Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1220-1236.doi: 10.3864/j.issn.0578-1752.2024.07.002

• SPECIAL FOCUS: SEED GERMINATION AND PRE-HARVEST SPROUTING • Previous Articles     Next Articles

Physiological and Molecular Effects of Salicylic Acid on Rice Seed Germination at Low Temperature

CHEN BingXian(), ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun()   

  1. Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640
  • Received:2023-04-18 Accepted:2023-05-21 Online:2024-04-01 Published:2024-04-09
  • Contact: LIU Jun

Abstract:

【Objective】The study investigated the impact of salicylic acid (SA) priming on the germination vigor and physiological response of rice seeds under low temperatures. It aimed to reveal the expression patterns of genes related to abscisic acid (ABA) and gibberellin (GA) metabolic pathways as well as cell wall relaxation genes by SA priming. This research provided a theoretical basis for the study of rice seed germination at low temperatures.【Method】Using indica three-line hybrid rice Taifengyou 208 seeds as materials, the effects of SA on seed germination vigor and physiology responses under low temperature were analyzed through seed priming treatment, and the expression patterns of genes related to ABA, GA and expansin in response to SA were analyzed by qRT-PCR.【Result】Low temperature (15 ℃) significantly delayed the germination process of rice seeds. In seeds germinated at low temperatures for one day, the endogenous SA concentration was 1.7 times higher than that at normal temperatures (28 ℃). However, for five-day-old seedlings, the SA concentration under low temperature was only 0.6% of that at normal temperatures. SA could effectively enhanced germination vigor of seeds at low temperature, with the most significant effects observed at 2 000 μmol·L-1 SA. This concentration significantly increased the germination index, vigor index, shoot length, root length, fresh weight, and dry weight of seeds under low temperature conditions. Notably, the vigor index was three times that of non-primed seeds (CK1) and two times that of water-primed seeds (CK2). In terms of physiological indexes, SA priming increased the contents of soluble sugar, proline and active oxygen, enhanced the activities of total amylase, β-amylase, superoxide dismutase (SOD) and catalase (CAT), and decreased the content of malondialdehyde (MDA). Compared with CK1, 2 000 μmol·L-1 SA decreased the ABA content by 79%, and increased the IAA and GA1 contents by 32.2% and 2.66 times, respectively. In terms of gene expression, the expression levels of ABA synthesizing genes OsNCED2 and OsNCED3 were decreased by 94.26% and 90.24% compared with CK1 in seeds primed by 2 000 μmol·L-1 SA, respectively, whereas the expression levels of ABA decomposing genes OsABA8’ox2 and OsABA8’ox3 were 5.9 and 3.9 times higher than that of CK1, respectively. Compared with CK1, SA priming significantly upregulated the expression of GA synthesizing genes OsCPS1, OsKAO and OsGA20ox1, while it significantly downregulated the expression of GA decomposing genes OsGA2ox2 and OsGA2ox6. In several candidate genes encoding cell wall relaxation protein, e.t. expansin, all but OsEXPB11 were significantly upregulated to some extent by priming. Compared with CK1, 2 000 μmol·L-1 SA increased the expression levels of OsEXPA2, OsEXPB4 and OsEXPB6 to 12.2, 5.9 and 6.1 times, respectively.【Conclusion】SA priming can significantly alleviate the impact of low temperatures on rice seed germination and seedling growth, which is likely due to SA enhancing the activity of antioxidant enzymes such as SOD and CAT, reducing the production of MDA, and increasing the content of soluble sugars and proline, thereby strengthening the tolerance of seeds and seedlings to low temperatures. On the other hand, SA priming decreases endogenous ABA content, increases GA1 content, enhances the activities of total amylase and β-amylase, and promotes the expression of genes related to cell wall relaxation, thus facilitating seed germination and seedling growth at low temperature.

Key words: rice, low temperature stress, seed priming, salicylic acid (SA), physiological index, gene expression

Table 1

Amplification primers for qRT-PCR"

基因名称
Gene name
基因登录号
Gene ID
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
OsNCED1 LOC_Os02g47510 GAACTTCGACTTCCCCGTGA ACGTAGCACACCAAGTACCC
OsNCED2 LOC_Os12g24800 GAGCCTTGAGTTCGGTGTCA CAGCAAAGCACCCTAGACCA
OsNCED3 LOC_Os03g44380 ATATGGCGACGATCACGACG CGCGGAGAATCTCACCGAAT
OsNCED4 LOC_Os07g05940 TCGGGAGGTACGACTTCCAT TTGAGGTACGGCTTGGACAC
OsNCED5 LOC_Os12g42280 CGAGCTCACCAAGTTCGAGT TTGATGAAGGTGCCGTGGAA
OsABA8’ox1 LOC_Os02g47470 AAAACCAACATCAACGGCGG GATTGCCAACCGTGGTCCTA
OsABA8’ox2 LOC_Os08g36860 CGTGTGTGTGGATGCAATGG AGTGCTACACTAGGCACACC
OsABA8’ox3 LOC_Os09g28390 CTGGTCACTGGCTACAGGTG TGCTACGCCATTGTCGTCAT
OsCPS1 LOC_Os02g17780 TCAAGAGACACCGCCAGTTC ACAGTGCATGACCCTGGATG
OsKAO LOC_Os06g 02019 CTCCTTCGTGTCCTTCCGTC ACCACAGCTGAACCTTCCAC
OsGA20ox1 LOC_Os03g63970 TTCTTCCTCTGCCCGGAGAT CATGTCGGCCCTGTAGTGG
OsGA3ox2 LOC_ Os01g08220 CTTCTGTGACGTGATGGAGGAG CTCAAGAACAACCTCAGCAACTC
OsGA2ox1 LOC_Os05g06670 ACCCGCAGATCCTTAGCTTG TGAACCCACATCTCCTTGCC
OsGA2ox2 LOC_Os01g22910 TGTTTGGTTGAGGGGTGAGT CATTTTCCCCGATCAGTTGGT
OsGA2ox3 LOC_Os01g55240 ACTCGTTGCAGGTTCTGACC GTGGCAATGGTGCAATCCTC
OsGA2ox6 LOC_Os04g44150 GGCTATCGGTGGCCTACTTC TTGTCCTGACGTCTTCCTGC
OsEXPA2 LOC_Os01g60770 GCGGCCAGTTCTGATCGAGTA GCAGCCTCAGAATAGCCAAAGC
OsEXPA4 LOC_Os05g39990 CCGTCTCCGACACCCACATAT TGGACGAAGTCCAGAGAAGGAA
OsEXPB4 LOC_Os10g40730 CCCAACACATTCTACCGCTCCT ACAGACCGACCACACAATCCC
OsEXPB6 LOC_Os10g40700 AATTTGCGTGGGATTGAGGTGT TGGGTAGTACAGTGACAGTGGG
OsEXPB11 LOC_ Os02g44108 TGCAGTGCAGAGTTGCGGTAA CAGAGACCGTGGAGGGAAGAAC
OsEXPLA1 LOC_Os03g04020 ACACGCACGAGTGGAAGTAGAA TGCCGAGGGATTAGGAGGACT
OsGAPDH1 LOC_Os02g38920 GCAATCAAGGAGGAGGCTGA ACGTGTCGCTCAAAGCAATG

Fig. 1

Germination process and endogenous SA concentration of rice seeds under normal (28 ℃) and low (15 ℃) temperatures"

Fig. 2

Effects of different concentrations of SA on seed germination and seedling growth of rice"

Table 2

Effect of SA priming with different concentrations on rice seed germination"

引发方式
Priming method
发芽势
Germination potential (%)
发芽率
Germination rate (%)
发芽指数
Germination index
活力指数
Vigor index
芽长
Seedling length (cm)
根长
Root length (cm)
鲜重
Fresh weight (g)
干重
Dry weigh
(g)
CK1 43.75±3.11e 84.75±3.30d 15.26±2.84d 19.70±2.84e 1.13±0.29d 1.20±0.21d 0.44±0.01d 0.40±0.01bc
CK2 52.25±3.56d 84.25±3.20d 16.81±2.21cd 30.25±3.21d 1.21±0.07d 1.77±0.12c 0.47±0.01c 0.38±0.02c
50 μmol·L-1 SA 55.00±3.92d 85.50±1.29d 16.17±1.90d 31.60±3.90d 1.47±0.21c 1.83±0.22c 0.43±0.02d 0.39±0.01c
500 μmol·L-1 SA 90.75±4.27a 90.75±2.75c 17.32±1.98bc 36.37±4.98c 1.49±0.18c 2.10±0.22b 0.54±0.02b 0.42±0.02b
2000 μmol·L-1 SA 83.25±3.30b 96.50±1.73a 21.59±2.67a 60.20±4.67a 1.65±0.05a 2.76±0.14a 0.63±0.02a 0.55±0.04a
5000 μmol·L-1 SA 63.50±3.30c 92.50±1.29b 18.36±1.85b 48.40±3.05b 1.57±0.19b 2.69±0.24a 0.61±0.03a 0.54±0.02a

Fig. 3

Changes in multispectral characteristics and area of rice seeds detected by Videometer imaging system"

Fig. 4

Physiological index changes of rice seeds under low temperature germination"

Fig. 5

Effects of SA priming with different concentrations on phytohormone in rice seeds"

Fig. 6

Expression analysis of genes related to ABA synthesis and decomposition"

Fig. 7

Expression analysis of genes related to GA synthesis and decomposition"

Fig. 8

Expression analysis of genes related to expansin"

[1]
MARTHANDAN V, GEETHA R, KUMUTHA K, RENGANATHAN V G, KARTHIKEYAN A, RAMALINGAM J. Seed priming: A feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 2020, 21(21): 8258.
[2]
王慰亲. 种子引发促进直播早稻低温胁迫下萌发出苗的机理研究[D]. 武汉: 华中农业大学, 2019.
WANG W Q. Mechanisms underlying the effects of seed priming on the establishment of direct-seeded early season rice under chilling stress[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[3]
胡亚丽, 聂靖芝, 吴霞, 潘姣, 曹珊, 岳娇, 罗登杰, 王财金, 李增强, 张辉, 吴启境, 陈鹏. 水杨酸引发对红麻幼苗耐盐性的影响. 中国农业科学, 2022, 55(14): 2696-2708. doi: 10.3864/j.issn.0578-1752.2022.14.002.
HU Y L, NIE J Z, WU X, PAN J, CAO S, YUE J, LUO D J, WANG C J, LI Z Q, ZHANG H, WU Q J, CHEN P. Effect of salicylic acid priming on salt tolerance of kenaf seedlings. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708. doi: 10.3864/j.issn.0578-1752.2022.14.002. (in Chinese)
[4]
YANG Z, ZHI P, CHANG C. Priming seeds for the future: Plant immune memory and application in crop protection. Frontiers in Plant Science, 2022, 13: 961840.

doi: 10.3389/fpls.2022.961840
[5]
NIE L, SONG S, YIN Q, ZHAO T, LIU H, HE A, WANG W. Enhancement in seed priming-induced starch degradation of rice seed under chilling stress via GA-mediated α-amylase expression. Rice, 2022, 15(1): 19.
[6]
TANOU G, FOTOPOULOS V, MOLASSIOTIS A. Priming against environmental challenges and proteomics in plants: Update and agricultural perspectives. Frontiers in Plant Science, 2012, 3: 216.

doi: 10.3389/fpls.2012.00216 pmid: 22973291
[7]
MIURA K, TADA Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 2014, 5: 4.

doi: 10.3389/fpls.2014.00004 pmid: 24478784
[8]
王立红, 李星星, 孙影影, 阿曼古丽·买买提阿力, 张巨松. 外源水杨酸对NaCl胁迫下棉花幼苗生长生理特性的影响. 西北植物学报, 2017, 37(1): 154-162.
WANG L H, LI X X, SUN Y Y, MAIMAITIALI A M G L, ZHANG J S. Effects of exogenous salicylic acid on the physiological characteristics and growth of cotton seedlings under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1): 154-162. (in Chinese)
[9]
ALAM M, HAYAT K, ULLAH I, SAJID M, AHMAD M, BASIT A, AHMAD I, MUHAMMAD A, AKBAR S, HUSSAIN Z. Improving okra (Abelmoschus esculentus L.) growth and yield by mitigating drought through exogenous application of salicylic acid. Fresenius Environmental Bulletin, 2020, 29(1): 529-535.
[10]
AMJAD M, ZIAF K, IQBAL Q, AHMAD I, RIAZ M A, SAQIB Z A. Effect of seed priming on seed vigour and salt tolerance in hot pepper. Pakistan Journal of Agricultural Sciences, 2007, 44(3): 408-416.
[11]
LI Z, XU J, GAO Y, WANG C, GUO G, LUO Y, HUANG Y, HU W, SHETEIWY M S, GUAN Y, HU J. The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Frontiers in Plant Science, 2017, 8: 1153.

doi: 10.3389/fpls.2017.01153
[12]
侯林欣, 吕强, 黄明, 焦念元, 尹飞, 刘领, 吕梦, 付国占. 不同温度水杨酸引发对干旱胁迫下玉米种子发芽及幼苗生理特性的影响. 中国农学通报, 2021, 37(19): 13-21.

doi: 10.11924/j.issn.1000-6850.casb2020-0504
HOU L X, Q, HUANG M, JIAO N Y, YIN F, LIU L, M, FU G Z. SA priming of maize seeds at different temperatures under drought stress: Effects on seed germination and seedling physiological characteristics. Chinese Agricultural Science Bulletin, 2021, 37(19): 13-21. (in Chinese)
[13]
常云霞, 徐克东, 陈璨, 陈龙. 水杨酸对低温胁迫下大豆幼苗生长抑制的缓解效应. 大豆科学, 2012, 31(6): 927-931.
CHANG Y X, XU K D, CHEN C, CHEN L. Salicylic acid mitigating the inhibition of low temperature stress to soybean seedlings. Soybean Science, 2012, 31(6): 927-931. (in Chinese)
[14]
NAZARI R, PARSA S, TAVAKKOL AFSHARI R, MAHMOODI S, SEYYEDI S M. Salicylic acid priming before and after accelerated aging process increases seedling vigor in aged soybean seed. Journal of Crop Improvement, 2020, 34(2): 218-237.

doi: 10.1080/15427528.2019.1710734
[15]
HOSSEINIFARD M, STEFANIAK S, GHORBANI JAVID M, SOLTANI E, WOJTYLA Ł, GARNCZARSKA M. Contribution of exogenous proline to abiotic stresses tolerance in plants: A review. International Journal of Molecular Sciences, 2022, 23(9): 5186.
[16]
倪万潮, 束红梅, 郭书巧, 蒋璐, 何晓兰, 崔晓霞, 巩元勇. 不同水稻品种种子萌发生理特性差异研究. 中国农学通报, 2020, 36(2): 1-5.

doi: 10.11924/j.issn.1000-6850.casb18080094
NI W C, SHU H M, GUO S Q, JIANG L, HE X L, CUI X X, GONG Y Y. Seed germination of rice cultivars: Differences in physiological characteristics. Chinese Agricultural Science Bulletin, 2020, 36(2): 1-5. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb18080094
[17]
CUI D, YIN Y, WANG J, WANG Z, DING H, MA R, JIAO Z. Research on the physio-biochemical mechanism of non-thermal plasma-regulated seed germination and early seedling development in Arabidopsis. Frontiers in Plant Science, 2019, 10: 1322.

doi: 10.3389/fpls.2019.01322
[18]
ZHANG Y, CHEN B, XU Z, SHI Z, CHEN S, HUANG X, CHEN J, WANG X. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. Journal of Experimental Botany, 2014, 65(12): 3189-3200.

doi: 10.1093/jxb/eru167 pmid: 24744430
[19]
HOLLOWAY T, STEINBRECHER T, PÉREZ M, SEVILLE A, STOCK D, NAKABAYASHI K, LEUBNER-METZGER G. Coleorhiza- enforced seed dormancy: A novel mechanism to control germination in grasses. New Phytologist, 2021, 229(4): 2179-2191.

doi: 10.1111/nph.v229.4
[20]
YE N, ZHU G, LIU Y, ZHANG A, LI Y, LIU R, SHI L, JIA L, ZHANG J. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany, 2012, 63(5): 1809-1822.

doi: 10.1093/jxb/err336 pmid: 22200664
[21]
LIU L, XIA W, LI H, ZENG H, WEI B, HAN S, YIN C. Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science, 2018, 9: 275.

doi: 10.3389/fpls.2018.00275
[22]
CHEN B X, LI W Y, GAO Y T, CHEN Z J, ZHANG W N, LIU Q J, CHEN Z, LIU J. Involvement of polyamine oxidase-produced hydrogen peroxide during coleorhiza-limited germination of rice seeds. Frontiers in Plant Science, 2016, 7: 1219.

doi: 10.3389/fpls.2016.01219
[23]
XIONG Q, MA B, LU X, HUANG Y H, HE S J, YANG C, YIN C C, ZHAO H, ZHOU Y, ZHANG W K, WANG W S, LI Z K, CHEN S Y, ZHANG J S. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. The Plant Cell, 2017, 29(5): 1053-1072.

doi: 10.1105/tpc.16.00981 pmid: 28465411
[24]
HUSSAIN S, KHALIQ A, ALI B, HUSSAIN H A, QADIR T, HUSSAIN S. Temperature extremes:Impact on rice growth and development// Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches. Springer, 2019: 153-171.
[25]
BHANUPRAKASH K, YOGEESHA H S. Seed priming for abiotic stress tolerance: An overview// Abiotic Stress Physiology of Horticultural Crops. Springer, 2016: 103-117.
[26]
KIM S H, JANG D C, LEE J J, HEO J Y. Salicylic acid seed priming boosts germination in Brassica rapa ssp pekinensis under cold stress. Journal of Applied Horticulture, 2021, 23(3): 286-289.

doi: 10.37855/jah.2021.v23i03.50
[27]
YACOUBI R, JOB C, BELGHAZI M, CHAIBI W, JOB D. Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. Journal of Proteome Research, 2011, 10(9): 3891-3903.

doi: 10.1021/pr101274f pmid: 21755932
[28]
LIU H, ABLE A J, ABLE J A. Priming crops for the future: Rewiring stress memory. Trends in Plant Science, 2022, 27(7): 699-716.

doi: 10.1016/j.tplants.2021.11.015
[29]
CHEN K, ARORA R. Priming memory invokes seed stress-tolerance. Environmental and Experimental Botany, 2013, 94: 33-45.

doi: 10.1016/j.envexpbot.2012.03.005
[30]
DIAN R, LI S, SUN B, GUO A. Recent advances and new guidelines on hyperspectral and multispectral image fusion. Information Fusion, 2021, 69: 40-51.

doi: 10.1016/j.inffus.2020.11.001
[31]
ELMASRY G, MANDOUR N, AL-REJAIE S, BELIN E, ROUSSEAU D. Recent applications of multispectral imaging in seed phenotyping and quality monitoring-An overview. Sensors, 2019, 19(5): 1090.
[32]
JISHA K C, VIJAYAKUMARI K, PUTHUR J T. Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum, 2013, 35: 1381-1396.

doi: 10.1007/s11738-012-1186-5
[33]
ANJU U L, DODDAGOUDAR S R, PATTANASHETTI S K, BASAVE G, VIJAYKUMAR K. Influence of seed priming on seed germination, seedling growth, peroxidase activity, proline and total soluble sugar content of pearl millet (Pennisetum glaucum L.) under salinity stress. International Journal of Chemistry Studies, 2019, 7(5): 508-514.
[34]
周丽霞, 曹红星, 肖勇. 外源水杨酸对低温胁迫椰子幼苗生理特性的影响. 南方农业学报, 2017, 48(11): 2039-2045.
ZHOU L X, CAO H X, XIAO Y. Effects of exogenous salicylic acid on physiological characteristics of Cocos nucifera L. young seedlings under cold stress. Journal of Southern Agriculture, 2017, 48(11): 2039-2045. (in Chinese)
[35]
李媛, 李武, 莫钊文, 闻祥成, 王抄抄, 徐刚红, 李妹娟, 聂俊, 唐湘如. 水杨酸和盐浸种对香稻和非香稻幼苗生理特性的影响. 华北农学报, 2014, 29(5): 168-174.

doi: 10.7668/hbnxb.2014.05.029
LI Y, LI W, MO Z W, WEN X C, WANG C C, XU G H, LI M J, NIE J, TANG X R. Effects of pre-soaking with salicylic acid and salt on some physiological characteristics of the aromatic and non-aromatic rice seedlings. Acta Agriculturae Boreali-Sinica, 2014, 29(5): 168-174. (in Chinese)

doi: 10.7668/hbnxb.2014.05.029
[36]
MITTLER R, ZANDALINAS S I, FICHMAN Y, VAN BREUSEGEM F. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23(10): 663-679.

doi: 10.1038/s41580-022-00499-2
[37]
MIRANSARI M, SMITH D L. Plant hormones and seed germination. Environmental and Experimental Botany, 2014, 99: 110-121.

doi: 10.1016/j.envexpbot.2013.11.005
[38]
杨楠, 曹亚从, 魏兵强, 王立浩. 单双子叶植物种子萌发和休眠的研究进展. 植物遗传资源学报, 2022, 23(5): 1249-1257.

doi: 10.13430/j.cnki.jpgr.20220314001
YANG N, CAO Y C, WEI B Q, WANG L H. Research progress on seed germination and dormancy of monocot and dicot plants. Journal of Plant Genetic Resources, 2022, 23(5): 1249-1257. (in Chinese)
[39]
EL-SHERIF N A. Salicylic acid and its crosstalk with other plant hormones under stressful environments//Managing Plant Stress Using Salicylic Acid: Physiological and Molecular Aspects. Wiley, 2022: 304-317.
[40]
帅海威, 孟永杰, 罗晓峰, 陈锋, 戚颖, 杨文钰, 舒凯. 生长素调控种子的休眠与萌发. 遗传, 2016, 38(4): 314-322.
SHUAI H W, MENG Y J, LUO X F, CHEN F, QI Y, YANG W Y, SHU K. The roles of auxin in seed dormancy and germination. Hereditas, 2016, 38(4): 314-322. (in Chinese)

doi: 10.1111/j.1601-5223.1952.tb02928.x
[41]
TENG Z, YU H, WANG G, MENG S, LIU B, YI Y, CHEN Y, ZHENG Q, LIU L, YANG J, DUAN M, ZHANG J, YE N. Synergistic interaction between ABA and IAA due to moderate soil drying promotes grain filling of inferior spikelets in rice. The Plant Journal, 2022, 109(6): 1457-1472.

doi: 10.1111/tpj.v109.6
[42]
PARWEZ R, AFTAB T, GILL S S, NAEEM M. Abscisic acid signaling and crosstalk with phytohormones in regulation of environmental stress responses. Environmental and Experimental Botany, 2022, 199: 104885.

doi: 10.1016/j.envexpbot.2022.104885
[43]
ZHU G, YE N, ZHANG J. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant and Cell Physiology, 2009, 50: 644-651.

doi: 10.1093/pcp/pcp022 pmid: 19208695
[44]
CHEN B X, PENG Y X, GAO J D, ZHANG Q, LIU Q J, FU H, LIU J. Coumarin-induced delay of rice seed germination is mediated by suppression of abscisic acid catabolism and reactive oxygen species production. Frontiers in Plant Science, 2019, 10: 828.

doi: 10.3389/fpls.2019.00828
[45]
徐振江, 陈兵先, 赵晟楠, 袁红霞, 郜珊珊, 张瑜, 陈靖, 王晓峰. 种子萌发过程中胚乳的突破性研究. 植物生理学报, 2012, 48(9): 853-863.
XU Z J, CHEN B X, ZHAO S N, YUAN H X, GAO S S, ZHANG Y, CHEN J, WANG X F. Breaking through the endosperm during seed germination. Plant Physiology Journal, 2012, 48(9): 853-863. (in Chinese)
[46]
STEINBRECHER T, LEUBNER-METZGER G. The biomechanics of seed germination. Journal of Experimental Botany, 2017, 68(4): 765-783.

doi: 10.1093/jxb/erw428 pmid: 27927995
[47]
CHEN B, MA J, XU Z, WANG X. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination. Journal of Integrative Plant Biology, 2016, 58(10): 859-869.

doi: 10.1111/jipb.12479
[48]
XU Z, YANG M, LI Z, XIAO J, YANG X, WANG H, WANG X. Tissue-specific pectin methylesterification and pectin methylesterase activities play a role in lettuce seed germination. Scientia Horticulturae, 2022, 301: 111134.

doi: 10.1016/j.scienta.2022.111134
[49]
LIU C, LI L, CHEN B, WANG X. Suppression of α-l- arabinofuranosidase in the endosperm and atypical germination of lettuce seeds induced by sodium dichloroisocyanurate. Acta Physiologiae Plantarum, 2015, 37: 10.

doi: 10.1007/s11738-014-1761-z
[50]
GONZÁLEZ-CALLE V, BARRERO-SICILIA C, CARBONERO P, IGLESIAS-FERNÁNDEZ R. Mannans and endo-β-mannanases (MAN) in Brachypodium distachyon: Expression profiling and possible role of the BdMAN genes during coleorhiza-limited seed germination. Journal of Experimental Botany, 2015, 66(13): 3753-3764.

doi: 10.1093/jxb/erv168
[51]
COSGROVE D J. Loosening of plant cell walls by expansins. Nature, 2000, 407: 321-326.

doi: 10.1038/35030000
[52]
CHEN F, BRADFORD K J. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiology, 2000, 124(3): 1265-1274.

doi: 10.1104/pp.124.3.1265 pmid: 11080302
[1] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[2] LI RongDe, HE Ping, LUO LiXia, SHI MengYa, HOU Qian, MA ZhenGuo, GUO RuiXing, CHENG HongTao. Current Situation of Breeding and Popularization of Short-Growth- Period Winter Rapeseed Varieties for Rice-Rice-Rapeseed Mode [J]. Scientia Agricultura Sinica, 2024, 57(5): 846-854.
[3] JIANG Wen, LIANG WenXin, PEI Fei, SU AnXiang, MA GaoXing, FANG Donglu, HU QiuHui, MA Ning. Effect of Pleurotus eryngii Powder on Quality Characteristics of Extruded Rice [J]. Scientia Agricultura Sinica, 2024, 57(4): 779-796.
[4] ZHU TianCi, MA TianFeng, KE Jian, ZHU TieZhong, HE HaiBing, YOU CuiCui, WU ChenYang, WANG GuanJun, WU LiQuan. Characteristics of Good Taste and High Yield Type Japonica Rice in the Lower Reaches of the Yangtze River [J]. Scientia Agricultura Sinica, 2024, 57(4): 820-830.
[5] ZHANG BiDong, LIN Hong, ZHU SiYing, LI ZhongCheng, ZHUANG Hui, LI YunFeng. Identification and Candidate Gene Analysis of the ABNORMAL HULL 1 (ah1) Mutant in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2024, 57(3): 429-441.
[6] ZHU DaWei, ZHENG Xin, YU Jing, MOU RenXiang, CHEN MingXue, SHAO YaFang, ZHANG LinPing. Differences in Physicochemical Characteristics and Eating Quality Between High Taste Northern Japonica Rice and Southern Semi- Glutinous Japonica Rice Varieties in China [J]. Scientia Agricultura Sinica, 2024, 57(3): 469-483.
[7] ZHANG YaLing, FU ZhongJu, LI Xue, SUN YuJia, ZHAO YuHan, GU XinYi, WANG YanXia, JIN XueHui, WU WeiHuai, HUA LiXia. Comparative Analysis of Pathogens of Rice Spikelet Rot Disease in Heilongjiang, Sichuan and Hainan Provinces [J]. Scientia Agricultura Sinica, 2024, 57(2): 278-294.
[8] GUO NaiHui, ZHANG WenZhong, SHENG ZhongHua, HU PeiSong. CRISPR/Cas9-Mediated Editing of MODD Enhances Rice Dormancy [J]. Scientia Agricultura Sinica, 2024, 57(2): 227-235.
[9] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[10] SUN QiBin, WANG JianNan, LI YiNian, HE RuiYin, DING QiShuo. Study on the Dynamics of Root Length Density in Soil Layers of Single Plant Wheat Under Controlled Seed-to-Seed Distance [J]. Scientia Agricultura Sinica, 2023, 56(8): 1456-1470.
[11] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[12] LI RuXiang, ZHOU Kai, WANG DaChuan, LI QiaoLong, XIANG AoNi, LI Lu, LI MiaoMiao, XIANG SiQian, LING YingHua, HE GuangHua, ZHAO FangMing. Analysis of QTLs and Breeding of Secondary Substitution Lines for Panicle Traits Based on Rice Chromosome Segment Substitution Line CSSL-Z481 [J]. Scientia Agricultura Sinica, 2023, 56(7): 1228-1247.
[13] ZHAO ZiJun, WU RuHui, WANG Shuo, ZHANG Jun, YOU Jing, DUAN QianNan, TANG Jun, ZHANG XinFang, WEI Mi, LIU JinYan, LI YunFeng, HE GuangHua, ZHANG Ting. Mutation of PDL2 Gene Causes Degeneration of Lemma in the Spikelet of Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1248-1259.
[14] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[15] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!