Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (19): 3799-3809.doi: 10.3864/j.issn.0578-1752.2024.19.007

• PLANT PROTECTION • Previous Articles     Next Articles

BnJAZ7 Promotes Sclerotinia sclerotiorum Infection by Affecting the Antioxidant Pathway in Brassica napus

YANG HaoRong1(), JIA Fan1,2, HU Xu1, MU Rong1, LIU WeiNa1, LIU ChangYun1, WANG ShanZhi1, SUN XianChao1, MA GuanHua1(), CHEN GuoKang1()   

  1. 1 College of Plant Protection/Chongqing Key Laboratory of Plant Disease Biology, Southwest University, Chongqing 400715
    2 Agricultural Technology Extension Center of Wanrong County, Wanrong 044200, Shanxi
  • Received:2024-06-09 Accepted:2024-07-20 Online:2024-10-09 Published:2024-10-09
  • Contact: MA GuanHua, CHEN GuoKang

Abstract:

【Objective】Rapeseed sclerotiniose caused by Sclerotinia sclerotiorum, is the first major disease affecting rapeseed production. The objective of this study is to obtain BnJAZ7 from Brassica napus via molecular cloning, and to clarify the expression characteristics of BnJAZ7 and its role in the process of S. sclerotiorum infection by means of bioinformatics, cell biology and molecular biology, so as to lay a theoretical foundation for molecular breeding of sclerotiniose resistance in rapeseed.【Method】The full-length of BnJAZ7 was amplified using molecular cloning techniques, and the protein characteristics encoded by BnJAZ7 were analyzed through bioinformatics. The genetic relationship tree of BnJAZ7 was constructed using MEGA X. Real-time fluorescence quantitative PCR technology was employed to analyze the tissue-specific expression of BnJAZ7 in rapeseed, as well as its expression during S. sclerotiorum infection. A fusion expression vector of BnJAZ7 and GFP was generated and transiently transformed via Agrobacterium-mediated delivery into Nicotiana benthamiana leaf cells. Subsequently, the subcellular localization of the fusion protein was observed under a confocal laser microscope. The fusion protein was transiently expressed in N. benthamiana leaves and inoculated with S. sclerotiorum to assess the impact of BnJAZ7 expression on S. sclerotiorum infection. The BnJAZ7-OE overexpression transgenic rapeseed lines were developed. Following the generation of transgenic plants with high BnJAZ7 expression, the leaves of the T2 generation were inoculated with S. sclerotiorum to evaluate its effect on S. sclerotiorum infection. Biochemical techniques were utilized to measure the activities of antioxidant enzymes SOD, POD, CAT and PAL after S. sclerotiorum infection in BnJAZ7-OE rapeseed. Furthermore, real-time fluorescence quantitative PCR technology was applied to analyze the expression of antioxidant pathway-related genes BnSOD, BnPOD, BnPAL and BnCAT after S. sclerotiorum infection in BnJAZ7-OE rapeseed.【Result】BnJAZ7 spans 801 bp, encoding a protein of 266 aa, characterized by two structural domains, TIFY and CCT_2. Its molecular formula is C1244H2000N358O384S13, with an isoelectric point of 9.57 and a theoretical molecular weight of 28.53 kDa. Notably, it lacks a transmembrane domain. Phylogenetic analysis revealed the closest genetic affinity of BnJAZ7 with B. napus TIFY 7. Expression profiling indicated a descending trend of BnJAZ7 expression in rapeseed tissues, from stems to roots, leaves, and flowers. However, after infection with S. sclerotiorum, BnJAZ7 expression showed a sequential increase at 6, 12, 24, and 48 hours post-infection. Subcellular localization studies demonstrated that eGFP:BnJAZ7 localized within the cell membrane and nucleus. Heterologous transient expression of eGFP:BnJAZ7 in N. benthamiana leaves enhanced the invasion of S. sclerotiorum. Additionally, overexpression of BnJAZ7 in transgenic rapeseed (BnJAZ7-OE) promoted S. sclerotiorum infection. After S. sclerotiorum infection in BnJAZ7-OE plants, the transcription levels of BnPOD, BnSOD and BnPAL were significantly reduced, and the transcription level of BnCAT was significantly increased, thereby reducing POD, SOD and PAL activities and increasing CAT activity.【Conclusion】The expression of BnJAZ7 in B. napus is stimulated by S. sclerotiorum infection. Moreover, the overexpression of BnJAZ7 significantly accelerates the infection rate of S. sclerotiorum. The pathogen further expedites infection by upregulating BnJAZ7 expression, subsequently diminishing the transcription levels of BnPOD, BnSOD and BnPAL, and increasing the transcription level of BnCAT, thereby regulating the activity of antioxidant enzymes to further accelerate the infection.

Key words: Brassica napus, BnJAZ7, Sclerotinia sclerotiorum, gene expression, rapeseed sclerotiniose, antioxidant enzyme

Table 1

Primer sequences used in this study"

引物名称 Primer name 引物序列 Primer sequence (5′-3′)
BnJAZ7-F CGAATTCATGGAACGAGATTTTCTG
BnJAZ7-R CGTCTAGATTAGGTATGAGAAGCAGCA
pBWA(V)BS-BnJAZ7-F ATTTGGAGAGAACACGGGGGACTTTGCAACATGGAACGAGATTTTCTGGGTTTGA
pBWA(V)BS-BnJAZ7-R GTTAATCAAACCCATGGTATGAGAA
pBWA(V)BS-4xmyc-F GCTGCTTCTCATACCATGGGTTTGA
pBWA(V)BS-4xmyc-R GGCCCAGTACTGAAGACAGAGCTAGTTACATTAGGAGCCATTCAAATCCTCTTCC
qBnJAZ7-F ACAAACACGTTGGTGCGATA
qBnJAZ7-R CGTCGACAAATCAAGAAGCA
qBnUBC21-F TTCCCGAACCGTATCCTCTG
qBnUBC21-R GTGCCATTGAATTGAACCCTC
qBnPAL-F GCTCACAACCAAGCACGACA
qBnPAL-R TTGCCACATCCAATTCTCACAG
qBnCAT-F GAAGGTTTCGGCGTCCACA
qBnCAT-R TTGGTCACATCAAGCGGGTC
qBnSOD-F GTTCAA CGGCGGAGGTCA
qBnSOD-R AACATCAATACCCA CCAGAGGA
qBnPOD-F GGCATGTATTATGTTTCGTGCGTCTC
qBnPOD-R GCGTCACAACCATTGACAAAGCAG

Fig. 1

Amino acid sequence alignment and phylogenetic analysis of BnJAZ7 and its homologous proteins"

Fig. 2

Expression analysis and subcellular localization of BnJAZ7"

Fig. 3

Overexpression of BnJAZ7 promotes S. sclerotiorum infection"

Fig. 4

Antioxidant enzyme activities of BnJAZ7-OE B. napus leaves infected by S. sclerotiorum"

Fig. 5

Expression changes of antioxidant pathway-related genes of BnJAZ7-OE B. napus leaves infected by S. sclerotiorum"

[1]
BOLTON M D, THOMMA B P, NELSON B D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 2006, 7(1): 1-16.
[2]
DEAN R, VAN KAN J A L, PRETORIUS Z A, HAMMOND- KOSACK K E, DI PIETRO A, SPANU P D, RUDD J J, DICKMAN M, KAHMANN R, ELLIS J, FOSTER G D. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13(4): 414-430.
[3]
SAHARAN G S, MOUGOU A H, MEHTA N. History and host range//Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management. Springer, 2008: 19-39.
[4]
XIE L, JIAN H, DAI H, YANG Y, LIU Y, WEI L, TAN M, LI J, LIU L. Screening of microRNAs and target genes involved in Sclerotinia sclerotiorum (Lib.) infection in Brassica napus L. BMC Plant Biology, 2023, 23(1): 479.
[5]
WANG P, WANG Y, HU Y, CHEN Z, HAN L, ZHU W, TIAN B, FANG A, YANG Y, BI C, YU Y. Plant hypersensitive induced reaction protein facilitates cell death induced by secreted xylanase associated with the pathogenicity of Sclerotinia sclerotiorum. The Plant Journal, 2024, 118(1): 90-105.
[6]
蔺自敏. 油菜菌核病发病特点及防治措施. 安徽农学通报, 2021, 27(18): 96-97.
LIN Z M. Incidence characteristics and control measures of rapeseed sclerotiniose. Anhui Agricultural Science Bulletin, 2021, 27(18): 96-97. (in Chinese)
[7]
杨清坡, 刘杰, 姜玉英, 刘万才. 2016年全国油菜菌核病发生特点、原因分析及治理对策. 植物保护, 2018, 44(1): 147-152.
YANG Q P, LIU J, JIANG Y Y, LIU W C. Occurrence characteristics, causes and control methods of rape sclerotiniose in China in 2016. Plant Protection, 2018, 44(1): 147-152. (in Chinese)
[8]
王广炳. 春季油菜菌核病防治关键技术. 植物医生, 2017, 30(4): 43-45.
WANG G B. Key technologies for preventing and controlling sclerotiniose in spring rapeseed. Plant Doctor, 2017, 30(4): 43-45. (in Chinese)
[9]
ZOGLI P, LIBAULT M. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions? Plant Science, 2017, 263: 89-93.
[10]
KAZAN K, MANNERS J M. JAZ repressors and the orchestration of phytohormone crosstalk. Trends in Plant Science, 2012, 17(1): 22-31.
[11]
PAUWELS L, GOOSSENS A. The JAZ proteins: A crucial interface in the jasmonate signaling cascade. The Plant Cell, 2011, 23(9): 3089-3100.
[12]
CHICO J M, CHINI A, FONSECA S, SOLANO R. JAZ repressors set the rhythm in jasmonate signaling. Current Opinion in Plant Biology, 2008, 11(5): 486-494.
[13]
魏昕, 刘雨恒, 刘宇阳, 殷晓浦, 谢恬, 谌容, 卫秋慧. 植物JAZ蛋白家族研究进展. 植物生理学报, 2021, 57(5): 1039-1046.
WEI X, LIU Y H, LIU Y Y, YIN X P, XIE T, CHEN R, WEI Q H. Advances of JAZ family in plants. Plant Physiology Journal, 2021, 57(5): 1039-1046. (in Chinese)
[14]
STASWICK P E. JAZing up jasmonate signaling. Trends in Plant Science, 2008, 13(2): 66-71.
[15]
DEMIANSKI A J, CHUNG K M, KUNKEL B N. Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis. Molecular Plant Pathology, 2012, 13(1): 46-57.
[16]
LOZANO-DURÁN R, ROSAS-DÍAZ T, GUSMAROLI G, LUNA A P, TACONNAT L, DENG X W, BEJARANO E R. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. The Plant Cell, 2011, 23(3): 1014-1032.
[17]
WEI N, SERINO G, DENG X W. The COP9 signalosome: More than a protease. Trends in Biochemical Sciences, 2008, 33(12): 592-600.
[18]
ROSAS-DÍAZ T, MACHO A P, BEUZÓN C R, LOZANO-DURÁN R, BEJARANO E R. The C2 protein from the geminivirus tomato yellow leaf curl Sardinia virus decreases sensitivity to jasmonates and suppresses jasmonate-mediated defences. Plants, 2016, 5(1): 8.
[19]
JIA Q, LIU N, XIE K, DAI Y, HAN S, ZHAO X, QIAN L, WANG Y, ZHAO J, GOROVITS R, XIE D, HONG Y, LIU Y. CLCuMuB βC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana. PLoS Pathogens, 2016, 12(6): e1005668.
[20]
LIU C, ZHANG J, WANG J, LIU W, WANG K, CHEN X, WEN Y, TIAN S, PU Y, FAN G, MA X, SUN X. Tobacco mosaic virus hijacks its coat protein-interacting protein IP-L to inhibit NbCML30, a calmodulin-like protein, to enhance its infection. The Plant Journal, 2022, 112(3): 677-693.
[21]
裴悦宏, 李凤巍, 刘维娜, 温玉霞, 朱鑫, 田绍锐, 樊光进, 马小舟, 孙现超. 本氏烟半胱氨酸蛋白酶基因家族特征及其在TMV侵染中的功能. 中国农业科学, 2022, 55(21): 4196-4210. doi: 10.3864/j.issn.0578-1752.2022.21.008.
PEI Y H, LI F W, LIU W N, WEN Y X, ZHU X, TIAN S R, FAN G J, MA X Z, SUN X C. Characteristics of cysteine proteinase gene family in Nicotiana benthamiana and its function during TMV infection. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210. doi: 10.3864/j.issn.0578-1752.2022.21.008. (in Chinese)
[22]
温玉霞, 张坚, 王琴, 王靖, 裴悦宏, 田绍锐, 樊光进, 马小舟, 孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能. 中国农业科学, 2022, 55(18): 3543-3555. doi: 10.3864/j.issn.0578-1752.2022.18.006.
WEN Y X, ZHANG J, WANG Q, WANG J, PEI Y H, TIAN S R, FAN G J, MA X Z, SUN X C. Cloning, expression and anti-TMV function analysis of Nicotiana benthamiana NbMBF1c. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555. doi: 10.3864/j.issn.0578-1752.2022.18.006. (in Chinese)
[23]
刘昌云, 李欣羽, 田绍锐, 王靖, 裴悦宏, 马小舟, 樊光进, 汪代斌, 孙现超. 番茄SlN-like的克隆、表达与抗病毒功能. 中国农业科学, 2021, 54(20): 4348-4357. doi: 10.3864/j.issn.0578-1752.2021.20.009.
LIU C Y, LI X Y, TIAN S R, WANG J, PEI Y H, MA X Z, FAN G J, WANG D B, SUN X C. Cloning, expression and anti-virus function analysis of Solanum lycopersicum SlN-like. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357. doi: 10.3864/j.issn.0578-1752.2021.20.009. (in Chinese)
[24]
LIU C, TIAN S, LV X, PU Y, PENG H, FAN G, MA X, MA L, SUN X. Nicotiana benthamiana asparagine synthetase associates with IP-L and confers resistance against tobacco mosaic virus via the asparagine-induced salicylic acid signalling pathway. Molecular Plant Pathology, 2022, 23(1): 60-77.
[25]
WASTERNACK C, HAUSE B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 2013, 111(6): 1021-1058.
[26]
CAMPOS M L, KANG J H, HOWE G A. Jasmonate-triggered plant immunity. Journal of Chemical Ecology, 2014, 40(7): 657-675.
[27]
MAJOR I T, YOSHIDA Y, CAMPOS M L, KAPALI G, XIN X F, SUGIMOTO K, DE OLIVEIRA FERREIRA D, HE S Y, HOWE G A. Regulation of growth-defense balance by the JASMONATE ZIM- DOMAIN (JAZ)-MYC transcriptional module. New Phytologist, 2017, 215(4): 1533-1547.
[28]
CHINI A, BOTER M, SOLANO R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. The FEBS Journal, 2009, 276(17): 4682-4692.
[29]
THATCHER L F, CEVIK V, GRANT M, ZHAI B, JONES J D G, MANNERS J M, KAZAN K. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. Journal of Experimental Botany, 2016, 67(8): 2367-2386.
[30]
ZHANG T, MENG L, KONG W, YIN Z, WANG Y, SCHNEIDER J D, CHEN S. Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000. Journal of Proteomics, 2018, 175: 114-126.
[31]
闫筱筱. 中国野生毛葡萄转录因子JAZ和TLP基因抗病功能研究[D]. 杨凌: 西北农林科技大学, 2018.
YAN X X. Research on disease resistance of transcription factor JAZ and TLP gene in Chinese wild grape Vitis quinquangularis[D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[32]
YU J, ZHANG Y, DI C, ZHANG Q, ZHANG K, WANG C, YOU Q, YAN H, DAI S Y, YUAN J S, XU W, SU Z. JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. Journal of Experimental Botany, 2016, 67(3): 751-762.
[33]
刘霞, 唐设, 窦志, 李刚华, 刘正辉, 王绍华, 丁承强, 丁艳锋. 茉莉酸甲酯对武运粳24和宁粳3号灌浆早期高温胁迫生理特性的影响. 中国水稻科学, 2016, 30(3): 291-303.
LIU X, TANG S, DOU Z, LI G H, LIU Z H, WANG S H, DING C Q, DING Y F. Effects of MeJA on the physiological characteristics of japonica rice Wuyunjing 24 and Ningjing 3 during early grain filling stage under heat stress. Chinese Journal of Rice Science, 2016, 30(3): 291-303. (in Chinese)
[34]
朱畇昊, 张梦佳, 董诚明. 外源MeJA对高温胁迫下半夏抗氧化系统和胁迫基因的影响. 植物研究, 2021, 41(1): 67-73.
ZHU Y H, ZHANG M J, DONG C M. Effects of exogenous MeJA on antioxidant system and stress genes of Pinellia ternata under high temperature stress. Bulletin of Botanical Research, 2021, 41(1): 67-73. (in Chinese)
[1] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[2] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[3] GUAN ZhiLin, JIN FengWei, LIU TingTing, WANG Yi, TAN YingYing, YANG ChunHui, LI RuiTong, WANG Bo, LIU KeDe, DONG Yun. Genetic Analysis and Gene Mapping of Glossy Leaf in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(4): 650-662.
[4] SHAO JiaZhu, LÜ Wen, LIAO XinLin, YUAN XinYu, SONG Zhen, JIANG DongHua. Isolation and Identification of Soybean Rhizosphere Growth-Promoting Bacteria and Their Salt Tolerance and Growth-Promoting Effects [J]. Scientia Agricultura Sinica, 2024, 57(21): 4248-4263.
[5] HU DanDan, LUO RunQi, LIANG RuiYing, WANG Lei, LIANG Lin, SI HongBin, DING JiaBo, TANG XinMing. Research Progress of ApiAP2 Transcription Factors in Regulating the Growth and Development of Toxoplasma gondii [J]. Scientia Agricultura Sinica, 2024, 57(13): 2687-2697.
[6] WEI XiaoDong, SONG XueMei, WANG Ning, ZHAO QingYong, ZHU Zhen, CHEN Tao, ZHAO Ling, WANG CaiLin, ZHANG YaDong. Distribution Characteristics of Photosynthetic Products of Nanjing Series of Super Rice During Filling Stage [J]. Scientia Agricultura Sinica, 2024, 57(12): 2309-2321.
[7] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[8] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[9] FAN JunQiang, WU JunYan, LIU LiJun, MA Li, YANG Gang, PU YuanYuan, LI XueCai, SUN WanCang. Correlation Between Stomatal Characteristics and Cold Resistance of Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(4): 599-618.
[10] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[11] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[12] LI MeiXuan, ZHANG XiangKun, WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang. The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods [J]. Scientia Agricultura Sinica, 2023, 56(21): 4234-4244.
[13] YANG Li, CAO HongBo, ZHANG XueYing, ZHAI HanHan, LI XinMiao, PENG JiaWei, TIAN Yi, CHEN HaiJiang. Functional Identification of Peach Gene PpSAUR73 [J]. Scientia Agricultura Sinica, 2023, 56(20): 4072-4086.
[14] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[15] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!