 105(1): 271-278.

pmid: 7092853
[8]
MCGARVEY D J, CHRISTOFFERSEN R E. Characterization and kinetic parameters of ethylene-forming enzyme from avocado fruit. The Journal of Biological Chemistry, 1992, 267(9): 5964-5967.

doi: 10.1016/S0021-9258(18)42649-X
[9]
SLATER A, MAUNDERS M J, EDWARDS K, SCHUCH W, GRIERSON D. Isolation and characterisation of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Molecular Biology, 1985, 5: 137-147.

doi: 10.1007/BF00015677 pmid: 24306649
[10]
PAN G, LOU C F. Isolation of an 1-aminocyclopropane-1-carboxylate oxidase gene from mulberry (Morus alba L.) and analysis of the function of this gene in plant development and stresses response. Journal of Plant Physiology, 2008, 165(11): 1204-1213.

doi: 10.1016/j.jplph.2007.02.012
[11]
金太成, 郎晨婧, 孟大伟, 王悦, 吴艳菊, 杨丽萍. 非生物胁迫激活ABA途径ACO3基因的表达. 分子植物育种, 2020, 18(16): 5330-5334.
JIN T C, LANG C J, MENG D W, WANG Y, WU Y J, YANG L P. Abiotic stress activate the expression of ACO3 gene in the ABA pathway. Molecular Plant Breeding, 2020, 18(16): 5330-5334. (in Chinese)
[12]
LOVE J, BJORKLUND S, VAHALA J, HERTZBERG M, KANGASJARVI J, SUNDBERG B. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5984-5989.
[13]
WEI H L, XUE Y J, CHEN P Y, HAO P B, WEI F, SUN L, YANG Y L. Genome-wide identification and functional investigation of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes in cotton. Plants, 2021, 10(8): 1699.
[14]
冯志聪, 邹航, 果弘毅, 钟非, 陈艳红, 余春梅, 连博琳, 张健, 刘国元. 旱柳、杞柳ACO基因家族的全基因组鉴定及表达分析. 扬州大学学报(农业与生命科学版), 2022, 43(2): 10-19.
FENG Z C, ZOU H, GUO H Y, ZHONG F, CHEN Y H, YU C M, LIAN B L, ZHANG J, LIU G Y. Genome-wide identification and expression analysis of ACO gene family in Salix matsudana and Salix integra. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(2): 10-19. (in Chinese)
[15]
WOODSON W R, PARK K Y, DRORY A, LARSEN P B, WANG H. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plant Physiology, 1992, 99(2): 526-532.

doi: 10.1104/pp.99.2.526 pmid: 16668918
[16]
朱家红, 李超燕, 范鸿雁, 胡福初, 罗志文, 张治礼. 菠萝ACC氧化酶基因AcACO1的克隆与表达分析. 基因组学与应用生物学, 2018, 37(1): 339-344.
ZHU J H, LI C Y, FAN H Y, HU F C, LUO Z W, ZHANG Z L. Cloning and expression analysis of ACC oxidase gene AcACO1 in pineapple (Ananas comosus L. Merr.). Genomics and Applied Biology, 2018, 37(1): 339-344. (in Chinese)
[17]
雷明, 王加宾, 李志英, 徐立. 蜻蜓凤梨AfACO1基因的克隆及乙烯响应特性分析. 西北农业学报, 2018, 27(12): 1795-1803.
LEI M, WANG J B, LI Z Y, XU L. Cloning and expression analysis of AtfACO1 response to exogenous ethephon treatment in Aechmea fasciata. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(12): 1795-1803. (in Chinese)
[18]
余建, 刘长英, 赵爱春, 王传宏, 蔡雨翔, 余茂德. 桑树1-氨基环丙烷-1-羧酸氧化酶基因(MnACO)启动子功能分析. 作物学报, 2017, 43(6): 839-848.
YU J, LIU C Y, ZHAO A C, WANG C H, CAI Y X, YU M D. Functional analysis of 1-aminocyclopropane-1-carboxylate oxidase gene’s promoter in mulberry. Acta Agronomica Sinica, 2017, 43(6): 839-848. (in Chinese)

doi: 10.3724/SP.J.1006.2017.00839
[19]
金乌云. 甜瓜ACO基因家族成员的鉴定及CmACO7CmACO8基因的克隆[D]. 呼和浩特: 内蒙古大学, 2017.
JIN W Y. Identification of ACO gene family members and cloning of CmACO7 and CmACO8 gene in melon[D]. Hohhot: Inner Mongolia University, 2017. (in Chinese)
[20]
杨利艳, 边璐, 史瑞翔, 王创云, 邓妍, 张丽光, 赵丽, 郭虹霞, 秦丽霞, 王美霞. 玉米ACO家族的全基因组鉴定与表达分析. 湖南师范大学自然科学学报, 2022, 45(3): 109-116.
YANG L Y, BIAN L, SHI R X, WANG C Y, DENG Y, ZHANG L G, ZHAO L, GUO H X, QIN L X, WANG M X. Genome-wide identification and expression analysis of ACO family in maize. Journal of Natural Sciences of Hunan Normal University, 2022, 45(3): 109-116. (in Chinese)
[21]
朱丽颖, 陈凯, 汪耀富, 李泽锋, 谢小东, 潘婷, 杨小年, 蒲文宣, 曹培健, 杨军, 罗朝鹏. 烟草ACO基因家族鉴定和二氯喹啉酸药害条件下的表达分析. 烟草科技, 2022, 55(9): 10-18.
ZHU L Y, CHEN K, WANG Y F, LI Z F, XIE X D, PAN T, YANG X N, PU W X, CAO P J, YANG J, LUO C P. Identification of tobacco ACO gene family and its expression analysis under quinclorac phytotoxicity. Tobacco Technology, 2022, 55(9): 10-18. (in Chinese)
[22]
GAO Y, LI J, PAN X K, LIU D R, NAPIER R, DONG L Y. Quinclorac resistance induced by the suppression of the expression of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase genes in Echinochloa crus-galli var. zelayensis. Pesticide Biochemistry and Physiology, 2018, 146: 25-32.

doi: 10.1016/j.pestbp.2018.02.005
[23]
朱璇, 侯媛媛, 王英, 齐会楠. 水杨酸处理对杏果实呼吸速率和乙烯生物合成的影响. 食品研究与开发, 2013, 34(24): 251-253.
ZHU X, HOU Y Y, WANG Y, QI H N. Effect of salicylic acid treatment on respiratory rate and ethylene biosynthesis of apricot fruits. Food Research and Development, 2013, 34(24): 251-253. (in Chinese)
[24]
田世平, 罗云波, 宫钦钦, 刘红. 病菌侵染对番茄果实乙烯生成, ACC合成酶和脂氧合酶活性的影响. 植物病理学报, 2002, 32(2): 159-164.
TIAN S P, LUO Y B, GONG Q Q, LIU H. Effect of fungal infection on ethylene production, ACC synthase and lipoxygenase activity in tomato fruits. Acta Phytopathologica Sinica, 2002, 32(2): 159-164. (in Chinese)
[25]
李文彬, 李春强, 孙建波, 彭明. 枯萎病菌侵染后香蕉乙烯形成酶基因MaACO及乙烯响应因子MaERF1表达水平分析. 基因组学与应用生物学, 2014, 33(5): 1013-1018.
LI W B, LI C Q, SUN J B, PENG M. Expression analysis of MaACO and MaERF1 in banana infected by Fusarium oxysporum f. sp. cubense. Genomics and Applied Biology, 2014, 33(5): 1013-1018. (in Chinese)
[26]
ZHAO S S, HONG W, WU J G, WANG Y, JI S Y, ZHU S Y, WEI C H, ZHANG J S, LI Y. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection. eLife, 2017, 6: e27529.

doi: 10.7554/eLife.27529
[27]
FAN X T, MATTHEIS J P, FELLMAN J K. Inhibition of apple fruit 1-aminocyclopropane-1-carboxylic acid oxidase activity and respiration by acetylsalicylic acid. Journal of Plant Physiology, 1996, 149(3/4): 469-471.

doi: 10.1016/S0176-1617(96)80151-9
[28]
CHEN H M, SUN J J, LI S, CUI Q Z, ZHANG H M, XIN F J, WANG H S, LIN T, GAO D L, WANG S H, LI X, WANG D H, ZHANG Z H, XU Z H, HUANG S W. An ACC oxidase gene essential for cucumber carpel development. Molecular Plant, 2016, 9(9): 1315-1327.

doi: S1674-2052(16)30131-9 pmid: 27403533
[29]
KAHANA A, SILBERSTEIN L, KESSLER N, GOLDSTEIN R S, PERL-TREVES R. Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Molecular Biology, 1999, 41(4): 517-528.

pmid: 10608661
[30]
BINNIE J E, MCMANUS M T. Characterization of the 1- aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Phytochemistry, 2009, 70(3): 348-360.

doi: 10.1016/j.phytochem.2009.01.002
[31]
RUPERTI B, BONGHI C, RASORI A, RAMINA A, TONUTTI P. Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiologia Plantarum, 2001, 111(3): 336-344.

doi: 10.1034/j.1399-3054.2001.1110311.x
[32]
王爱勤, 杨丽涛, 王自章, 韦宇拓, 何龙飞, 李杨瑞. 甘蔗ACC氧化酶全长cDNA的克隆及序列分析. 广西植物, 2006, 26(2): 194-199.
WANG A Q, YANG L T, WANG Z Z, WEI Y T, HE L F, LI Y R. Cloning and sequencing of full-length cDNA encoding ACC oxidase in sugarcane. Guihaia, 2006, 26(2): 194-199. (in Chinese)
[33]
NING Q, JIAN Y N, DU Y F, LI Y F, SHEN X M, JIA H T, ZHAO R, ZHAN J M, YANG F, JACKSON D, LIU L, ZHANG Z X. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 2021, 12: 5832.

doi: 10.1038/s41467-021-26123-z pmid: 34611160
[34]
刘晓庆. 玉米籽粒响应乙烯利处理的生理及分子机制研究[D]. 北京: 中国农业大学, 2018.
LIU X Q. The physiological and molecular mechanism of maize kernel development after ethephon treatment[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[35]
WANG C Q, DAI S Y, ZHANG Z L, LAO W Q, WANG R Y, MENG X Q, ZHOU X. Ethylene and salicylic acid synergistically accelerate leaf senescence in Arabidopsis. Journal of Integrative Plant Biology, 2021, 63(5): 828-833.

doi: 10.1111/jipb.v63.5
[36]
YU X D, XU Y R, YAN S P. Salicylic acid and ethylene coordinately promote leaf senescence. Journal of Integrative Plant Biology, 2021, 63(5): 823-827.

doi: 10.1111/jipb.13074
[37]
DERKSEN H, RAMPITSCH C, DAAYF F. Signaling cross-talk in plant disease resistance. Plant Science, 2013, 207: 79-87.

doi: 10.1016/j.plantsci.2013.03.004 pmid: 23602102
[38]
李光哲, 李玲美, 姚展鹏, 柳福丹. 乙烯和水杨酸信号转导在拟南芥对聚乙二醇胁迫应答中的相互作用. 沈阳师范大学学报(自然科学版), 2017, 35(2): 214-219.
LI G Z, LI L M, YAO Z P, LIU F D. Interaction between ethylene- and salicylic acid-signaling in Arabidopsis response to polyethylene glycol stress. Journal of Shenyang Normal University (Natural Science Edition), 2017, 35(2): 214-219. (in Chinese)
[39]
WANG X Y, MENG H C, TANG Y X, ZHANG Y S, HE Y X, ZHOU G J, MENG X Z. Phosphorylation of an ethylene response factor by MPK3/MPK6 mediates negative feedback regulation of pathogen- induced ethylene biosynthesis in Arabidopsis. Journal of Genetics and Genomics, 2022, 49(8): 810-822.

doi: 10.1016/j.jgg.2022.04.012
[1] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[2] ZHANG BoWen, ZHAO LiWen, XU Lu, LI Pan, ZENG FanLi, MENG YaNan, DONG JinGao. Identification and Gene Function Analysis of StCks1, a Cyclin- Dependent Kinase Subunit of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2024, 57(5): 900-908.
[3] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[4] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[5] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[6] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[7] LI MeiXuan, ZHANG XiangKun, WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang. The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods [J]. Scientia Agricultura Sinica, 2023, 56(21): 4234-4244.
[8] YANG Li, CAO HongBo, ZHANG XueYing, ZHAI HanHan, LI XinMiao, PENG JiaWei, TIAN Yi, CHEN HaiJiang. Functional Identification of Peach Gene PpSAUR73 [J]. Scientia Agricultura Sinica, 2023, 56(20): 4072-4086.
[9] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[10] ZOU JinPeng, YUE HaoFeng, LI HaiXiao, LIU Zheng, LIU Ning, CAO ZhiYan, DONG JinGao. Mechanism of StLAC2 and StLAC6 Differentially Affecting Setosphaeria turcica Based on Non-Targeted Metabonomics Analysis [J]. Scientia Agricultura Sinica, 2023, 56(16): 3110-3223.
[11] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[12] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[13] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[14] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[15] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!