Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (12): 2295-2308.doi: 10.3864/j.issn.0578-1752.2024.12.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of Low Glycemic Potato Varieties

DUAN HuiMin1(), LIU LingLing1, XIA LuLu1, YUAN JianLong1, CHENG LiXiang2, CHEN AiRong3, ZHANG Feng1,2()   

  1. 1 College of Agriculture, Gansu Agricultural University, Lanzhou 730070
    2 State Key Laboratory of Aridland Crop Science, Lanzhou 730070
    3 Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou 730000
  • Received:2023-12-26 Accepted:2024-03-04 Online:2024-06-25 Published:2024-06-25
  • Contact: ZHANG Feng

Abstract:

【Objective】 The selection of low glycemic index potato varieties is not only essential for controlling blood glucose, reducing obesity, and maintaining oral health but also constitutes a crucial approach to meeting diverse consumer demands and enhancing potato production efficiency. This process provides a foundation for the breeding of low glycemic index potato varieties and the improvement of biological breeding methods.【Method】 Eight domestically and internationally cultivated potato varieties were employed as experimental materials. The study involved the examination of tuber agronomic traits, analysis of total starch, amylose, rapidly digestible starch, slowly digestible starch, resistant starch, soluble sugars, insoluble dietary fiber, soluble dietary fiber, and soluble protein content in tubers before and after steaming processing. Additionally, the investigation included the evaluation of the retention levels of these components and the post-processing tuber flavor quality and in vitro/vivo glycemic index.【Result】 Among the eight varieties, the yield ranged from 21.50 to 49.90 t·hm-2, with marketable yield percentages ranging from 60.04% to 90.21% and length-to-width ratios from 1.21 to 2.90. Sensory evaluation scores for flavor ranged from 64 to 73. Texture profile analysis results indicated that hardness ranged from 9.78 N to 19.97 N, adhesiveness from 0.44 mJ to 1.66 mJ, cohesiveness from 0.052 to 0.070, springiness from 0.51 to 1.02 mm, and chewiness from 0.28 to 1.38 mJ. Before and after steaming, the total starch content of eight potato varieties ranged from 67.07% to 76.72% dry weight (DW) and 57.69% to 67.40% DW, respectively. The range of amylose content was 5.36% to 19.23% DW and 5.43% to 6.83% DW, while rapidly digestible starch content varied from 1.18% to 8.23% DW and 14.31% to 28.56% DW. The range of slowly digestible starch content was 3.33% to 7.69% DW and 12.81% to 27.65% DW, and resistant starch content varied from 53.71% to 70.36% DW and 11.80% to 25.80% DW. Soluble sugar content ranged from 25.98 to 56.86 mg·g-1 DW and 11.38 to 50.24 mg·g-1 DW, while total dietary fiber content varied from 29.62% to 36.17% DW and 43.67% to 52.55% DW. Insoluble dietary fiber content ranged from 17.69% to 23.70% DW and 30.31% to 44.12% DW, and soluble dietary fiber content ranged from 11.07% to 18.48% DW and 7.37% to 14.09% DW. Soluble protein content varied from 42.26 to 64.14 mg·g-1 DW and 0.71 to 4.82 mg·g-1 DW. Following steaming, the total starch content of the eight varieties exhibited a range of -15.49% to -5.97%, with changes in amylose content ranging from -12.39% to 0.56%. The variations in rapidly digestible starch, slowly digestible starch, and resistant starch were in the ranges of 10.44% to 25.86%, 5.12% to 23.09%, and -56.8% to -29.88%, respectively. Soluble sugar content varied from -27.07% to 15.70%, while changes in insoluble dietary fiber and soluble dietary fiber ranged from 11.41% to 25.19% and -4.73% to 0.77%, respectively. Soluble protein content exhibited a range of -60.86% to -39.67%. Correlation analysis revealed a significant positive correlation between the glycemic index and tuber total starch and rapidly digestible starch content, while a significant negative correlation was observed with resistant starch and insoluble dietary fiber content. The glycemic index of the eight varieties ranged from 58.08 to 100.64 in vitro and from 57.80 to 92.47 in vivo【Conclusion】 Under potato breeding program, the in vitro glycemic index can replace the in vivo glycemic index as an alternative evaluation method. The content of tuber total starch, rapidly digestible starch, slowly digestible starch, resistant starch, and insoluble dietary fiber are key agronomic traits be considered in the breeding process of low glycemic index potato varieties. The Lucinda was identified as a low glycemic index potato variety with superior flavor quality after cooking processing.

Key words: potato, glycemic index, agronomic traits, flavor quality, starch components, dietary fiber

Table 1

Eight potato varieties and their parents"

序号Code 品种Variety 亲本Parents
1 Lucinda Carrera×Vivaldi
2 布尔班克Burbank Burbank
3 大西洋Atlantic B5141-6×Wauseon
4 甘农奶香薯Gannong creamy potato Carminelle×H0940
5 甘农薯7号Gannongshu 7 大西洋×陇薯7号Atlantic×Longshu 7
6 冀张薯12号Jizhangshu 12 大西洋×99-6-36 Atlantic×99-6-36
7 陇薯7号Longshu 7 庄薯3号×菲多利Zhuangshu 3×Frito-Lay
8 希森6号Xisen 6 Shepody×XS9304

Table 2

Sensory evaluation score table of flavor quality of different varieties of potato after steaming"

参数Parameter 评分Score
甜度Sweetness 不甜-甜No sweet-Aweet (0-10)
酸度Acidity 酸-不酸No acid-Acid (0-10)
苦度Bitterness intensity 苦-不苦Bitter-No Bitter (0-20)
气味Flavor 不香-香No Flavor-Flavor (0-10)
切面湿润度Moisture of section 湿润-干燥Moistening-Drying (0-5)
质地Texture 颗粒感-细腻感
Graininess-Exquisite (0-15)
吞咽性Swallowing 困难-容易Difficulty-Easy (0-15)
硬度Hardness 硬-软Hard-Soft (0-15)
综合得分Comprehensive score 0-100

Table 3

Analysis of tuber agronomic traits of different varieties"

品种
Varieties
产量
Yield
(t·hm-2)
商品率
Commercial
rate (%)
块茎长
Tuber length
(mm)
块茎宽
Tuber width
(mm)
块茎长宽比
Length-width
ratio of tuber
干物质
Dry matter
(%)
薯皮颜色
Tuber skin
color
薯肉颜色
Tuber flesh
color
Lucinda 32.80±0.13d 83.22±1.52bc 112.95±7.90b 63.76±2.35c 1.77±0.07bc 18.69±0.31c 黄色Yellow 黄色Yellow
布尔班克Burbank 34.25±0.13cd 90.21±2.43a 128.53±4.13a 67.51±2.19b 1.91±0.05b 25.58±0.29ab 黄色Yellow 白色White
大西洋Atlantic 28.70±0.22e 82.75±2.37c 85.28±1.73c 71.03±2.11a 1.21±0.03d 27.50±0.81a 黄色Yellow 白色White
甘农奶香薯
Gannong creamy potato
21.50±0.48f 60.04±2.40d 91.42±1.52c 31.90±2.46g 2.90±0.21a 22.20±0.51b 橙红色
Orangered
黄色Yellow
甘农薯7号
Gannongshu 7
43.75±1.82b 87.65±1.52ab 87.38±2.01c 60.26±3.36d 1.47±0.08cd 26.63±0.19a 白色White 白色White
冀张薯12号
Jizhangshu 12
45.35±1.83a 86.07±2.00ab 115.71±4.79b 66.99±2.66b 1.73±0.06bc 21.89±0.53b 黄色Yellow 淡黄色
Light yellow
陇薯7号
Longshu 7
37.80±0.17c 88.76±0.83ab 78.61±2.82d 54.18±2.45e 1.46±0.05cd 27.21±0.56a 黄色Yellow 淡黄色
Light yellow
希森6号Xisen 6 49.90±0.05a 85.87±1.87b 87.69±1.84c 51.55±1.50e 1.71±0.05bc 17.75±0.33c 黄色Yellow 黄色Yellow

Table 4

Sensory evaluation of flavor quality of different varieties of potato after steaming (scores)"

品种
Varieties
甜度
Sweetness
酸度
Acidity
苦度
Bitterness
intensity
气味
Flavor
切面湿润度
Moisture of
section
质地
Texture
吞咽性
Swallowing
硬度
Hardness
综合得分
Comprehensive score
Lucinda 8 6 20 5 3 9 8 11 70
布尔班克Burbank 1 10 19 3 3 10 10 13 69
大西洋Atlantic 4 10 20 5 3 10 5 12 69
甘农奶香薯Gannong creamy potato 0 10 20 5 4 10 13 11 73
甘农薯7号Gannongshu 7 0 10 20 4 3 10 11 13 71
冀张薯12号Jizhangshu 12 9 9 13 4 2 6 13 14 70
陇薯7号Longshu 7 0 10 19 4 3 10 9 9 64
希森6号Xisen 6 7 9 18 4 2 9 8 8 65

Table 5

TPA texture of tubers of varieties after steaming"

品种
Varieties
硬度
Hardness (N)
粘附性
Adhesiveness (mJ)
内聚性
Cohesiveness
弹性
Springiness (mm)
咀嚼性
Chewiness (mJ)
Lucinda 14.07±0.60b 0.92±0.10b 0.060±0.001c 0.78±0.02bc 0.66±0.02c
布尔班克Burbank 12.68±1.05bc 0.84±0.15b 0.060±0.002c 0.67±0.04c 0.53±0.08cd
大西洋Atlantic 14.29±0.90b 0.92±0.08b 0.065±0.001b 0.79±0.01bc 0.73±0.06c
甘农奶香薯Gannong creamy potato 19.97±0.76a 0.81±0.03b 0.066±0.002ab 1.02±0.06a 1.38±0.16a
甘农薯7号Gannongshu 7 22.73±1.57a 0.44±0.09c 0.052±0.001d 0.82±0.04b 1.04±0.16b
冀张薯12号Jizhangshu 12 9.79±0.26c 1.66±0.09a 0.070±0.001a 0.68±0.01c 0.47±0.01cd
陇薯7号Longshu 7 14.62±0.50b 0.77±0.09b 0.060±0.001c 0.77±0.06bc 0.69±0.10c
希森6号Xisen 6 9.78±1.27c 0.49±0.01c 0.053±0.001d 0.51±0.04d 0.28±0.06d

Fig. 1

Differences in tuber total starch and amylose content among potato varieties A: Total starch; B: Amylose. Different lowercase letters indicate significant differences among varieties (P<0.05). The same as below"

Fig. 2

Differences in the content of rapidly digestible starch, slowly digestible starch, and resistance starch among potato varieties A: Rapidly digestible of starch; B: Slowly digestible of starch; C: Resistance starch"

Fig. 3

Differences in tuber soluble sugar content among potato varieties"

Table 6

The content of available carbohydrates among different potato varieties"

品种
Varieties
可用碳水化合物含量
Available carbohydrate content (% DW)
50 g可用碳水化合物需进食重量
50 g <BOLD>A</BOLD>vailable carbohydrate required
fresh potato weight (g DW)
50 g可用碳水化合物需进食重量
50 g <BOLD>A</BOLD>vailable carbohydrate required
fresh potato weight (g FW)
Lucinda 65.24±0.85b 76.64±0.86ab 445.16±4.97a
布尔班克Burbank 69.48±0.21ab 71.96±0.21c 285.40±0.85c
大西洋Atlantic 71.64±2.72a 69.79±3.06d 272.66±11.95c
甘农奶香薯Gannong creamy potato 66.64±1.95ab 75.03±1.68b 311.63±6.98b
甘农薯7号Gannongshu 7 68.21±0.23ab 73.31±3.10bc 247.93±10.49d
冀张薯12号Jizhangshu 12 70.12±0.47a 71.31±0.22c 357.08±1.09b
陇薯7号Longshu 7 63.20±1.49bc 79.12±0.65ab 275.19±2.25c
希森6号Xisen 6 60.40±0.38c 82.78±0.53a 437.86±2.78a

Fig. 4

Differences in the content of total dietary fiber, insoluble dietary fiber and soluble dietary fiber among potato varieties A: Total dietary fiber; B: Insoluble dietary fiber; C: Soluble dietary"

Fig. 5

Differences in tuber soluble protein content among potato varieties"

Fig. 6

Differences in the glycemic index of potato tubers among varieties"

Fig 7

Correlation analysis of potato tuber glycemic index and index in tubers"

Table 7

Stepwise regression analysis of potato tuber GI and eGI and related factors"

项目
Items
回归模型
Regression model
R2 调整R2
Adjusted R2
P DW检验
DW test
GI Y=345.867+4.14TS 0.192 0.171 0.005 2.056
eGI Y=27.803+0.835SDS-2.768SDF 0.599 0.572 0.001 1.072
[39]
GUAN Y L, ZHOU L Y, WANG H, CHEN J Y, MING J, LI F H. Impact of dynamic high pressure microfluidization on dietary fiber from Rosa roxburghii Tratt. Pomace and its inhibitory capacity against starch digestion and glucose diffusion. Food Science, 2022, 43(9): 79-86. (in Chinese)
官印珑, 周丽妍, 王辉, 陈佳雨, 明建, 李富华. 动态高压微射流对刺梨果渣膳食纤维及其抑制淀粉消化和葡萄糖扩散的影响. 食品科学, 2022, 43(9): 79-86.
[38]
MA Z, YI C P, WU N, TAN B. Steaming retains more phenolics, dietary fiber and antioxidant activities than cooking for rice with different milling processes. Cereal Chemistry, 2022, 99(3): 664-679.
[37]
THOMAS S, VÁSQUEZ-BENíTEZ J D, CUÉLLAR-CEPEDA F A, MOSQUERA-VÁSQUEZ T, NARVÁEZ-CUENCA C E. Vitamin C, protein, and dietary fibre contents as affected by genotype, agro- climatic conditions, and cooking method on tubers of Solanum tuberosum Group Phureja. Food Chemistry, 2021, 349: 129207.
[36]
KAPCUM C, PASADA K, KANTIWONG P, SROYSANG B, PHIWTAWEE J, SUPHANTHARIKA M, BELUR P D, AGOO E M G, JANAIRO J I B, WONGSAGONSUP R. Effects of different cooking methods on chemical compositions, in vitro starch digestibility and antioxidant activity of taro (Colocasia esculenta) corms. International Journal of Food Science & Technology, 2022, 57(8): 5144-5154.
[35]
WEI S Y, LU G Q, CAO H P. Effects of cooking methods on starch and sugar composition of sweetpotato storage roots. PLoS ONE, 2017, 12(8): e0182604.
[34]
YAO Y Q, ZHANG R, JIA R X, DENG Y Y, WANG Z Y. Impact of different cooking methods on the chemical profile of orange-fleshed sweet potato (Ipomoea batatas L.). LWT, 2023, 173: 114288.
[33]
HU X Q, FANG C Y, LU L, HU Z Q, ZHANG W X, CHEN M X. Dynamic changes in volatiles, soluble sugars, and fatty acids in glutinous rice during cooking. Foods, 2023, 12(8): 1700.
[32]
JAYANTY S S, DIGANTA K, RAVEN B. Effects of cooking methods on nutritional content in potato tubers. American Journal of Potato Research, 2019, 96(2): 183-194.

doi: 10.1007/s12230-018-09704-5
[31]
LIU L L, GAO C X, JIANG T H, DUAN H M, YUAN J L, ZHANG F. Effects of cooking methods and conditions on nutritional content of potato tubers. Journal of the Chinese Cereals and Oils Association, 2023, 38(7): 61-70. (in Chinese)
刘玲玲, 郜春晓, 蒋彤晖, 段惠敏, 袁剑龙, 张峰. 烹饪方式和条件对马铃薯块茎中营养成分含量的影响. 中国粮油学报, 2023, 38(7): 61-70.
[20]
GOÑI I, GARCIA-ALONSO A, SAURA-CALIXTO F. A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 1997, 17(3): 427-437.
[19]
ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 1992, 46(Suppl. 2): S33- S50.
[18]
ZHU T, JACKSON D S, WEHLING R L, GEERA B. Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. Cereal Chemistry, 2008, 85(1): 51-58.
[17]
LAURENTIN A, EDWARDS C A. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Analytical Biochemistry, 2003, 315(1): 143-145.

doi: 10.1016/s0003-2697(02)00704-2 pmid: 12672425
[16]
National Health and Family Planning Commission of the People's Republic of China, State Administration for Market Regulation. National food safety standard-determination of starch in food: GB 5009.9-2016. Beijing: Standards Press of China, 2016-12-23. (in Chinese)
中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中淀粉的测定: GB 5009.9-2016. 北京: 中国标准出版社, 2016-12-23.
[15]
State Administration for Maket Regulation, Standardization Administration of China. Guidelines for the conduct of tests for distinctness, uniformity and stability-Potato (Solanum tuberosum L.): GB/T 19557.28-2018. Beijing: Standards Press of China, 2018-05-14. (in Chinese)
国家市场监督管理总局, 中国国家标准化管理委员会. 植物品种特异性、一致性和稳定性测试指南马铃薯: GB/T 19557.28-2018. 北京: 中国标准出版社, 2018-05-14.
[14]
SOLTANI A, GOLMAKANI M T, FAZAELI M, NIAKOUSARI M, HOSSEINI S M H. Evaluating the effect of different physical pretreatments and cooking methods on nutritional (starch digestibility) and physicochemical properties of white rice grains (Fajr cultivar). LWT, 2023, 184: 115101.
[13]
KUMAR A, SAHOO U, LAL M, TIWARI R, LENKA S, SINGH N R, GUPTA O, SAH R P, SHARMA S. Biochemical markers for low glycemic index and approaches to alter starch digestibility in rice. Journal of Cereal Science, 2022, 106: 103501.
[12]
SHAH A, WANG Y C, TAO H, ZHANG W C, CAO S Q. Insights into the structural characteristics and in vitro starch digestibility on parboiled rice as affected by ultrasound treatment in soaking process. Food Chemistry: X, 2023, 19: 100816.
[11]
SAGILI V S, CHAKRABARTI P, JAYANTY S, KARDILE H, SATHUVALLI V. The glycemic index and human health with an emphasis on potatoes. Foods, 2022, 11(15): 2302.
[10]
QI X, TESTER R. Impact of starch gelatinization on digestibility and human health. Starch-Stärke, 2023, 75(5/6): 2200195.
[9]
YADAV G P, DALBHAGAT C G, MISHRA H N. Preparation of low glycemic rice and comparison of its physicochemical properties, cooking characteristics, starch digestibility and microstructure with raw rice (swarna cv). Food Science and Engineering, 2022, 4(1): 30-43.
[8]
CHENG Y, CHEN Q M, WANG Z J, ZENG M M, QIN F, CHEN J, HE Z Y. Effects of different food ingredients and additives on the digestibility of extruded and roller-dried maize starch and its application in low glycemic index nutritional formula powder. Journal of the Science of Food and Agriculture, 2023, 103(13): 6483-6490.
[7]
COLASANTO A, SAVASTIO S, POZZI E, GORLA C, COÏSSON J D, ARLORIO M, RABBONE I. The impact of different types of rice and cooking on postprandial glycemic trends in children with type 1 diabetes with or without celiac disease. Nutrients, 2023, 15(7): 1654.
[6]
ZAFAR M I, MILLS K E, ZHENG J, REGMI A, HU S Q, GOU L, CHEN L N. Low-glycemic index diets as an intervention for diabetes: A systematic review and meta-analysis. The American Journal of Clinical Nutrition, 2019, 110(4): 891-902.
[5]
JENKINS D J, WOLEVER T M, JENKINS A L. Starchy foods and glycemic index. Diabetes Care, 1988, 11(2): 149-159.

pmid: 3383733
[4]
ZOU J, FENG Y T, XU M J, YANG P Y, ZHAO X D, YANG B. The structure-glycemic index relationship of Chinese yam (Dioscorea opposita Thunb.) starch. Food Chemistry, 2023, 421: 136228.
[3]
WOLEVER T M S, MEYNIER A, JENKINS A L, BRAND-MILLER J C, ATKINSON F S, GENDRE D, LEUILLET S, CAZAUBIEL M, HOUSEZ B, VINOY S. Glycemic index and insulinemic index of foods: An interlaboratory study using the ISO 2010 method. Nutrients, 2019, 11(9): 2218.
[2]
LI C, HU Y M. In vitro and animal models to predict the glycemic index value of carbohydrate-containing foods. Trends in Food Science & Technology, 2022, 120: 16-24.
[1]
JENKINS D J, WOLEVER T M, TAYLOR R H, BARKER H, FIELDEN H, BALDWIN J M, BOWLING A C, NEWMAN H C, JENKINS A L, GOFF D V. Glycemic index of foods: A physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 1981, 34(3): 362-366.
[30]
FANG H T, YIN X X, HE J Q, XIN S H, ZHANG H L, YE X Q, YANG Y Y, TIAN J H. Cooking methods affected the phytochemicals and antioxidant activities of potato from different varieties. Food Chemistry, 2022, 14: 100339.
[29]
TIAN J H, CHEN J C, YE X Q, CHEN S G. Health benefits of the potato affected by domestic cooking: A review. Food Chemistry, 2016, 202: 165-175.

doi: 10.1016/j.foodchem.2016.01.120 pmid: 26920281
[28]
VREUGDENHIL D, BRADSHAW J, GEBHARDT C, GOVERS F, MACKERRON D, TAYLOR M, ROSS H. Potato Biology and Biotechnology:Advances and Perspectives. Amsterdam: Elsevier, 2007: 823.
[27]
Food products-Determination of the glycaemic index (GI) and recommendation for food classification: ISO 26642:2010. Switzerland: International Standard Organization, 2010.
[26]
National Health Commission of the People's Republic of China. Determination of glycemic index of foods: WS/T 652-2019[S]. Beijing: Standards Press of China, 2019-06-11. (in Chinese)
中华人民共和国国家卫生健康委员会. 食物血糖生成指数测定方法: WS/T 652-2019. 北京, 中国标准出版社, 2019-06-11.
[25]
COLLIER G, MCLEAN A, O'DEA K. Effect of co-ingestion of fat on the metabolic responses to slowly and rapidly absorbed carbohydrates. Diabetologia, 1984, 26(1): 50-54.

pmid: 6368300
[24]
DELAPLACE P, VAN DER WAL F, DIERICK J F, CORDEWENER J H G, FAUCONNIER M L, DU JARDIN P, AMERICA A H P. Potato tuber proteomics: Comparison of two complementary extraction methods designed for 2-DE of acidic proteins. Proteomics, 2006, 6(24): 6494-6497.

pmid: 17096317
[23]
National Health and Family Planning Commission of the People's Republic of China. National food safety standard-determination of dietary fiber in food: GB 5009.88-2014. Beijing: Standards Press of China, 2015-09-21. (in Chinese)
中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中膳食纤维的测定: GB 5009.88-2014. 北京: 中国标准出版社, 2015-09-21.
[22]
MASUKO T, MINAMI A, IWASAKI N, MAJIMA T, NISHIMURA S I, LEE Y C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry, 2005, 339(1): 69-72.

doi: 10.1016/j.ab.2004.12.001 pmid: 15766712
[21]
FERNANDES J M, MADALENA D A, PINHEIRO A C, VICENTE A A. Rice in vitro digestion: Application of INFOGEST harmonized protocol for glycemic index determination and starch morphological study. Journal of Food Science and Technology, 2020, 57(4): 1393-1404.
[1] HUANG LiQiang, JIANG Ru, ZHU BoZhi, PENG Huan, XU Chong, SONG JiaXiong, CHEN Min, LI YongQing, HUANG WenKun, PENG DeLiang. Identification and Evaluation of Major Potato Cultivars Resistance to Globodera rostochiensis and Detection of Their H1 Resistance Gene Marker [J]. Scientia Agricultura Sinica, 2024, 57(8): 1506-1516.
[2] WANG LuLu, ZHANG MingWei, YE JiaMin, ZHANG RuiFen, DENG Mei. Effects of Soluble and Insoluble Dietary Fiber from Shatianyu Pulp on Gut Microbiota [J]. Scientia Agricultura Sinica, 2024, 57(20): 4119-4129.
[3] ZHOU DeGang, XU BinYan, WANG QingXia, ZHU Xia, YANG XueShan. Effects of Cell-to-Cell Contact Between Torulaspora delbrueckii and Saccharomyces cerevisiae on the Flavor and Quality of Cabernet Sauvignon Wine [J]. Scientia Agricultura Sinica, 2024, 57(16): 3264-3282.
[4] WANG YongJiang, QIAO Qi, WANG Shuang, ZHAO FuMei, TIAN YuTing, ZHANG DeSheng, ZHANG ZhenChen. Establishment and Application of RT-RPA-LFD Detection Method for Sweet Potato Chlorotic Stunt Virus WA Strain [J]. Scientia Agricultura Sinica, 2024, 57(14): 2781-2790.
[5] YE JiaMin, ZHANG MingWei, LU Qi, ZHANG RuiFen, DENG Mei. Effects of Semi-Solid Fermentation with Lactobacillus on the Bitterness and Active Components of Shatianyu (Citrus grandis L. Osbeck) Fruit Powder [J]. Scientia Agricultura Sinica, 2024, 57(13): 2662-2673.
[6] YIN YanDie, YANG YanMei, FU QiChun, WANG Qin, LI YongQing, DUAN JinFeng, LIU YuZhu, WANG QiaoMei, HU XianQi. The Effects of Potato Root Exudates on the Hatching and Chemotaxis of Globodera rostochiensis and Verification of Exogenous Acid Substances [J]. Scientia Agricultura Sinica, 2024, 57(11): 2161-2175.
[7] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[8] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[9] ZHANG ZhiPeng, TAN YunXiu, LI BaoJun, LI YongCai, BI Yang, LI ShouQiang, WANG XiaoJing, ZHANG Yu, HU Dan. Effects of Exogenous Abscisic Acid Treatment on Periderm Suberification of Postharvest Mini-Tuber Potato from Aeroponic System and Its Possible Mechanisms [J]. Scientia Agricultura Sinica, 2023, 56(6): 1154-1167.
[10] YE Nan, ZHU Yan, ZHAO YuanShou, ZHU JianNing, MEN JiaWei, CHEN Fu, KONG DeYuan, ZHANG WeiBing, ZONG YuanYuan, LI YongCai. Effects of Seed Soaking with Chitooligosaccharide on the Growth of Sprout and Endogenous Phytohormone Content in Potato Minitubers [J]. Scientia Agricultura Sinica, 2023, 56(4): 788-800.
[11] LIU Chang, CUI ZiXu, ZUO Zhou, YUN HongMei, NIU Jin, YANG Yang, GUO XiaoHong, LI BuGao, GAO PengFei, ZHAO Yan, CAO GuoQing. Effects of Dietary Fiber Level on Intestinal Barrier Function, Colonic Microbiota and Metabolites in Pigs [J]. Scientia Agricultura Sinica, 2023, 56(22): 4532-4551.
[12] TANG Wei, ZHANG ChengLing, YANG DongJing, MA JuKui, CHEN JingWei, GAO FangYuan, XIE YiPing, SUN HouJun. Complete Genomic Sequence Characteristics and Establishment of qPCR Detection Technique of Sweet Potato Virus E in China [J]. Scientia Agricultura Sinica, 2023, 56(20): 4010-4020.
[13] FAN ZiYao, LI Kui, LI JiaYang, HUANG SanWen. The Conception of Eco-Circular Agriculture of "Rice-Potato-Pig" [J]. Scientia Agricultura Sinica, 2023, 56(20): 4067-4071.
[14] YU YongChao, FAN WenJing, LIU Ming, ZHANG QiangQiang, ZHAO Peng, JIN Rong, WANG Jing, ZHU XiaoYa, TANG ZhongHou. Genome-Wide Association Study of Nitrogen Use Efficient Traits in Sweetpotato Seeding Stage and Screening and Validation of Candidate Genes [J]. Scientia Agricultura Sinica, 2023, 56(18): 3500-3510.
[15] ZHANG ZhiLiang, HE ZhiHao, RU XiaoYa, JIANG TengCong, HE YingBin, FENG Hao, YU Qiang, HE JianQiang. Influence of Future Climate Change on the Climate Suitability of Potato Cultivation in China [J]. Scientia Agricultura Sinica, 2023, 56(18): 3530-3542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!