Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (13): 2687-2697.doi: 10.3864/j.issn.0578-1752.2024.13.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Research Progress of ApiAP2 Transcription Factors in Regulating the Growth and Development of Toxoplasma gondii

HU DanDan1(), LUO RunQi1,2(), LIANG RuiYing2, WANG Lei1,2, LIANG Lin2, SI HongBin1, DING JiaBo2(), TANG XinMing2()   

  1. 1 College of Animal Science and Technology, Guangxi University, Nanning 541000
    2 Institute of Animal Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs/Key Laboratory of Veterinary Biological Products and Chemical Drugs of Ministry of Agriculture and Rural Affairs, Beijing 100193
  • Received:2023-12-23 Accepted:2024-03-14 Online:2024-07-09 Published:2024-07-09
  • Contact: DING JiaBo, TANG XinMing

Abstract:

Toxoplasmosis is one of the most serious zoonotic parasitic diseases in the world. WHO data show that the positive rate of Toxoplasma gondii antibody in the global population is 25%-50%. The vertical transmission caused by T. gondii infection in pregnant women seriously endangers the health of fetuses and infants, and T. gondii infection is also the main cause of death in immunocompromised patients. In livestock production, toxoplasmosis causes abortion and stillbirth in pregnant animals, which is seriously harmful. T. gondii is an obligate intracellular protozoan parasite that belongs to the apicomplexan protozoa, and its life cycle is complex, including asexual reproduction in intermediate hosts (humans and other warm-blooded animals) and sexual reproduction in terminal hosts (cats). In order to complete the complex life cycle of T. gondii in the intermediate and terminal hosts, its transformation and growth at different developmental stages require strict and accurate gene regulation. Therefore, revealing the regulatory mechanism of T. gondii growth and development is of great significance for the development of therapeutic drugs and vaccines. ApiAP2 transcription factor is a kind of protein family with AP2 domain and strong regulatory function, which plays a core regulatory role in the growth and development of parasites such as Plasmodium and T. gondii. It is a breakthrough to elucidate the regulation mechanism of development and transformation of T. gondii at different life cycle stages. As a model organism for the study of apicomplexan, 67 transcription factors containing AP2 domain have been annotated in T. gondii genome. Some of these transcription factors play crucial regulatory roles in the growth, development, and transformation processes of T. gondii throughout its life cycle. However, the biological functions of most AP2 transcription factors are unknown, especially the research on the development and regulation of sexual reproduction stage is relatively scarce. In this paper, the research methods, biological functions, regulatory interaction genes and networks of AP2 transcription factors of T. gondii have been systematically reviewed. The aim was to explore the genes or molecules that play a core regulatory role in the important nodes of T. gondii growth and development. The regulatory mechanism of different growth and development stages of T. gondii complex life cycle was preliminarily outlined at the micro molecular level, and its role and potential in the development of new drugs and vaccines were prospected. To provide new ideas and entry points for the prevention and control of animal toxoplasmosis and block the source of human toxoplasmosis infection, we should practice the concept of “disease prevention in animals and front-line defense” and strive to achieve “one world, one health” for everyone’s well-being.

Key words: Toxoplasma gondii, life cycle, transcription factors, gene regulation, gene expression

Fig. 1

Life cycle and regulation of AP2 transcription factors at different developmental stages of Toxoplasma gondii Ⅰ: Transcription factors regulating the replication cycle of tachyzoites: AP2IX-5, AP2XII-2, AP2X-4, AP2XII-1; Ⅱ: Transcription factors that regulate the transformation from tachyzoite to bradyzoite: AP2XI-4, AP2IV-4, AP2IX-4, AP2IV-3; Ⅲ: Factors that inhibit the transformation from tachyzoite to bradyzoite: AP2XII-2, AP2IX-9, AP2XII-1; Ⅳ: Factors regulating the transformation from tachyzoite to merozoite: AP2XII-1, AP2XI-2; V: Factors that inhibit the transformation from tachyzoite to merozoite: MORC;Ⅵ: HDAC3/MORC complex regulates the whole sexual reproduction stage; A-E: Five stages of schizont"

Table 1

Regulator functions of ApiAP2 transcription factors in Toxoplasma gondii life cycle"

名称
Name
基因号
GeneID
研究时期
Research period
作用
Function
文献来源
Reference
AP2IX-4 TGME49_288950 速殖子到缓殖子
Tachyzoite to bradyzoite
调控缓殖子分化和包囊形成;调控毒力相关基因表达
Regulate bradyzoite differentiation and cyst formation; regulation of virulence-related gene expression
[60]
AP2XI-4 TGME49_115760 速殖子到缓殖子
Tachyzoite to bradyzoite
调控缓殖子分化和包囊形成
Regulate bradyzoite differentiation and cyst formation
[62]
AP2IV-4 TGME49_318470 速殖子到缓殖子
Tachyzoite to bradyzoite
调控缓殖子分化和包囊形成
Regulate bradyzoite differentiation and cyst formation
[61]
AP2X-4 TGME49_224050 速殖子
Tachyzoite
调控棒状体分泌蛋白相关基因的表达;调控入侵,毒力和速殖子分裂
Regulate the expression of rhoptry secretory protein-related genes; regulate invasion, virulence and tachyzoite division
[42]
AP2XII-5 TGME49_24773 缓殖子
Bradyzoite
调控毒力相关基因表达
Regulation of virulence-related gene expression
[42]
AP2IX-5 TGME49_289710 速殖子
Tachyzoite
激活顶质体的分裂程序以促进速殖子分裂
Activate the division program of apicoplast to promote tachyzoite division
[56]
AP2X-5 TGME49_237090 速殖子S期/M期
Tachyzoite S/M
调控毒力相关基因表达
Regulation of virulence-related gene expression
[55]
AP2XI-5 TGME49_216220 速殖子
Tachyzoite
与 GCTAGC 基序结合
Bind to the GCTAGC motif
[54]
AP2IX-9 TGME49_306620 速殖子到缓殖子
Tachyzoite to bradyzoite
抑制缓殖子分化和包囊形成;适应性实验室进化的关键驱动因素
Inhibition of bradyzoite differentiation and cyst formation; The key driving factors of adaptive laboratory evolution
[41]
AP2IV-3 TGME49_318610 速殖子到缓殖子
Tachyzoite to bradyzoite
调控缓殖子分化和包囊形成
Regulate bradyzoite differentiation and cyst formation
[41]
AP2XII-2 TGME49_217700 速殖子到缓殖子
Tachyzoite to bradyzoite
调控速殖子分裂,抑制包囊形成;与HDAC3 / MORC复合物互作,抑制有性生殖启动
Regulate tachyzoite division and inhibit cyst formation; it interacts with HDAC3 / MORC complex to inhibit the initiation of sexual reproduction
[52,63]
AP2XII-1 TGME49_218960 速殖子到裂殖子
Tachyzoite to merozoite
调控速殖子分裂,抑制裂殖子形成; 抑制缓殖子以及包囊的形成;与HDAC3 / MORC复合物互作,可能抑制有性生殖启动
Regulate bradyzoite differentiation and cyst formation; Inhibiting the formation of bradyzoites and cysts in type II strains; Interaction with HDAC3 / MORC complex may inhibit initiation of sexual reproduction
[65]
AP2XI-2 TGME49_310900 速殖子到裂殖子
Tachyzoite to merozoite
调控入侵和毒力与HDAC3 / MORC复合物互作调控缓殖子分化和包囊形成;
抑制裂殖子分化
Regulate bradyzoite differentiation and cyst formation; Interaction with HDAC3 / MORC complex may inhibit initiation of sexual reproduction; Regulate bradyzoite differentiation and cyst formation; Inhibition of merozoite differentiation
[64,66]
AP2IX-1 TGME49_267460 速殖子到裂殖子
Tachyzoite to merozoite
调控有性生殖阶段表面抗原表达
Regulation of surface antigen expression in sexual reproduction stage
[58]
[1]
LEVINE N D. Progress in taxonomy of the api complexan Protozoa. The Journal of Protozoology, 1988, 35(4): 518-520.
[2]
DAHER D, SHAGHLIL A, SOBH E, HAMIE M, HASSAN M E, MOUMNEH M B, ITANI S, EL HAJJ R, TAWK L, EL SABBAN M, EL HAJJ H. Comprehensive overview of Toxoplasma gondii-induced and associated diseases. Pathogens, 2021, 10(11): 19.
[3]
TANDEL J, WALZER K A, BYERLY J H, PINKSTON B, BEITING D P, STRIEPEN B. Genetic ablation of a female-specific apetala 2 transcription factor blocks oocyst shedding in Cryptosporidium parvum. mBio, 2023, 14(2): e0326122.
[4]
SHWAB E K, SARAF P, ZHU X Q, ZHOU D H, MCFERRIN B M, AJZENBERG D, SCHARES G, HAMMOND-ARYEE K, VAN HELDEN P, HIGGINS S A, GERHOLD R W, ROSENTHAL B M, ZHAO X P, DUBEY J P, SU C L. Human impact on the diversity and virulence of the ubiquitous zoonotic parasite Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(29): e6956.
[5]
ZHOU D H, ZHAO F R, LU P, XIA H Y, XU M J, YUAN L G, YAN C, HUANG S Y, LI S J, ZHU X Q. Seroprevalence of Toxoplasma gondii infection in dairy cattle in Southern China. Parasites & Vectors, 2012, 5(1): 48.
[6]
PAN M, LYU C C, ZHAO J L, SHEN B. Sixty years (1957-2017) of research on toxoplasmosis in China-An overview. Frontiers in Microbiology, 2017, 8: 1825.
[7]
HOSEIN S, LIMON G, DADIOS N, GUITIAN J, BLAKE D P. Toxoplasma gondii detection in cattle: A slaughterhouse survey. Veterinary Parasitology, 2016, 228: 126-129.
[8]
HUANG M, HUANG H J, CAO X R, YIN Y W, SHI K C, WANG D Y, HU D D, SONG X J. Seroprevalence of Toxoplasma gondii in water buffaloes and cats in Guangxi, China. Parasitology Research, 2023, 123(1): 18.
[9]
SHAPIRO K, BAHIA-OLIVEIRA L, DIXON B, DUMÈTRE A, DE WIT L A, VANWORMER E, VILLENA I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food and Waterborne Parasitology, 2019, 15: e00049.
[10]
FRENKEL J K, RUIZ A, CHINCHILLA M. Soil survival of toxoplasma oocysts in Kansas and Costa Rica. The American Journal of Tropical Medicine and Hygiene, 1975, 24(3): 439-443.
[11]
陈秀春, 周世昌, 刘锦华. 弓形虫感染与优生. 泰山医学院学报, 2004, 25(5): 480-482.
CHEN X C, ZHOU S C, LIU J H. Toxoplasma gondii infection and eugenics. Journal of Taishan Medical College, 2004, 25(5): 480-482. (in Chinese)
[12]
李慧珠. 弓形虫与弓形虫病. 生物学通报, 2002, 37(5): 9-12.
LI H Z. Toxoplasma and toxoplasmosis. Bulletin of Biology, 2002, 37(5): 9-12. (in Chinese)
[13]
钱铭智, 马以武, 卢慎. 孕妇弓形虫感染与胎儿畸形关系的初步观察. 南京医学院学报, 1990(2): 124-125.
QIAN M Z, MA Y W, LU S. Preliminary observation on the relationship between Toxoplasma gondii infection in pregnant women and fetal malformation. Journal of Nanjing Medical University, 1990(2): 124-125. (in Chinese)
[14]
胡建辉, 王英. 人弓形虫病临床研究的进展. 医学综述, 1996, 2(6): 306-307.
HU J H, WANG Y. Progress of clinical research on human toxoplasmosis. Medical Recapitulate, 1996, 2(6): 306-307. (in Chinese)
[15]
卢慎. 弓形虫病宫内感染100例胎婴儿的病理学观察. 中国寄生虫病防治杂志, 1994(3): 209-212.
LU S. Pathological observation of 100 cases of toxoplasmosis intrauterine infection in infants. Journal of Pathogen Biology, 1994(3): 209-212. (in Chinese)
[16]
DUBEY J P, LAGO E G, GENNARI S M, SU C, JONES J L. Toxoplasmosis in humans and animals in Brazil: High prevalence, high burden of disease, and epidemiology. Parasitology, 2012, 139(11): 1375-1424.

doi: 10.1017/S0031182012000765 pmid: 22776427
[17]
ZIELIŃSKI A. Toxoplasmosis in patients with AIDS. Przeglad Epidemiologiczny, 1995, 49(4): 343-352.
[18]
MONTOYA J G, LIESENFELD O. Toxoplasmosis. The Lancet, 2004, 363(9425): 1965-1976.
[19]
FOND G, CAPDEVIELLE D, MACGREGOR A, ATTAL J, LARUE A, BRITTNER M, DUCASSE D, BOULENGER J P. Toxoplasma gondii: a potential role in the genesis of psychiatric disorders. Encephale, 2013, 39(1): 38-43.
[20]
张钦. 我国部分地区猪弓形虫血清学调查[D]. 合肥: 安徽农业大学, 2016.
ZHANG Q. The serological investigation of pigs’ Toxoplasma gondii from some regions of China[D]. Hefei: Anhui Agricultural University, 2016. (in Chinese)
[21]
王祎, 杨磊. 猪弓形虫病的研究进展. 畜牧兽医科技信息, 2022(11): 10-12.
WANG Y, YANG L. Research progress of porcine toxoplasmosis. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2022(11): 10-12. (in Chinese)
[22]
SULLIVAN W J Jr, HAKIMI M A. Histone mediated gene activation in Toxoplasma gondii. Molecular and Biochemical Parasitology, 2006, 148(2): 109-116.
[23]
KIM K. The epigenome, cell cycle, and development in Toxoplasma. Annual Review of Microbiology, 2018, 72: 479-499.
[24]
JENINGA M, QUINN J, PETTER M. ApiAP2 transcription factors in api complexan parasites. Pathogens, 2019, 8(2): 47.
[25]
PIESZKO M, WEIR W, GOODHEAD I, KINNAIRD J, SHIELS B. ApiAP2 factors as candidate regulators of stochastic commitment to merozoite production in Theileria annulata. PLoS Neglected Tropical Diseases, 2015, 9(8): e0003933.
[26]
SUBUDHI A, GREEN J L, SATYAM R, SALUNKE R P, LENZ T, SHUAIB M, ISAIOGLOU I, ABEL S, GUPTA M, ESAU L, MOURIER T, et al. DNA-binding protein PfAP2-P regulates parasite pathogenesis during malaria parasite blood stages. Nature Microbiology. 2023, 8(11):2154-2169.

doi: 10.1038/s41564-023-01497-6 pmid: 37884813
[27]
CAI W M, FENG Q Q, WANG L Y, SU S J, HOU Z F, LIU D D, KANG X L, XU J J, PAN Z M, TAO J P. Localization in vivo and in vitro confirms EnApiAP2 protein encoded by ENH_00027130 as a nuclear protein in Eimeria necatrix. Frontiers in Cellular and Infection Microbiology, 2023, 13: 1305727.
[28]
CHEN L L, TANG X M, SUN P, HU D D, ZHANG Y Y, WANG C Y, CHEN J M, LIU J, GAO Y, HAO Z K, ZHANG N, CHEN W X, XIE F J, SUO X, LIU X Y. Comparative transcriptome profiling of Eimeria tenella in various developmental stages and functional analysis of an ApiAP2 transcription factor exclusively expressed during sporogony. Parasites & Vectors, 2023, 16(1): 241.
[29]
SUVOROVA E S, RADKE J B, TING L M, VINAYAK S, ALVAREZ C A, KRATZER S, KIM K, STRIEPEN B, WHITE M W. A nucleolar AAA-NTPase is required for parasite division. Molecular Microbiology, 2013, 90(2): 338-355.

doi: 10.1111/mmi.12367 pmid: 23964771
[30]
RIECHMANN J L, MEYEROWITZ E M. The AP2/EREBP family of plant transcription factors. Biological Chemistry, 1998, 379(6): 633-646.

doi: 10.1515/bchm.1998.379.6.633 pmid: 9687012
[31]
BALAJI S, BABU M M, IYER L M, ARAVIND L. Discovery of the principal specific transcription factors of Api complexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Research, 2005, 33(13): 3994-4006.
[32]
LINDNER S E, DE SILVA E K, KECK J L, LLINÁS M. Structural determinants of DNA binding by a P. falciparum ApiAP2 transcriptional regulator. Journal of Molecular Biology, 2010, 395(3): 558-567.
[33]
ALLEN M D, YAMASAKI K, OHME-TAKAGI M, TATENO M, SUZUKI M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal, 1998, 17(18): 5484-5496.
[34]
CAMPBELL T L, DE SILVA E K, OLSZEWSKI K L, ELEMENTO O, LLINÁS M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathogens, 2010, 6(10): e1001165.
[35]
RUIZ J L, TENA J J, BANCELLS C, CORTÉS A, GÓMEZ- SKARMETA J L, GÓMEZ-DÍAZ E. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Research, 2018, 46(18): 9414-9431.
[36]
ARAVIND L, LANDSMAN D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Research, 1998, 26(19): 4413-4421.

doi: 10.1093/nar/26.19.4413 pmid: 9742243
[37]
HARRIS M T, JEFFERS V, MARTYNOWICZ J, TRUE J D, MOSLEY A L, SULLIVAN W J Jr. A novel GCN5b lysine acetyltransferase complex associates with distinct transcription factors in the protozoan parasite Toxoplasma gondii. Molecular and Biochemical Parasitology, 2019, 232: 111203.
[38]
FARHAT D C, SWALE C, DARD C, CANNELLA D, ORTET P, BARAKAT M, SINDIKUBWABO F, BELMUDES L, DE BOCK P J, COUTÉ Y, BOUGDOUR A, HAKIMI M A. A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment. Nature Microbiology, 2020, 5: 570-583.
[39]
YAKUBU R R, SILMON DE MONERRI N C, NIEVES E, KIM K, WEISS L M. Comparative monomethylarginine proteomics suggests that protein arginine methyltransferase 1 (PRMT1) is a significant contributor to arginine monomethylation in Toxoplasma gondii. Molecular & Cellular Proteomics, 2017, 16(4): 567-580.
[40]
PRIMO V A Jr, REZVANI Y, FARRELL A, MURPHY C Q, LOU J J, VAJDI A, MARTH G T, ZARRINGHALAM K, GUBBELS M J. The extracellular milieu of Toxoplasma’s lytic cycle drives lab adaptation, primarily by transcriptional reprogramming. mSystems, 2021, 6(6): e0119621.
[41]
HONG D P, RADKE J B, WHITE M W. Opposing transcriptional mechanisms regulate Toxoplasma development. mSphere, 2017, 2(1): e00347.
[42]
张晶雯. AP2X-4和AP2XⅡ-5对弓形虫生长发育的调节作用[D]. 武汉: 华中农业大学, 2020.
ZHANG J W. Regulation of Toxoplasma gondii growth and development by AP2X-4 and AP2XⅡ-5[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
[43]
WEILHAMMER D R, IAVARONE A T, VILLEGAS E N, BROOKS G A, SINAI A P, SHA W C. Host metabolism regulates growth and differentiation of Toxoplasma gondii. International Journal for Parasitology, 2012, 42(10): 947-959.
[44]
YIN D Q, JIANG N, CHENG C, SANG X Y, FENG Y, CHEN R, CHEN Q J. Protein lactylation and metabolic regulation of the zoonotic parasite Toxoplasma gondii. Genomics, Proteomics & Bioinformatics, 2023, 21(6): 1163-1181.
[45]
HEREDERO-BERMEJO I, VARBERG J M, CHARVAT R, JACOBS K, GARBUZ T, SULLIVAN W J Jr, ARRIZABALAGA G. TgDrpC, an atypical dynamin-related protein in Toxoplasma gondii, is associated with vesicular transport factors and parasite division. Molecular Microbiology, 2019, 111(1): 46-64.
[46]
WANG J C, DIXON S E, TING L M, LIU T K, JEFFERS V, CROKEN M M, CALLOWAY M, CANNELLA D, ALI HAKIMI M, KIM K, SULLIVAN W J. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation. PLoS Pathogens, 2014, 10(1): e1003830.
[47]
CROKEN M M, MA Y F, MARKILLIE L M, TAYLOR R C, ORR G, WEISS L M, KIM K. Distinct strains of Toxoplasma gondii feature divergent transcriptomes regardless of developmental stage. PLoS ONE, 2014, 9(11): e111297.
[48]
RADKE J B, LUCAS O, DE SILVA E K, MA Y F, SULLIVAN W J Jr, WEISS L M, LLINAS M, WHITE M W. ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6871-6876.
[49]
GUBBELS M J, COPPENS I, ZARRINGHALAM K, DURAISINGH M T, ENGELBERG K. The modular circuitry of api complexan cell division plasticity. Frontiers in Cellular and Infection Microbiology, 2021, 11: 670049.
[50]
ZARRINGHALAM K, YE S D, LOU J J, REZVANI Y, GUBBELS M J. Cell cycle-regulated ApiAP2s and parasite development: The Toxoplasma paradigm. Current Opinion in Microbiology, 2023, 76: 102383.
[51]
BEHNKE M S, WOOTTON J C, LEHMANN M M, RADKE J B, LUCAS O, NAWAS J, SIBLEY L D, WHITE M W. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS ONE, 2010, 5(8): e12354.
[52]
SRIVASTAVA S, WHITE M W, SULLIVAN W J Jr. Toxoplasma gondii AP2XII-2 contributes to proper progression through S-phase of the cell cycle. mSphere, 2020, 5(5): e00542.
[53]
LAI B S, WITOLA W H, BISSATI K E, ZHOU Y, MUI E, FOMOVSKA A, MCLEOD R. Molecular target validation, antimicrobial delivery, and potential treatment of Toxoplasma gondii infections. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(35): 14182-14187.
[54]
WALKER R, GISSOT M, HUOT L, ALAYI T D, HOT D, MAROT G, SCHAEFFER-REISS C, VAN DORSSELAER A, KIM K, TOMAVO S. Toxoplasma transcription factor TgAP2XI-5 regulates the expression of genes involved in parasite virulence and host invasion. The Journal of Biological Chemistry, 2013, 288(43): 31127-31138.
[55]
LESAGE K M, HUOT L, MOUVEAUX T, COURJOL F, SALIOU J M, GISSOT M. Cooperative binding of ApiAP2 transcription factors is crucial for the expression of virulence genes in Toxoplasma gondii. Nucleic Acids Research, 2018, 46(12): 6057-6068.
[56]
KHELIFA A S, GUILLEN SANCHEZ C, LESAGE K M, HUOT L, MOUVEAUX T, PERICARD P, BAROIS N, TOUZET H, MAROT G, ROGER E, GISSOT M. TgAP2IX-5 is a key transcriptional regulator of the asexual cell cycle division in Toxoplasma gondii. Nature Communications, 2021, 12: 116.
[57]
SZATANEK T, ANDERSON-WHITE B R, FAUGNO-FUSCI D M, WHITE M, SAEIJ J P, GUBBELS M J. Cactin is essential for G1 progression in Toxoplasma gondii. Molecular Microbiology, 2012, 84(3): 566-577.
[58]
XUE Y, THEISEN T C, RASTOGI S, FERREL A, QUAKE S R, BOOTHROYD J C. A single-parasite transcriptional atlas of Toxoplasma gondii reveals novel control of antigen expression. eLife, 2020, 9: e54129.
[59]
WALDMAN B S, SCHWARZ D, WADSWORTH M H 2nd, SAEIJ J P, SHALEK A K, LOURIDO S. Identification of a master regulator of differentiation in Toxoplasma. Cell, 2020, 180(2): 359-372.
[60]
HUANG S, HOLMES M J, RADKE J B, HONG D P, LIU T K, WHITE M W, SULLIVAN W J Jr. Toxoplasma gondii AP2IX-4 regulates gene expression during bradyzoite development. mSphere, 2017, 2(2): e00054.
[61]
RADKE J B, WORTH D, HONG D, HUANG S, SULLIVAN W J Jr, WILSON E H, WHITE M W. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. PLoS Pathogens, 2018, 14(5): e1007035.
[62]
WALKER R, GISSOT M, CROKEN M M, HUOT L, HOT D, KIM K, TOMAVO S. The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Molecular Microbiology, 2013, 87(3): 641-655.
[63]
SULLIVAN W J Jr. Toxoplasma gondii AP2XII-2 contributes to transcriptional repression for sexual commitment. mSphere, 2023, 8(2): e0060622.
[64]
ANTUNES A V, SHAHINAS M, SWALE C, FARHAT D C, RAMAKRISHNAN C, BRULEY C, CANNELLA D, ROBERT M G, CORRAO C, COUTÉ Y, HEHL A B, BOUGDOUR A, COPPENS I, HAKIMI M A. In vitro production of cat-restricted Toxoplasma pre-sexual stages. Nature, 2024, 625: 366-376.
[65]
FAN F Q, XUE L L, YIN X Y, GUPTA N, SHEN B. AP2XII-1 is a negative regulator of merogony and presexual commitment in Toxoplasma gondii. mBio, 2023, 14(5): e0178523.
[66]
WANG J L, LI T T, ZHANG N Z, WANG M, SUN L X, ZHANG Z W, FU B Q, M ELSHEIKHA H, ZHU X Q. The transcription factor AP2XI-2 is a key negative regulator of Toxoplasma gondii merogony. Nature Communications. 2024, 15(1):793.
[1] CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun. Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature [J]. Scientia Agricultura Sinica, 2024, 57(7): 1220-1236.
[2] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[3] ZHOU YuanQing, DONG HongMin, ZHU ZhiPing, WANG Yue, LI NanXi. Review on Carbon Footprint Assessment of Pig Farming System [J]. Scientia Agricultura Sinica, 2024, 57(2): 379-389.
[4] YANG HaoRong, JIA Fan, HU Xu, MU Rong, LIU WeiNa, LIU ChangYun, WANG ShanZhi, SUN XianChao, MA GuanHua, CHEN GuoKang. BnJAZ7 Promotes Sclerotinia sclerotiorum Infection by Affecting the Antioxidant Pathway in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(19): 3799-3809.
[5] WEI XiaoDong, SONG XueMei, WANG Ning, ZHAO QingYong, ZHU Zhen, CHEN Tao, ZHAO Ling, WANG CaiLin, ZHANG YaDong. Distribution Characteristics of Photosynthetic Products of Nanjing Series of Super Rice During Filling Stage [J]. Scientia Agricultura Sinica, 2024, 57(12): 2309-2321.
[6] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[7] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[8] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[9] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[10] LI MeiXuan, ZHANG XiangKun, WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang. The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods [J]. Scientia Agricultura Sinica, 2023, 56(21): 4234-4244.
[11] YANG Li, CAO HongBo, ZHANG XueYing, ZHAI HanHan, LI XinMiao, PENG JiaWei, TIAN Yi, CHEN HaiJiang. Functional Identification of Peach Gene PpSAUR73 [J]. Scientia Agricultura Sinica, 2023, 56(20): 4072-4086.
[12] CHEN XiaoWei, WANG XiaoLong. Accounting Framework of Carbon Footprint on Integrated Cropping-Breeding Farming System: A Case on Maize-Cow-Recycling Manure Model [J]. Scientia Agricultura Sinica, 2023, 56(2): 314-332.
[13] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[14] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[15] ZHENG ChunYu, SHA ShanYi, ZHU Lin, WANG ShaoJie, FENG GuoZhong, GAO Qiang, WANG Yin. Optimizing Nitrogen Fertilizer Rate for High-Yield Maize in Black Soil Region Based on Ecological and Social Benefits [J]. Scientia Agricultura Sinica, 2023, 56(11): 2129-2140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!