Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 4072-4086.doi: 10.3864/j.issn.0578-1752.2023.20.012

• HORTICULTURE • Previous Articles     Next Articles

Functional Identification of Peach Gene PpSAUR73

YANG Li1(), CAO HongBo1, ZHANG XueYing1, ZHAI HanHan2, LI XinMiao1, PENG JiaWei1, TIAN Yi3(), CHEN HaiJiang1()   

  1. 1 Horticultural Department, Agricultural University of Hebei, Baoding 071000, Hebei
    2 Kashgar Vocational and Technical College, Kashgar 844000, Xinjiang
    3 Mountainous Areas Research Institute, Hebei Agricultural University/Technology Innovation Center for Agriculture in Mountainous Areas of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, Hebei
  • Received:2023-03-24 Accepted:2023-06-30 Online:2023-10-16 Published:2023-10-31
  • Contact: TIAN Yi, CHEN HaiJiang

Abstract:

【Objective】 The object of this study was to isolate a peach potential-related gene PpSAUR73, to analyze its expression response to hormones, and to identify its role in regulating seedling growth in transgenic Arabidopsis, so as to provide the molecular basis for the regulation of tree potential. 【Method】 Using Zhongyou Pan 9 as the material for hormone treatment, the real-time fluorescence quantitative analysis was used to analyze the dynamic response of PpSAUR73 within 24 hours. PpSAUR73 was cloned from the peach variety Jiuyan. PpSAUR73 overexpression vector was constructed and transformed into Arabidopsis. Phenotypic observation of genetical modified Arabidopsis was carried out, and the germination rate statistics of both genetically modified and wild-type Arabidopsis sown simultaneously were performed too. The root length and hypocotyl of 7-day growing Arabidopsis with consistent germination were measured, and Arabidopsis with consistent germination was treated with different concentration hormone. Transcriptome sequencing was performed using 7-day-old seedlings, and the differentially expressed genes were analyzed by functional analysis, KEGG pathway enrichment analysis, and regulatory genes analysis, respectively. 【Result】 PpSAUR73 could respond quickly to hormone treatments. The overexpression of PpSAUR73 could affect the germination of Arabidopsis seeds. The hypocotyl and root length of seedlings were longer than those of wild type. In addition, the rosette of transgenic Arabidopsis was larger, and the overall growth potential was larger than wild type. The transgenic Arabidopsis showed decreased sensitivity to auxin. The transcriptome analysis of overexpressing PpSAUR73 showed that there were 128 differentially expressed genes in both control groups, including 84 up-regulated genes and 44 down-regulated genes, and 20 differentially expressed genes were described. The GO function significant enrichment analysis of the differentially expressed genes generated by overexpression of PpSAUR73 showed that the differentially expressed genes were the most abundant in cell components, located in cytoplasm, cell membrane, organelle and extracellular regions. KEGG pathway enrichment analysis on differentially expressed genes were conducted, and the results showed that the differentially expressed genes in pairwise comparisons CK vs SAUR73-1 and CK vs SAUR73-14 were mainly enriched in phenylalanine biosynthesis pathway, plant hormone signal transduction pathway, starch sucrose metabolic pathway and other metabolic pathways. In the phenylalanine biosynthesis pathway, PpSAUR73 could regulate the upregulation of peroxidase encoding genes AT1G05260, AT3G01190, AT3G32980 and AT5G15180. Peroxidases were associated with lignin synthesis, and lignin content was significantly correlated with plant growth, suggesting that overexpression of PpSAUR73 might be involved in regulating lignin synthesis in Arabidopsis and thus growth. In plant hormone signal transduction pathway, the expression of some auxin responsive genes of AtSAUR41, AtSAUR71, AtSAUR51, AtSAUR72 and AtSAUR1 in auxin signal transduction pathway was down-regulated, the expression of phosphatase protein AtPP2CA in abscisic acid signal transduction pathway was up-regulated, and the expression of abscisic acid signal pathway gene AtPYL5 was down-regulated. PpSAUR73 could regulate the growth of Arabidopsis and participate in multiple hormone signal transduction pathways. 【Conclusion】 This study found that PpSAUR73 could quickly respond to hormones and regulate the growth in transgenic Arabidopsis. The differentially expressed genes caused by overexpressed genes caused by overexpression of PpSAUR73 were mainly enriched in metabolic pathways, such as phenylalanine biosynthesis pathway, plant hormone signaling pathway, and starch sucrose metabolism pathway. PpSAUR73 also played an important role in IAA and ABA signal transduction pathways, it was speculated that it played an important role in the growth and development of peach trees.

Key words: peach, PpSAUR73, gene expression, hormone treatment, signal transduction

Table 1

Primers used in qRT-PCR validation"

基因 Gene 引物 Primer sequences (5'-3')
PpActin F: GCCCAAGTGCTTCGTATGCT
R: ATCACCGGCTGCAATCCA
PpSAUR73 F: GGCACCCAACTGAGAAGTGA
R: ACGAGGTTCCAAAAGGGCAT

Fig. 1

Phylogenetic tree of PpSAUR73 and growth related proteins of Arabidopsis"

Fig. 2

The expression of PpSAUR73 response to hormones"

Fig. 3

Germination of wild type and PpSAUR73 transgenic Arabidopsis seed Col-0: wild type; SAUR73-1, SAUR73-14, SAUR73-2: Transgenic Arabidopsis strain. Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 4

Phenotype of wild type and PpSAUR73 transgenic Arabidopsis"

Fig. 5

Effects of IAA, GA and NPA on root growth of wild type and transgenic Arabidopsis"

Fig. 6

qRT-PCR verification of differentially expressed genes"

Table 2

Information description of some common differentially expressed genes in SAUR73"

基因ID
Gene ID
描述
Description
KEGG通路
KEGG pathway
AT1G23720 未命名蛋白物质 Unnamed protein product
AT1G43790 气管元件分化相关6 Tracheary element differentiation-related 6
AT1G43800 植物硬脂酰酰基载体蛋白去饱和酶家族蛋白
Plant stearoyl-acyl-carrier-protein desaturase family protein
脂肪酸生物合成(ko00061),生物合成不饱和脂肪酸(ko01040),脂肪酸代谢(ko01212)
Fatty acid biosynthesis (ko00061), Biosynthesis of unsaturated fatty acids (ko01040), Fatty acid metabolism (ko01212)
AT1G47395 假设蛋白质AT1G47395 Hypothetical protein AT1G47395
AT1G56600 半乳糖醇合成酶 Galactinol synthase 2 半乳糖代谢(ko00052) Galactose metabolism (ko00052)
AT1G60190 ARM重复超家族蛋白
ARM repeat superfamily protein
泛素介导的蛋白水解(ko04120)
Ubiquitin mediated proteolysis (ko04120)
AT1G77120 乙醇脱氢酶1
Alcohol dehydrogenase 1
糖酵解/糖异生(ko00010),脂肪酸降解(ko00071),酪氨酸代谢(ko00350),亚麻酸代谢(ko00592)
Glycolysis/Gluconeogenesis (ko00010), Fatty acid degradation (ko00071), Tyrosine metabolism (ko00350), alpha-Linolenic acid metabolism (ko00592)
AT3G12830 SAUR样生长素反应蛋白家族
SAUR-like auxin-responsive protein family
植物激素信号转导(ko04075)
Plant hormone signal transduction (ko04075)
AT3G14440 9-顺式环氧类胡萝卜素双加氧酶
Nine-cis-epoxycarotenoid dioxygenase 3
类胡萝卜素生物合成(ko00906)
Carotenoid biosynthesis (ko00906)
AT3G28550 富含脯氨酸的延伸蛋白家族蛋白
Proline-rich extensin-like family protein
AT3G43190 蔗糖合酶4 Sucrose synthase 4 淀粉和蔗糖代谢(ko00500)
Starch and sucrose metabolism (ko00500)
AT4G33070 硫胺素焦磷酸依赖的丙酮酸脱羧酶家族蛋白
Thiamine pyrophosphate dependent pyruvate decarboxylase family protein
糖酵解/糖异生(ko00010)
Glycolysis/Gluconeogenesis (ko00010)
AT5G04150 未知的,偏 Unknown, partial
AT5G35190 假设蛋白质AXX17_AT5G31360
Hypothetical protein AXX17_AT5G31360
ATCG00430 NADH脱氢酶亚基K NADH dehydrogenase subunit K 氧化磷酸化(ko00190) Oxidative phosphorylation (ko00190)
ATCG00470 ATP合成酶CF1 epsilon亚基
ATP synthase CF1 epsilon subunit
氧化磷酸化(ko00190),光合作用(ko00195)
Oxidative phosphorylation (ko00190), Photosynthesis (ko00195)
ATCG00530 包膜蛋白 Envelope membrane protein 光合作用(ko00195) Photosynthesis (ko00195)
ATCG00670 ATP依赖性Clp蛋白酶蛋白水解亚基
ATP-dependent Clp protease proteolytic subunit
ATCG00810 核糖体蛋白L22 Ribosomal protein L22 核糖体(ko03010) Ribosome (ko03010)
ATCG01020 核糖体蛋白L32 Ribosomal protein L32 核糖体(ko03010) Ribosome (ko03010)

Fig. 7

Differential genes expression analysis A: Venn diagram of differentially expressed genes among samples; B: Common differentially expressed genes heatmap"

Fig. 8

Functional analysis of SAUR73 common differentially expressed genes A: GO functional categories of SAUR73 common differentially expressed genes; B: The KEGG pathway of SAUR73 common differentially expressed genes"

Fig. 9

Phenylalanine anabolic pathway diagram"

Table 3

Differential genes involved in phenylalanine anabolic pathway"

基因ID
Gene ID
Log2FC
(CK/SAUR73-1)
Log2FC
(CK/SAUR73-14)
描述
Description
AT1G05260 1.20742752491825 1.00323218173246 过氧化物酶超家族蛋白 Peroxidase superfamily protein
AT1G26390 -2.70470526776539 -3.79852645503335 FAD结合黄连素家族蛋白 FAD-binding Berberine family protein
AT1G66270 1.56761594119799 1.4138309067234 糖基水解酶超家族蛋白 Glycosyl hydrolase superfamily protein
AT1G66280 1.32994741757618 1.28961957063889 糖基水解酶超家族蛋白 Glycosyl hydrolase superfamily protein
AT1G66800 1.24780969170763 1.32419227545878 NAD(P)结合罗斯曼折叠超家族蛋白NAD(P)-binding Rossmann-fold superfamily protein
AT2G32860 1.23824493211364 1.37258943978524 β-葡萄糖苷酶33 Beta glucosidase 33
AT3G01190 1.34813864857128 1.07544938464363 过氧化物酶超家族蛋白 Peroxidase superfamily protein
AT3G32980 1.38165803707019 1.11752278178902 过氧化物酶超家族蛋白 Peroxidase superfamily protein
AT3G49110 1.28803391956951 1.78265014560853 过氧化物酶CA peroxidase CA
AT5G15180 1.34289458873555 1.22134563236366 过氧化物酶超家族蛋白 Peroxidase superfamily protein
AT5G28510 1.77489118882188 1.59816016112596 β-葡萄糖苷酶24 Beta glucosidase 24

Fig. 10

Clustering heat map of differentially expressed genes in plant hormone signaling"

[1]
STORTENBEKER N, BEMER M. The SAUR gene family: The plant’s toolbox for adaptation of growth and development. Journal of Experimental Botany, 2019, 70(1): 17-27.

doi: 10.1093/jxb/ery332
[2]
SPARTZ A K, LOR V S, REN H, OLSZEWSKI N E, MILLER N D, WU G S, SPALDING E P, GRAY W M. Constitutive expression of Arabidopsis SMALL AUXIN UP RNA19 (SAUR19) in tomato confers auxin-independent hypocotyl elongation. Plant Physiology, 2017, 173(2): 1453-1462.

doi: 10.1104/pp.16.01514
[3]
BEMER M, VAN MOURIK H, MUIÑO J M, FERRÁNDIZ C, KAUFMANN K, ANGENENT G C. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. Journal of Experimental Botany, 2017, 68(13): 3391-3403.

doi: 10.1093/jxb/erx184
[4]
LI X H, LIU G Y, GENG Y H, WU M, PEI W F, ZHAI H H, ZANG X S, LI X L, ZHANG J F, YU S X, YU J W. A genome-wide analysis of the small auxin-up RNA (SAUR) gene family in cotton. BMC Genomics, 2017, 18(1): 815.

doi: 10.1186/s12864-017-4224-2 pmid: 29061116
[5]
WU J, LIU S Y, HE Y J, GUAN X Y, ZHU X F, CHENG L, WANG J, LU G. Genome-wide analysis of SAUR gene family in Solanaceae species. Gene, 2012, 509(1): 38-50.

doi: 10.1016/j.gene.2012.08.002 pmid: 22903030
[6]
CHAE K, ISAACS C G, REEVES P H, MALONEY G S, MUDAY G K, NAGPAL P, REED J W. Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. The Plant Journal, 2012, 71(4): 684-697.

doi: 10.1111/tpj.2012.71.issue-4
[7]
SPARTZ A K, REN H, PARK M Y, GRANDT K N, LEE S H, MURPHY A S, SUSSMAN M R, OVERVOORDE P J, GRAY W M. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. The Plant Cell, 2014, 26(5): 2129-2142.

doi: 10.1105/tpc.114.126037
[8]
KONG Y Y, ZHU Y B, GAO C, SHE W J, LIN W Q, CHEN Y, HAN N, BIAN H W, ZHU M Y, WANG J H. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant and Cell Physiology, 2013, 54(4): 609-621.

doi: 10.1093/pcp/pct028
[9]
PARK J E, KIM Y S, YOON H K, PARK C M. Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant Science, 2007, 172(1): 150-157.

doi: 10.1016/j.plantsci.2006.08.005
[10]
KANT S, BI Y M, ZHU T, ROTHSTEIN S J. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiology, 2009, 151(2): 691-701.

doi: 10.1104/pp.109.143875 pmid: 19700562
[11]
KODAIRA K S, QIN F, TRAN L S P, MARUYAMA K, KIDOKORO S, FUJITA Y, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiology, 2011, 157(2): 742-756.

doi: 10.1104/pp.111.182683
[12]
FAVERO D S, LE K N, NEFF M M. Brassinosteroid signaling converges with SUPPRESSOR OF PHYTOCHROME B4-#3 to influence the expression of SMALL AUXIN UP RNA genes and hypocotyl growth. The Plant Journal, 2017, 89(6): 1133-1145.

doi: 10.1111/tpj.13451 pmid: 27984677
[13]
HU W F, YAN H W, LUO S S, PAN F, WANG Y, XIANG Y. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments. Plant Physiology and Biochemistry, 2018, 128: 50-65.

doi: S0981-9428(18)30179-7 pmid: 29758473
[14]
OH E, ZHU J Y, BAI M Y, ARENHART R A, SUN Y, WANG Z Y. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife, 2014, 3: e03031.

doi: 10.7554/eLife.03031
[15]
VAN MOURIK H, VAN DIJK A D J, STORTENBEKER N, ANGENENT G C, BEMER M. Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade. BMC Plant Biology, 2017, 17(1): 1-14.

doi: 10.1186/s12870-016-0951-9
[16]
翟宇杰. 不同品种桃树生长势的差异及相关基因的表达与调控[D]. 保定: 河北农业大学, 2020.
ZHAI Y J. Difference of growth potential of different peach cultivars and expression and regulation of related genes[D]. Baoding: Hebei Agricultural University, 2020. (in Chinese)
[17]
周晓雅. 多效唑抑制桃新梢生长的效应及相关分子机理研究[D]. 保定: 河北农业大学, 2020.
ZHOU X Y. Study on the effect of paclobutrazol on inhibiting the growth of peach shoots and its related molecular mechanism[D]. Baoding: Hebei Agricultural University, 2020. (in Chinese)
[18]
翟含含, 翟宇杰, 田义, 张叶, 杨丽, 温陟良, 陈海江. 桃SAUR家族基因分析及PpSAUR5功能鉴定. 园艺学报, 2023, 50(1): 1-14.

doi: 10.16420/j.issn.0513-353x.2021-0932
ZHAI H H, ZHAI Y J, TIAN Y, ZHANG Y, YANG L, WEN Z L, CHEN H J. Genome-wide identification of peach SAUR gene family and characterization of PpSAUR5 gene. Acta Horticulturae Sinica, 2023, 50(1): 1-14. (in Chinese)
[19]
王文然, 樊秀彩, 张文颖, 刘崇怀, 房经贵, 王晨. 果树赤霉素代谢与信号途径研究进展. 生物技术通报, 2017, 33(11): 1-7.

doi: 10.13560/j.cnki.biotech.bull.1985.2017-0650
WANG W R, FAN X C, ZHANG W Y, LIU C H, FANG J G, WANG C. Study progress on gibberellin metabolism and signaling transduction pathway in fruits trees. Biotech Bulletin, 2017, 33(11): 1-7. (in Chinese)
[20]
徐献斌, 耿晓月, 李慧, 孙丽娟, 郑焕, 陶建敏. 基于转录组分析ABA促进葡萄花青苷积累相关基因. 中国农业科学, 2022, 55(1): 134-151. doi: 10.3864/j.issn.0578-1752.2022.01.012.
XU X B, GENG X Y, LI H, SUN L J, ZHENG H, TAO J M. Transcriptome analysis of genes involved in ABA-induced anthocyanin accumulation in grape. Scientia Agricultura Sinica, 2022, 55(1): 134-151. doi: 10.3864/j.issn.0578-1752.2022.01.012. (in Chinese)
[21]
WEI J H, SONG Y R. Recent advances in study of lignin biosynthesis and manipulation. Journal of Integrative Plant Biology, 2001, 43(8): 771-779.
[22]
ZENG Y, ZHAO T H, KERMODE A R. A conifer ABI3-interacting protein plays important roles during key transitions of the plant life cycle. Plant Physiology, 2013, 161(1): 179-195.

doi: 10.1104/pp.112.206946 pmid: 23144188
[23]
SWARUP R, PERRY P, HAGENBEEK D, VAN DER STRAETEN D, BEEMSTER G T S, SANDBERG G, BHALERAO R, LJUNG K, BENNETT M J. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. The Plant Cell, 2007, 19(7): 2186-2196.

doi: 10.1105/tpc.107.052100
[24]
SPARTZ A K, LEE S H, WENGER J P, GONZALEZ N, ITOH H, INZÉ D, PEER W A, MURPHY A S, OVERVOORDE P J, GRAY W M. The saur19 subfamily of small auxin up RNA genes promote cell expansion. The Plant Journal, 2012, 70(6): 978-990.

doi: 10.1111/j.1365-313X.2012.04946.x pmid: 22348445
[25]
LI Z G, CHEN H W, LI Q T, TAO J J, BIAN X H, MA B, ZHANG W K, CHEN S Y, ZHANG J S. Retraction Note: Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis. Scientific Reports, 2022, 12: 1994.

doi: 10.1038/s41598-022-06178-8
[26]
吴慧娟, 刘艳, 王锡锋. 小麦矮缩病毒引起的植株矮化与赤霉素代谢的相关性分析. 中国农业科学, 2017, 50(17): 3337-3343. doi: 10.3864/j.issn.0578-1752.2017.17.008.
WU H J, LIU Y, WANG X F. Correlational analyses between dwarfing of plant height induced by wheat dwarf virus (WDV) infection and gibberellin metabolism. Scientia Agricultura Sinica, 2017, 50(17): 3337-3343. doi: 10.3864/j.issn.0578-1752.2017.17.008. (in Chinese)
[27]
LOCKARD R G, SCHNEIDER G W. Stock and scion growth relationships and the dwarfing mechanism in apple//Horticultural Reviews. Wiley Online Books, 1981: 315-375.
[28]
张志华, 刘新彩, 刘彦红, 高仪, 王红霞. 核桃幼树内源激素与生长势的关系. 林业科学, 2006, 42(9): 131-133.
ZHANG Z H, LIU X C, LIU Y H, GAO Y, WANG H X. Study on relationship between hormone and growth vigor of young Juglans regia. Scientia Silvae Sinicae, 2006, 42(9): 131-133. (in Chinese)
[29]
闫艳华. 不同外源激素处理对曼陀罗种子萌发及幼苗生长的影响. 北方园艺, 2020(23): 115-122.
YAN Y H. Effects of different exogenous hormones on seed germination and seedling growth of Datura stramonium. Northern Horticulture, 2020(23): 115-122. (in Chinese)
[30]
STAMM P, KUMAR P P. Auxin and gibberellin responsive Arabidopsis SMALL AUXIN UP RNA36 regulates hypocotyl elongation in the light. Plant Cell Reports, 2013, 32(6): 759-769.

doi: 10.1007/s00299-013-1406-5
[31]
HARMER S L, BROOKS C J. Growth-mediated plant movements: hidden in plain sight. Current Opinion in Plant Biology, 2018, 41: 89-94.

doi: S1369-5266(17)30094-8 pmid: 29107827
[32]
SHIN J H, MILA I, LIU M C, RODRIGUES M A, VERNOUX T, PIRRELLO J, BOUZAYEN M. The RIN-regulated Small Auxin-Up RNA SAUR69 is involved in the unripe-to-ripe phase transition of tomato fruit via enhancement of the sensitivity to ethylene. The New Phytologist, 2019, 222(2): 820-836.

doi: 10.1111/nph.2019.222.issue-2
[33]
WANG J J, SUN N, ZHANG F F, YU R B, CHEN H D, DENG X W, WEI N. SAUR17 and SAUR50 differentially regulate PP2C-D1 during apical hook development and Cotyledon opening in Arabidopsis. The Plant Cell, 2020, 32(12): 3792-3811.

doi: 10.1105/tpc.20.00283
[34]
HOU K, WU W, GAN S S. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiology, 2013, 161(2): 1002-1009.

doi: 10.1104/pp.112.212787
[35]
余洪, 易倩, 张曼曼, 朱世平, 王福生, 赵晓春. CclSAUR49基因的表达特征及对类柠檬苦素生物合成的影响. 果树学报, 2021, 38(8): 1240-1251.
YU H, YI Q, ZHANG M M, ZHU S P, WANG F S, ZHAO X C. Characteristics of CclSAUR49 expression and its effect on limonoids bio-synthesis in citrus. Journal of Fruit Science, 2021, 38(8): 1240-1251. (in Chinese)
[36]
REN H, GRAY W. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant, 2015, 8(8): 1153-1164.

doi: 10.1016/j.molp.2015.05.003 pmid: 25983207
[37]
KANT S, PENG M S, ROTHSTEIN S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis. PLoS Genetics, 2011, 7(3): e1002021.

doi: 10.1371/journal.pgen.1002021
[38]
李伟. 桤木苗期不同无性系PAL和木质素及生长关系的研究[D]. 北京: 中国林业科学研究院, 2001.
LI W. Study on the relationship between PAL and lignin and growth of different clones of Alnus cremastogyne at seedling stage[D]. Beijing: Chinese Academy of Forestry, 2001. (in Chinese)
[39]
佘恒志, 聂姣, 李英双, 刘星贝, 胡丹, 马珊, 次仁卓嘎, 汪灿, 吴东倩, 阮仁武, 易泽林. 不同抗倒伏能力甜荞品种茎秆木质素及其单体合成特征. 中国农业科学, 2017, 50(7): 1202-1209. doi: 10.3864/j.issn.0578-1752.2017.07.003.
SHE H Z, NIE J, LI Y S, LIU X B, HU D, MA S, CIRENZHUOGA, WANG C, WU D Q, RUAN R W, YI Z L. Lignin and lignin monomer synthetic characteristics of culm in common buckwheat with different lodging resistance capabilities. Scientia Agricultura Sinica, 2017, 50(7): 1202-1209. doi: 10.3864/j.issn.0578-1752.2017.07.003. (in Chinese)
[40]
郭光艳, 柏峰, 刘伟, 秘彩莉. 转录因子对木质素生物合成调控的研究进展. 中国农业科学, 2015, 48(7): 1277-1287. doi: 10.3864/ j.issn.0578-1752.2015.07.03.
GUO G Y, BAI F, LIU W, BI C L. Advances in research of the regulation of transcription factors of lignin biosynthesis. Scientia Agricultura Sinica, 2015, 48(7): 1277-1287. doi: 10.3864/j.issn.0578- 1752.2015.07.03. (in Chinese)
[41]
胡丹, 刘星贝, 汪灿, 杨浩, 李鹤鑫, 阮仁武, 袁晓辉, 易泽林. 不同抗倒性甜荞茎秆木质素合成关键酶基因的表达分析. 中国农业科学, 2015, 48(9): 1864-1872. doi: 10.3864/j.issn.0578-1752.2015. 09.20.
HU D, LIU X B, WANG C, YANG H, LI H X, RUAN R W, YUAN X H, YI Z L. Expression analysis of key enzyme genes in lignin synthesis of culm among different lodging resistances of common buckwheat (Fagopyrum esculentum moench). Scientia Agricultura Sinica, 2015, 48(9): 1864-1872. doi: 10.3864/j.issn.0578-1752.2015. 09.20. (in Chinese)
[42]
吕婷雯, 沈汝波, 杨洪强, 范伟国, 张瑞雪, 王利, 徐颖, 曹辉, 宁留芳, 周春然. 施加有机肥下木质素对平邑甜茶根系活力及根际土壤微生态的影响. 山东农业大学学报(自然科学版), 2018, 49(4): 561-565.
T W, SHEN R B, YANG H Q, FAN W G, ZHANG R X, WANG L, XU Y, CAO H, NING L F, ZHOU C R. Effects of lignin on root activity of Malus hupehensis rehd. and microecology in rhizosphere soil under organic fertilizer. Journal of Shandong Agricultural University (Natural Science Edition), 2018, 49(4): 561-565. (in Chinese)
[43]
孙瑞敏, 翟梦华, 李虎, 李孟华, 王凤, 张桦. 木质素合成与梭梭生长发育的关系研究. 现代农业科技, 2019(5): 126-127.
SUN R M, ZHAI M H, LI H, LI M H, WANG F, ZHANG H. Study on the relationship between lignin synthesis and Haloxylon ammodendron growth and development. XianDai NongYe KeJi, 2019(5): 126-127. (in Chinese)
[44]
KATHARE P K, DHARMASIRI S, DHARMASIRI N. SAUR53 regulates organ elongation and apical hook development in Arabidopsis. Plant Signaling & Behavior, 2018, 13(10): e1514896.
[45]
WONG J H, SPARTZ A K, PARK M Y, DU M M, GRAY W M. Mutation of a conserved motif of PP2C.D phosphatases confers SAUR immunity and constitutive activity. Plant Physiology, 2019, 181(1): 353-366.

doi: 10.1104/pp.19.00496 pmid: 31311832
[1] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[2] CAO Ke, CHEN ChangWen, YANG XuanWen, BIE HangLing, WANG LiRong. Genomic Selection for Fruit Weight and Soluble Solid Contents in Peach [J]. Scientia Agricultura Sinica, 2023, 56(5): 951-963.
[3] PENG JiaWei, ZHANG Ye, KOU DanDan, YANG Li, LIU XiaoFei, ZHANG XueYing, CHEN HaiJiang, TIAN Yi. Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant [J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980.
[4] ZOU Ting, LIU LiLi, XIANG JianHua, ZHOU DingGang, WU JinFeng, LI Mei, LI Bao, ZHANG DaWei, YAN MingLi. Cloning of MYBL2 Gene from Brassica and Its PCR Identification in Genomes A, B and C [J]. Scientia Agricultura Sinica, 2023, 56(3): 416-429.
[5] LUO ZhengYing, HU Xin, LIU XinLong, WU CaiWen, WU ZhuanDi, LIU JiaYong, ZENG QianChun. Application of Trehalose Enhances Drought Resistance in Sugarcane Seedlings and Promotes Plant Growth [J]. Scientia Agricultura Sinica, 2023, 56(21): 4208-4218.
[6] LI MeiXuan, ZHANG XiangKun, WANG Li, QIAO YueLian, SHI XiaoXin, DU GuoQiang. The Variation of GRSPaV in Different Parts of Shine Muscat Grapevines During Their Phenological Periods [J]. Scientia Agricultura Sinica, 2023, 56(21): 4234-4244.
[7] XU FuChun, ZHAO JingRuo, ZHANG ZhenNan, HU GaiYuan, LONG Lu. Cloning and Functional Characterization of GhCPR5 in Disease Resistance of Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2023, 56(19): 3747-3758.
[8] HE Dan, YOU XiaoLong, HE SongLin, ZHANG MingXing, ZHANG JiaoRui, HUA Chao, WANG Zheng, LIU YiPing. Identification of Callose Synthetase Gene Family and Functional Analysis of PlCalS5 in Paeonia lactiflora [J]. Scientia Agricultura Sinica, 2023, 56(16): 3183-3198.
[9] LIU SuNing, BIE HangLing, WANG JunXiu, CHEN XueJia, WANG XinWei, WANG LiRong, CAO Ke. Background Selection and Comparison of Marker Superiority and Inferiority of Aphid-Resistant Seedlings in an Interspecific Cross Peach Population [J]. Scientia Agricultura Sinica, 2023, 56(15): 2995-3005.
[10] WANG ZhaoHui, LI Yong, CAO Ke, ZHU GengRui, FANG WeiChao, CHEN ChangWen, WANG XinWei, WU JinLong, WANG LiRong. Genotype Identification and Combination Analysis of Loci Related to the Peach Flesh Texture Trait via 189 Peach Accessions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2367-2379.
[11] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[12] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[13] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[14] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[15] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!