Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (21): 4208-4218.doi: 10.3864/j.issn.0578-1752.2023.21.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth

LUO ZhengYing1,2,3(), HU Xin1,2(), LIU XinLong1,2, WU CaiWen1,2, WU ZhuanDi1,2, LIU JiaYong1,2(), ZENG QianChun3()   

  1. 1 Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biology and Genetic Breeding (Yunnan), Ministry of Agriculture and Rural Affairs, Kaiyuan 661699, Yunnan
    2 National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650221
    3 College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201
  • Received:2023-02-01 Accepted:2023-03-17 Online:2023-11-01 Published:2023-11-06
  • Contact: LIU JiaYong, ZENG QianChun

Abstract:

【Objective】This study aims to investigate whether application of trehalose could mitigate the adverse effects of drought stress by enhancing the defense response in sugarcane (Saccharum spp. hybrid), and to provide a theoretical basis for stable high yield of sugarcane under drought conditions.【Method】The present investigation was conducted to assess ameliorative effects of adding trehalose on the growth, malondialdehyde (MDA) content, and antioxidant responses of two sugarcane cultivars ROC22 and YZ05-51 under the treatment of 30% PEG6000 and 12% PEG6000. In the preliminary experiment, four treatment concentrations of trehalose were set at 0, 10, 100 and 200 mg·L-1. The dry weight, fresh weight and adventitious roots of tissue-cultured sugarcane seedlings were measured at 9 d after treatment to clarify the optimal concentration of trehalose in promoting sugarcane growth under drought stress. Then, the MDA content and the activity of antioxidant enzyme peroxidase (POD) and superoxide dismutase (SOD) were determined under control, drought stress and drought stress combined with optimal trehalose treatment. Finally, the expression level of drought-resistance genes ScTPS1, ScSnRK2.3, ScSnRK2.4 and ScDREB2b-1 was quantified by qRT-PCR at 0, 12, 24 and 48 h in YZ05-51 after exposed to 30% PEG6000 and 30% PEG6000 adding with optimal trehalose concentration, respectively.【Result】Application of trehalose could alleviate the drought-induced decrease of fresh weight and dry weight of two sugarcane cultivars, and the growth recovery of plantlet was better in 100 mg·L-1 trehalose group than that in 10 and 200 mg·L-1 trehalose groups. Under 30% PEG6000 stress, the MDA content was notably increased, and a considerable improvement was recorded in the activity of the antioxidant enzymes POD and SOD. Adding trehalose significantly reduced the content of drought-induced MDA, and enhanced the activity of POD and SOD, respectively. However, external trehalose had little effect on the MDA content and antioxidant enzyme activity of tissue-cultured sugarcane seedlings under 12% PEG6000 stress. Compared with drought controls, the expression of drought-resistance genes ScTPS1, ScSnRK2.3, ScSnRK2.4 and ScDREB2b-1 was up-regulated in the trehalose-treated plantlet.【Conclusion】Application of trehalose can alleviate the negative impact of drought on the growth of sugarcane seedlings, and promote adventitious root growth. External addition of trehalose may reduce the oxidative toxicity caused by drought stress by increasing the activity of antioxidant enzymes POD and SOD. Meanwhile, application of trehalose induces the expression of drought-resistance genes ScTPS1, ScSnRK2.3, ScSnRK2.4, and ScDREB2b-1, indicating that applying trehalose can improve the drought resistance of sugarcane. The results will provide a reference for developing drought resistance strategies in sugarcane breeding and productive practice.

Key words: sugarcane, trehalose, drought resistance, antioxidant enzyme, gene expression

Table 1

Primer sequences for real-time fluorescence quantitative PCR (qRT-PCR)"

基因编号 Gene ID 正向引物序列 Forward primer sequence (5°-3°) 反向引物序列 Reverse primer sequence (5°-3°)
GAPDH CACGGCCACTGGAAGCA TCCTCAGGGTTCCTGATGCC
ScTPS1 TGTGCCAACAAGAACTGACG GCTCACAAGGTTCATCCCATC
ScSnRK2.3 ACCACAGCAGGGCGATTC ATGCAGCAAACCAGACTTTGAGTA
ScSnRK2.4 ACCTACCACGGGAACTCA TCATCCGAATACTCACTGCT
ScDREB2b-1 ACACAATGTGGGTACCGTGG ATAGGCCCTAGCTGCATCCT

Fig. 1

Effects of adding trehalose on the growth of sugarcane plantlet under drought conditions Different lowercase letters above the bars indicate significant difference among the treatments (P<0.05)。The same as below"

Fig. 2

Effects of adding trehalose on the growth of adventitious roots of sugarcane plantlet under drought conditions"

Fig. 3

Effects of adding trehalose on the MDA content in sugarcane plantlet under drought conditions"

Fig. 4

Effects of adding trehalose on the antioxidase activity in sugarcane plantlet under drought conditions"

Fig. 5

Effects of adding trehalose on the expression level of drought-resistance related genes in sugarcane plantlet under drought conditions Different lowercase letters above the lines indicate significant difference among the treatments (P<0.05)"

[1]
TAI P Y P, MILLER J D. Germplasm diversity among four sugarcane species for sugar composition. Crop Science, 2002, 42(3): 958-964.

doi: 10.2135/cropsci2002.9580
[2]
刘三梅, 杨清辉, 李秀年, 黄桂萍, 肖关丽. 不同生育时期干旱胁迫对甘蔗形态指标及生理特性的影响. 南方农业学报, 2016, 47(8): 1273-1278.
LIU S M, YANG Q H, LI X N, HUANG G P, XIAO G L. Effects of drought stress on morphological index and physiological characteristics of sugarcane at different growth stages. Journal of Southern Agriculture, 2016, 47(8): 1273-1278. (in Chinese)
[3]
DEVI K, GOMATHI R, ARUN KUMAR R, MANIMEKALAI R, SELVI A. Field tolerance and recovery potential of sugarcane varieties subjected to drought. Indian Journal of Plant Physiology, 2018, 23(2): 271-282.

doi: 10.1007/s40502-018-0367-7
[4]
DINH H T, WATANABLE K, TAKARAGAWA H, KAWAMITSU Y. Effects of drought stress at early growth stage on response of sugarcane to different nitrogen application. Sugar Tech, 2018, 20(4): 420-430.

doi: 10.1007/s12355-017-0566-y
[5]
李海碧, 桂意云, 张荣华, 韦金菊, 杨荣仲, 张小秋, 李杨瑞, 周会, 刘昔辉. 甘蔗抗旱性及抗旱育种研究进展. 分子植物育种, 2019, 17(10): 3406-3415.
LI H B, GUI Y Y, ZHANG R H, WEI J J, YANG R Z, ZHANG X Q, LI Y R, ZHOU H, LIU X H. Research progress on drought resistance and drought-resistant breeding of sugarcane. Molecular Plant Breeding, 2019, 17(10): 3406-3415. (in Chinese)
[6]
陆珍, 杨丽涛, 邢永秀, 李杨瑞. 甘蔗响应干旱胁迫研究进展. 分子植物育种, 2023, 21(6): 2051-2060.
LU Z, YANG L T, XING Y X, LI Y R. Research advances on sugarcane response to drought stress. Molecular Plant Breeding, 2023, 21(6): 2051-2060. (in Chinese)
[7]
HASSAN M U, NAWAZ M, SHAH A N, RAZA A, BARBANTI L, SKALICKY M, HASHEM M, BRESTIC M, PANDEY S, ALAMRI S, MOSTAFA Y, SABAGH A E L, QARI S H. Trehalose: A key player in plant growth regulation and tolerance to abiotic stresses. Journal of Plant Growth Regulation, 2023, 42(8): 4935-4957.

doi: 10.1007/s00344-022-10851-7
[8]
SHAO J, WU W, RASUL F, MUNIR H, HUANG K, AWAN M I, ALBISHI T S, ARSHAD M, HU Q, HUANG G, HASSAN M U, AAMER M, QARI S H. Trehalose induced drought tolerance in plants: Physiological and molecular responses. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50(1): 12584.

doi: 10.15835/nbha50112584
[9]
KOSAR F, AKRAM N A, ASHRAF M, AHMAD A, ALYEMENI M N, AHMAD P. Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiologia Plantarum, 2021, 172(2): 317-333.

doi: 10.1111/ppl.v172.2
[10]
LIN Q, WANG S, DAO Y, WANG J, WANG K. Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. Journal of Experimental Botany, 2020, 71(14): 4285-4297.

doi: 10.1093/jxb/eraa173
[11]
ALAM M M, NAHAR K, HASANUZZAMAN M, FUJITA M. Trehalose-induced drought stress tolerance: A comparative study among different Brassica species. Plant Omics, 2014, 7(4): 271-283.
[12]
叶玉秀, 陆大雷, 王飞兵, 陈新红, 戚名扬, 何润, 陆卫平. 干旱胁迫下外源海藻糖对糯玉米幼苗生理特性的影响. 玉米科学, 2020, 28(3): 80-86.
YE Y X, LU D L, WANG F B, CHEN X H, QI M Y, HE R, LU W P. Effects of exogenous trehalose on physiological characteristics in waxy maize seedlings under drought stress. Journal of Maize Sciences, 2020, 28(3): 80-86. (in Chinese)
[13]
李佳馨, 李霞, 谢寅峰. 外源海藻糖增强高表达转玉米C4型PEPC水稻耐旱性的机制. 植物学报, 2021, 56(3): 296-314.
LI J X, LI X, XIE Y F. Mechanism on drought tolerance enhanced by exogenous trehalose in C4-PEPC rice. Chinese Bulletin of Botany, 2021, 56(3): 296-314. (in Chinese)
[14]
徐向丽, 易克, 蒋红梅, 李永平, 马文广, 郑昀晔, 姚恒. 外源海藻糖对干旱胁迫下烟草幼苗抗旱性的影响. 安徽农业科学, 2010, 38(33): 18675-18677.
XU X L, YI K, JIANG H M, LI Y P, MA W G, ZHENG Y Y, YAO H. Effect of exogenous trehalose on the drought-resisting of tobacco seedling under drought stress. Journal of Anhui Agricultural Sciences, 2010, 38(33): 18675-18677. (in Chinese)
[15]
MAHMOUD R A, HASSAN O S, ABOU-HASHISH A, AMIN A. Role of trehalose during recovery from drought stress in micropropagated banana (Musa spp.) transplants. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2017, 8(2): 1335-1345.
[16]
韩俊艳, 何丹, 邹春静, 罗音. 海藻糖响应植物非生物胁迫反应机制研究进展. 生物学教学, 2021, 46(10): 2-4.
HAN J Y, HE D, ZOU C J, LUO Y. Research progress on the mechanism of trehalose in response to plant abiotic stress. Biology Teaching, 2021, 46(10): 2-4. (in Chinese)
[17]
ZULFIQAR F, CHEN J J, FINNEGAN P M, YOUNIS A, NAFEES M, ZORRIG W, HAMED K B. Application of trehalose and salicylic acid mitigates drought stress in sweet basil and improves plant growth. Plants, 2021, 10(6): 1078.

doi: 10.3390/plants10061078
[18]
ZULFIQAR F, CHEN J, FINNEGAN P M, NAFEES M, YOUNIS A, SHAUKAT N, LATIF N, ABIDEEN Z, ZAID A, RAZA A, SIDDIQUI Z S, HAMED K B. Foliar application of trehalose or 5-aminolevulinic acid improves photosynthesis and biomass production in drought stressed Alpinia zerumbet. Agriculture, 2021, 11(10): 908.

doi: 10.3390/agriculture11100908
[19]
KOSAR F, AKRAM N A, SADIQ M, AL-QURAINY F, ASHRAF M. Trehalose: A key organic osmolyte effectively involved in plant abiotic stress tolerance. Journal of Plant Growth Regulation, 2019, 38(2): 606-618.

doi: 10.1007/s00344-018-9876-x
[20]
JUNIOR N N, NICOLAU M S, MANTOVANINI L J, ZINGARETTI S M. Expression analysis of two genes coding for trehalose-6- phosphate synthase (TPS), in sugarcane (Saccharum spp.) under water stress. American Journal of Plant Sciences, 2013, 4(12): 91-99.

doi: 10.4236/ajps.2013.412A3011
[21]
HU X, WU Z D, LUO Z Y, BURNER D M, PAN Y B, WU C W. Genome-wide analysis of the trehalose-6-phosphate synthase (TPS) gene family and expression profiling of ScTPS genes in sugarcane. Agronomy, 2020, 10(7): 969.

doi: 10.3390/agronomy10070969
[22]
YU W, ZHAO R, WANG L, ZHANG S, LI R, SHENG J, SHEN L. ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants. Planta, 2019, 250(2): 643-655.

doi: 10.1007/s00425-019-03195-2 pmid: 31144110
[23]
MACINTYRE A M, MELINE V, GORMAN Z, AUGUSTINE S P, DYE C J, HAMILTON C D, IYER-PASCUZZI A S, KOLOMIETS M V, MCCULLOH K A, ALLEN C. Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease. PLoS ONE, 2022, 17(4): e0266254.
[24]
PHAN T T, SUN B, NIU J Q, TAN Q L, LI J, YANG L T, LI Y R. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Plant Cell Reports, 2016, 35(9): 1891-1905.

doi: 10.1007/s00299-016-2004-0
[25]
CHEN Y, LI Z, SUN T, WANG D, WANG Z, ZHANG C, QUE Y, GUO J, XU L, SU Y. Sugarcane ScDREB2B-1 confers drought stress tolerance in transgenic Nicotiana benthamiana by regulating the ABA signal, ROS level and stress-related gene expression. International Journal of Molecular Sciences, 2022, 23(17): 9557.

doi: 10.3390/ijms23179557
[26]
刘家勇, 赵培方, 杨昆, 夏红明, 吴才文, 陈学宽, 赵俊, 杨洪昌, 昝逢刚, 姚丽, 吴转娣, 赵丽萍, 覃伟. 甘蔗新品种云蔗05-51的选育. 中国糖料, 2016, 38(1): 8-10.
LIU J Y, ZHAO P F, YANG K, XIA H M, WU C W, CHEN X K, ZHAO J, YANG H C, ZAN F G, YAO L, WU Z D, ZHAO L P, QIN W. Breeding of new sugarcane variety, Yunzhe05-51. Sugar Crops of China, 2016, 38(1): 8-10. (in Chinese)
[27]
王志恒, 赵延蓉, 黄思麒, 王悦娟, 起金娥, 魏玉清. 外源海藻糖影响甜高粱幼苗抗旱性的生理生化机制. 植物生理学报, 2022, 58(4): 654-666.
WANG Z H, ZHAO Y R, HUANG S Q, WANG Y J, QI J E, WEI Y Q. Physiological and biochemical mechanism of exogenous trehalose on drought resistance in sweet sorghum seedlings. Plant Physiology Journal, 2022, 58(4): 654-666. (in Chinese)
[28]
ALDESUQUY H S, GHANEM H E. Exogenous salicylic acid and trehalose ameliorate short term drought stress in wheat cultivars by up-regulating membrane characteristics and antioxidant defense system. Journal of Horticulture, 2015, 2(2): 1000139.
[29]
EISA G S A, IBRAHIM S A. Mitigation the harmful effects of diluted sea water salinity on physiological and anatomical traits by foliar spray with trehalose and sodium nitroprusside of cowpea plants. Middle East Journal of Agriculture, 2016, 5(4): 672-686.
[30]
REDILLAS M C, PARK S H, LEE J W, KIM Y S, JEONG J S, JUNG H, BANG S W, HAHN T R, KIM J K. Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnology Reports, 2012, 6: 89-96.

doi: 10.1007/s11816-011-0210-3
[31]
REZVANI S, SHARIATI S. Analysis of trehalose in Arabidopsis thaliana L. in addition, helpful at all stages of HD. Rasayan Journal of Chemistry, 2009, 2: 267-270.
[32]
FICHTNER F, LUNN J E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annual Review of Plant Biology, 2021, 72: 737-760.

doi: 10.1146/annurev-arplant-050718-095929 pmid: 33428475
[33]
吴凯朝, 黄诚梅, 邓智年, 曹辉庆, 魏源文, 徐林, 李杨瑞, 杨丽涛. 干旱后复水对甘蔗伸长期生理生化特性的影响. 南方农业学报, 2015, 46(7): 1166-1172.
WU K C, HUANG C M, DENG Z N, CAO H Q, WEI Y W, XU L, LI Y R, YANG L T. Effects of drought stress and re-watering on physiological-biochemical characteristics in sugarcane at elongation stage. Journal of Southern Agriculture, 2015, 46(7): 1166-1172. (in Chinese)
[34]
黄有总, 徐建云, 陈超君, 何雪银. 几个甘蔗新品种的抗旱性和抗寒性比较研究. 广西农业生物科学, 2002, 21(2): 101-104.
HUANG Y Z, XU J Y, CHEN C J, HE X Y. Comparative tests on drought resistance and frost resistance of several new sugarcane varieties. Journal of Guangxi Agricultural and Biological Science, 2002, 21(2): 101-104. (in Chinese)
[35]
刘硕, 樊仙, 李如丹, 邓军, 刀静梅, 全怡吉, 杨绍林, 张跃彬. 4个甘蔗主栽品种对干旱胁迫的生理响应. 热带作物学报, 2022, 43(9): 1812-1823.
LIU S, FAN X, LI R D, DENG J, DAO J M, QUAN Y J, YANG S L, ZHANG Y B. Physiological responses of four major sugarcane cultivars to drought stress. Chinese Journal of Tropical Crops, 2022, 43(9): 1812-1823. (in Chinese)
[36]
谭秦亮, 程琴, 潘成列, 朱鹏锦, 李佳慧, 宋奇琦, 农泽梅, 周全光, 庞新华, 吕平. 干旱胁迫对甘蔗新品种桂热2号生理指标的影响. 作物杂志, 2022(3): 161-167.
TAN Q L, CHENG Q, PAN C L, ZHU P J, LI J H, SONG Q Q, NONG Z M, ZHOU Q G, PANG X H, P. Effects of drought stress on physiological indexes of new sugarcane variety Guire 2. Crops, 2022(3): 161-167. (in Chinese)
[37]
SHAFIQ S, AKRAM N A, ASHRAF M. Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions?. Scientia Horticulturae, 2015, 185: 68-75.

doi: 10.1016/j.scienta.2015.01.010
[38]
SADAK M S, EL-BASSIOUNY H M S, DAWOOD M G. Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bulletin of the National Research Centre, 2019, 43: 5.

doi: 10.1186/s42269-018-0039-9
[39]
GOLLDACK D, LUKING L, YANG O. Plant tolerance to drought and salinity: Stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports, 2011, 30(8): 1383-1391.

doi: 10.1007/s00299-011-1068-0 pmid: 21476089
[40]
LI Z, WEI X, TONG X, ZHAO J, LIU X, WANG H, TANG L, SHU Y, LI G, WANG Y, YING J, JIAO G, HU H, HU P, ZHANG J. The OsNAC23-Tre6P-SnRK1a feed-forward loop regulates sugar homeostasis and grain yield in rice. Molecular Plant, 2022, 15: 706-722.

doi: 10.1016/j.molp.2022.01.016
[41]
GRIFFITHS C A, SAGAR R, GENG Y, PRIMAVESI L F, PATEL M K, PASSARELLI M K, GILMORE I S, STEVEN R T, BUNCH J, PAUL M J, DAVIS B G. Chemical intervention in plant sugar signalling increases yield and resilience. Nature, 2016, 540(7634): 574-578.

doi: 10.1038/nature20591
[42]
LI H W, ZANG B S, DENG X W, WANG X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234(5): 1007-1018.

doi: 10.1007/s00425-011-1458-0
[43]
FENG Y, CHEN X, HE Y, KOU X, XUE Z. Effects of exogenous trehalose on the metabolism of sugar and abscisic acid in tomato seedlings under salt stress. Transactions of Tianjin University, 2019, 25(5): 451-471.

doi: 10.1007/s12209-019-00214-x
[44]
BOUDSOCQ M, BARBIER-BRYGOO H, LAURIERE C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. The Journal of Biological Chemistry, 2004, 279(40): 41758-41766.

doi: 10.1074/jbc.M405259200
[45]
KOBAYASHI Y, YAMAMOTO S, MINAMI H, KAGAYA Y, HATTORI T. Differential activation of the rice sucrose nonfermenting1- related protein kinase 2 family by hyperosmotic stress and abscisic acid. The Plant Cell, 2004, 16(5): 1163-1177.

doi: 10.1105/tpc.019943
[46]
谭秦亮, 李长宁, 杨丽涛, 李杨瑞. 甘蔗ABA信号转导关键酶SoSnRK2.1基因的克隆与表达分析. 作物学报, 2013, 39(12): 2162-2170.

doi: 10.3724/SP.J.1006.2013.02162
TAN Q L, LI C N, YANG L T, LI Y R. Cloning and expression analysis of abscisic acid signal transduction key enzyme gene SoSnRK2.1 from sugarcane. Acta Agronomica Sinica, 2013, 39(12): 2162-2170. (in Chinese)

doi: 10.3724/SP.J.1006.2013.02162
[1] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[2] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[3] LI MeiXuan, ZHANG XiangKun, WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang. The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods [J]. Scientia Agricultura Sinica, 2023, 56(21): 4234-4244.
[4] YANG Li, CAO HongBo, ZHANG XueYing, ZHAI HanHan, LI XinMiao, PENG JiaWei, TIAN Yi, CHEN HaiJiang. Functional Identification of Peach Gene PpSAUR73 [J]. Scientia Agricultura Sinica, 2023, 56(20): 4072-4086.
[5] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[6] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[7] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[8] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[9] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[10] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[11] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[12] GUO ShaoLei, XU JianLan, WANG XiaoJun, SU ZiWen, ZHANG BinBin, MA RuiJuan, YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[13] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[14] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[15] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!