Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (23): 4772-4788.doi: 10.3864/j.issn.0578-1752.2023.23.017

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Influences of Phosphorus Level in Diet of Parent Pigeons on Biochemical Index, Untargeted Metabolomics Profile of Serum, and Gene Expression of Phosphate Transporters in Squabs

AN Yong1,2(), QIN ShiZhen3, SHI ZhaoGuo3, GONG LiYuan1,3, ZHANG Shuai1,2, JI Feng1()   

  1. 1 Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
    2 College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056009, Hebei
    3 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070
  • Received:2023-03-15 Accepted:2023-05-25 Online:2023-12-01 Published:2023-12-04
  • Contact: JI Feng

Abstract:

【Objective】The aim of this study was to investigate the effects of different levels of inorganic phosphorus (P) on serum biochemical parameters, non-targeted metabolites, and expression of phosphate transporter genes in the small intestine and kidney of pigeon, so as to provide a theoretical basis for the regulation of phosphorus nutrition in pigeon during the period of rapid growth.【Method】A total of 192 pairs of parental Silver King pigeons (40 weeks of age) were randomly allocated to four treatment groups, each consisting of eight replicates of 6 pairs per replicate. The study lasted for 46 days including the phases of egg-hatching and squab-rearing. Dietary treatments included the basal diet (containing 0.3% of P), the basal diet supplemented with 0.2%, 0.4%, or 0.8% inorganic P. The calcium (Ca) content in diets of parent birds were kept at 1.40% in every group. The levels of Ca, P, PTH and ALP activity in serum of 7, 14 and 21 d old squabs were determined, and the content of Ca and P in crop milk were analyzed. The gene expression of Pi transporters (NaPi-Ⅱb, PiT-1, and PiT-2) in small intestine (duodenum and jejunum), and Pi transporters (NaPi-Ⅱa, PiT-1, and PiT-2) in kidney of squabs were determined. Serum metabolome profiles of 14 and 21 d old squabs in the groups of control, 0.4% and 0.8% P-supplemented were analyzed. 【Result】(1) The P contents in crop milk sampled from squabs were very significantly (P<0.01) increased by P supplementation in diets of parent pigeons. (2) No significant effect of P supplementation in diet of parent birds on serum P level, ALP activity and PTH level of squabs were observed in this study. However, the serum Ca content in birds of 0.8% P supplemental group decreased very significantly (P<0.01). The serum ALP and PTH level of squabs significantly decreased with increased age (P<0.05). (3) There was a tendency of increased gene expression of NaPi-IIb in small intestine of squabs with dietary P levels of breeding birds, however, the difference was not significant (P>0.05). The expression profile of PiT-1 and PiT-2 in kidney of squabs at the age of 7 and 14 d were very significantly higher (P<0.01) than those in duodenum and jejunum. However, the difference of the mRNA expression level of PiT-1 and PiT-2 between kidney and intestine was not observed at the age of 21 d, and the PiT-1 value of kidney samples was even lower than that of jejunum. The mRNA expression levels of PiT-1 of 7 and 14 d old squabs were significantly increased by dietary P levels of breeding birds. The mRNA expression of PiT-2 in the group of dietary 0.4% P supplementation was significantly higher (P<0.05) than that of 0.8% group when the squabs were 7 and 21 d old. The interaction of tissue and dietary P levels was significant (P<0.05) on PiT-1 mRNA level of 7 and 14 d, and PiT-2 mRNA level of 21 d old birds. The mRNA expression level of NaPi-IIa in kidney of 14 d squabs significantly decreased in the group of 0.8% P supplementation, compared with the control and 0.4% group. (4) At the age of 14 and 21 d, about half of the significantly different metabolites among the control and P-added groups were included in the category of lipids and lipid-like molecules, organic acids and derivatives was the second, and benzenoids next. The biological pathways involved in the metabolism of differentially expressed metabolites were mainly carbohydrate metabolism, metabolism of protein and amino acids, translation and lipid metabolism etc. 【Conclusion】(1) There was a significant effect of P supplementation in the diet of parent pigeons on P content in crop milk fed to squabs. The values of serum P of young birds were stable. However, the serum Ca of squabs in the group of highest dietary P treatment decreased, which might indicate that pigeons were intolerant to high dietary P level. (2) The expression levels of P transporters (PiT-1 and PiT-2) mRNA in the kidney mostly increased with dietary P supplementation. The regulation mechanisms of P reabsorption in pigeons need to be studied further. (3)The serum metabolome profiles of squabs indicated that P was involved in many important metabolic processes, such as lipid metabolism and bone mineralization etc.

Key words: phosphorus, pigeon, biochemical index, metabolome, transporter

Table 1

Composition and nutrient levels of experimental diets for parent pigeons (as-fed basis)"

处理组 Treatment 1 2 3 4 处理组 Treatment 1 2 3 4
组成成分Ingredient (%) 营养水平 Nutrient Levels (%)
玉米 Corn 40.0 40.0 40.0 40.0 代谢能 ME (k cal·kg-1) 2796.3 2796.3 2796.3 2796.3
豌豆 Pea 15.0 15.0 15.0 15.0 粗蛋白 CP 4) 15.5 15.0 15.2 15.2
小麦 Wheat 12.0 12.0 12.0 12.0 蛋氨酸 Methionine 0.25 0.25 0.25 0.25
高粱 Sorghum 10.0 10.1 10.1 10.1 赖氨酸 Lysine 0.82 0.82 0.82 0.82
豆粕 (46%) Soybean meal 15.0 15.0 15.0 15.0 Ca 4) 1.40 1.50 1.42 1.40
大豆油 Soybean oil 1.00 1.00 1.00 1.00 总磷 Total P (TP) 4) 0.30 0.54 0.77 1.28
石粉 Stone powder 2.60 1.90 1.25 0.00
CaHPO4·2H2O 0.00 1.12 2.20 4.40
食盐 Salt 0.37 0.40 0.40 0.40
赖氨酸 Lysine 0.20 0.20 0.20 0.20
蛋氨酸 Methionine 0.12 0.12 0.12 0.12
多维 Vitamins 1) 0.02 0.02 0.02 0.02
复合微量元素 Minerals 2) 0.15 0.15 0.15 0.15
氯化胆碱Choline chloride 0.04 0.04 0.04 0.04
砂砾 Sand 3) 3.50 2.95 2.52 1.57

Table 2

Primers sequences of analyzed genes"

基因 Gene name 引物序列Primer sequence (5′ → 3′) 序列号Gene Bank accession number
NaPi-Ⅱa Forward
Reverse
ATCACGGGCATCGCAACAA
GGGCTGTGCAGTTTGGAG
XM_021288850.1
NaPi-Ⅱb Forward
Reverse
CAGCATGGTGTCCTCCACAT
GATTGTTGCCCCAGCAAAGG
XM_021286083.1
PiT-1 Forward
Reverse
GAAGGCGTCAAGTGGTCTGA
GAACGGGATCCGCCTTAGAG
XM_005505592.2
PiT-2 Forward
Reverse
GAGGAAGGCGGCGTGGAGAT
GGAAAAGCAGGTGGACCTGA
XM_021287576.1
β-actin Forward
Reverse
AGAGAGGCTACAGCTTCACCA
CTGGCCATCAGGGAGTTCATAG
XM_005504502.2

Table 3

Effects of dietary P levels and bird age on Ca and P content in milk sampled from squabs"

项目
Item
磷添加水平
P supplemental level (%)
Ca
(%)
P
(%)
7日龄
7d
0 0.959 0.447B
0.2 0.962 0.509C
0.4 0.915 0.754E
0.8 0.915 0.917G
14日龄
14d
0 1.018 0.304A
0.2 1.019 0.453B
0.4 1.027 0.649D
0.8 0.904 0.911FG
21日龄
21d
0 1.063 0.303A
0.2 1.092 0.452B
0.4 1.108 0.624D
0.8 1.023 0.863F
SEM 0.005 0.001
日龄
Day
7d 0.938A 0.657
14d 0.992B 0.579
21d 1.071C 0.560
SEM 0.012 0.007
磷添加水平
P added level (%)
0 1.014B 0.351
0.2 1.024B 0.471
0.4 1.017B 0.676
0.8 0.947A 0.897
SEM 0.014 0.008
P
P-Value
日龄 Day 0.000 0.000
P水平P level 0.000 0.000
日龄×P水平Day×P level 0.201 0.000

Table 4

Effects of dietary P levels and age of pigeon on the serum P, Ca, ALP activity and PTH level of squabs"

项目
Item
磷添加水平
P supplemental level (%)
Ca
(mmol·L-1)
P
(mmol·L-1)
ALP
(U·L-1)
PTH
(ng·L-1)
7日龄
7 d old
0 1.226 3.497abc 1328.0 221.9
0.2 1.160 3.433ab 1267.3 196.7
0.4 1.393 3.895bcd 1313.8 227.6
0.8 1.211 4.171cd 1631.4 312.2
14日龄
14 d old
0 1.940 3.520abc 970.0 272.2
0.2 2.060 3.768bcd 840.5 291.3
0.4 1.966 3.526ab 1022.1 340.8
0.8 1.663 3.049a 984.5 335.9
21日龄
21 d old
0 1.938 3.673abc 592.0 212.6
0.2 2.256 3.666abc 781.0 134.9
0.4 1.663 3.227ab 621.1 144.9
0.8 1.740 4.340d 735.6 188.0
SEM 0.074 0.424 163.0 39.7
日龄
Day
7 d 1.247A 3.749 1385.1C 239.6ABb
14 d 1.907B 3.466 954.3B 310.0Bc
21 d 1.937B 3.750 685.7A 170.1Aa
SEM 0.052 0.119 73.632 28.1
磷添加水平
P supplemental level (%)
0 1.655AB 3.481 956.0 235.6
0.2 1.773B 3.642 970.8 207.6
0.4 1.827B 3.639 1017.4 237.8
0.8 1.533A 3.857 1089.2 278.7
SEM 0.060 0.137 84.3 22.9
P
P-Value
日龄Day 0.000 0.151 0.000 0.000
P水平P level 0.005 0.311 0.696 0.192
日龄×P水平Day×P level 0.227 0.02 0.58 0.598

Table 5

Effects of dietary P levels on the relative expression of NaPi-IIb mRNA in the small intestine of squabs at 7, 14 and 21 d old age"

7日龄 7 d old
十二指肠
Duodenum
空肠
Jejunum
SEM
肠段
Intestinal segment
SEM


磷添加水平
P added level (%)
SEM
P
P value
0 0.2 0.4 0.8 0 0.2 0.4 0.8 十二指肠
Duodenum
空肠
Jejunum
0 0.2 0.4 0.8 肠段
Segment
P水平
P level
肠段×
P水平
Segment×
P level
1.037 0.847 0.973 1.012 0.845 0.978 1.233 1.110 0.170 0.967 1.042 0.085 0.941 0.913 1.103 1.061 0.120 0.538 0.627 0.600
14日龄 14 d old
十二指肠
Duodenum
空肠
Jejunum
SEM
肠段
Intestinal segment
SEM

磷添加水平
P added level (%)
SEM
P
P value
0 0.2 0.4 0.8 0 0.2 0.4 0.8 十二指肠
Duodenum
空肠
Jejunum
0 0.2 0.4 0.8 肠段
Segment
P水平
P level
肠段×
P水平
Segment×
P level
1.208 0.815 0.830 1.017 0.713 1.117 0.847 1.507 0.303 0.967 1.046 0.152 0.961 0.966 0.838 1.262 0.214 0.717 0.555 0.402
21日龄 21 d old
十二指肠
Duodenum
空肠
Jejunum
SEM
肠段
Intestinal segment
SEM
磷添加水平
P added level (%)
SEM
P
P value
0 0.2 0.4 0.8 0 0.2 0.4 0.8 十二指肠
Duodenum
空肠
Jejunum
0 0.2 0.4 0.8 肠段
Segment
P水平
P level
肠段×
P水平
Segment×
P level
1.040 0.982 1.120 1.483 0.848 0.768 0.950 1.305 0.192 1.156 0.968 0.096 0.944 0.875 1.035 1.394 0.135 0.183 0.052 1.000

Table 6

Effects of dietary P levels on the relative expression of PiT-1 and PiT-2 mRNA in the small intestine and kidney of squabs at 7, 14 and 21 d old age"

项目
Item
7日龄 7 d old
十二指肠Duodenum 空肠Jejunum 肾脏Kidney SEM 组织Tissue section SEM 磷添加水平P added level (%) SEM P P value
0 0.2 0.4 0.8 0 0.2 0.4 0.8 0 0.2 0.4 0.8 十二指肠
Duodenum
空肠
Jejunum
肾脏
Kidney
0 0.2 0.4 0.8 组织
Tissue
P水平
P level
组织×
P水平
Tissue×P level
PiT-1 1.02A 1.08A 1.17A 0.78A 1.53A 1.36A 1.93A 1.26A 3.76AB 5.11AB 7.35B 33.2C 1.24 1.01 1.52 12.34 0.62 2.10 2.52 3.48 11.7 0.72 0.00 0.00 0.00
PiT-2 1.03 0.95 1.14 0.94 0.71 0.66 0.98 0.51 2.10 1.98 2.19 2.05 0.12 1.01B 0.71A 2.08C 0.06 1.28ab 1.19ab 1.43b 1.17a 0.07 0.00 0.05 0.92
14日龄 14 d old
十二指肠Duodenum 空肠Jejunum 肾脏Kidney SEM 组织Tissue section SEM 磷添加水平 P added level (%) SEM P P value
0 0.2 0.4 0.8 0 0.2 0.4 0.8 0 0.2 0.4 0.8 十二指肠
Duodenum
空肠
Jejunum
肾脏
Kidney
0 0.2 0.4 0.8 组织
Tissue
P水平
P level
组织×
P水平
Tissue×P level
PiT-1 1.07A 0.89A 0.97A 1.09A 0.07A 0.59A 0.80A 1.24A 7.34B 7.89B 13.2C 12.7C 1.10 1.00 0.82 10.29 0.55 3.03 3.12 4.98 5.02 0.64 0.00 0.04 0.04
PiT-2 1.10 1.28 1.12 1.28 0.75 0.89 0.72 1.36 4.58 4.89 4.80 2.87 0.47 1.20A 0.93A 4.28B 0.24 2.15 2.35 2.21 1.84 0.27 0.00 0.60 0.10
21日龄 21 d old
十二指肠Duodenum 空肠Jejunum 肾脏Kidney SEM 组织Tissue section SEM 磷添加水平 P added level (%) SEM P P value
0 0.2 0.4 0.8 0 0.2 0.4 0.8 0 0.2 0.4 0.8 十二指肠
Duodenum
空肠
Jejunum
肾脏
Kidney
0 0.2 0.4 0.8 组织
Tissue
P水平
P level
组织×
P水平
Tissue×P level
PiT-1 1.18 1.17 1.35 1.50 2.06 3.02 1.63 2.11 1.18 1.17 1.35 1.59 0.33 1.3A 2.20B 1.32A 0.17 1.47 1.78 1.44 1.73 0.19 0.00 0.49 0.22
PiT-2 1.03A 1.14A 1.77B 1.28A 1.31AB 1.14A 0.93A 1.19A 1.03A 1.14A 1.77B 1.25AB 0.14 1.31 1.14 1.30 0.07 1.12 1.14 1.49 1.24 0.08 0.18 0.005 0.002

Fig. 1

Effects of dietary P supplemental levels on the mRNA expression of NaPi-Ⅱa in kidney from squabs at the age of 7, 14 and 21 d (n=6) Method of 2-ΔΔCt was applied for calculation of relative gene expression with β-actin as the endogenous control, and the average ΔCt value of kidney samples in the control group as the calibrator to normalize the signal. a, b: Different letters within the same time point indicate significant differences among the treatment groups (P<0.05)"

Fig. 2

The PLS-DA models discriminated among the control, dietary 0.40% and 0.80% P addition groups (n=6 each group) (A1) positive ion mode, 14 day old; (A2) negative ion mode, 14 day old; (B1) positive ion mode, 21day old; (B2) negative ion mode, 21 day old"

Fig. 3

The PLS-DA model replacement test of serum samples from squabs (A1) positive ion mode, 14 day old; (A2) negative ion mode, 14 day old; (B1) positive ion mode, 21day old; (B2) negative ion mode, 21 day old"

Table 7

Common differential metabolites in serum of 14 d old squabs among the control group and P-supplemented groups"

序号
No.
差异代谢物
Differential metabolites
类别
Class
保留时间
RT (min)
质荷比
Ion (m/z)
Positive/
Negative
VIP 差异倍数FC PP value
0.4% vs. Control 0.8% vs. Control 0.4% vs. Control 0.8% vs. Control 0.4% vs. Control 0.8% vs. Control
1 脱氢伏米酚
Dehydrovomifoliol
脂质和类脂质分子
Lipids and lipid-like molecules
5.69 267.1 neg 3.14 3.01 2.19 2.85 0.001 0.000
2 葫芦素B
Cucurbitacin B
脂质和类脂质分子
Lipids and lipid-like molecules
10.20 579.3 neg 2.34 1.77 0.56 0.50 0.033 0.046
3 人参皂甙Rh6
Ginsenoside Rh6
脂质和类脂质分子
Lipids and lipid-like molecules
8.82 691.4 neg 2.13 1.39 0.74 0.75 0.011 0.026
4 3-羟基异庚酸
3-Hydroxyisoheptanoic acid
有机酸及其衍生物
Organic acids and derivatives
4.71 145.1 neg 1.50 1.57 0.91 0.87 0.007 0.001
5 3-甲氧基酪氨酸
3-Methoxytyrosine
有机酸及其衍生物
Organic acids and derivatives
5.30 194.1 pos 1.53 1.60 0.84 0.75 0.014 0.001
6 6-羟基氟伐他汀
6-Hydroxyfluvastatin
有机杂环化合物
Organoheterocyclic compounds
9.66 426.2 neg 1.27 1.18 1.07 1.11 0.027 0.006
7 Alhpa-tocopheronic acid 5.13 297.2 pos 1.91 1.74 0.77 0.72 0.006 0.001
8 1-(5-乙酰基-2-羟基苯基)-3-甲基-1-丁酮
1-(5-Acetyl-2-hydroxyphenyl)-3-methyl-1-butanone
有机氧化合物
Organic oxygen compounds
4.91 221.1 pos 1.46 1.43 1.17 1.27 0.046 0.001
9 2-[4,6-dihydroxy-3-(4-hydroxy-3-methylbut-2-en-1-
yl)-2-methoxyphenyl]acetic acid
类苯Benzenoids 4.90 281.1 neg 1.79 1.61 1.14 1.19 0.009 0.001

Table 8

Common differential metabolites in serum of 21 d old squabs among the control group and P-supplemented groups"

序号
No.
差异代谢物
Differential metabolites
类别
Class
保留时间
RT(min)
质荷比
Ion(m/z)
Positive/
Negative
VIP 差异倍数FC PP value
0.4% vs. Control 0.8% vs. Control 0.4% vs. Control 0.8% vs. Control 0.4% vs. Control 0.8% vs. Control
1 15(S)-15-methyl PGF2alpha 5.30 351.3 pos 1.72 2.56 0.62 0.49 0.014 0.003
2 去甲缬氨酸
Norvaline
有机酸及其衍生物
Organic acids and derivatives
0.68 235.2 pos 1.44 2.60 1.28 1.37 0.029 0.015
3 2-羟基癸二酸
2-Hydroxydecanedioic acid
有机酸及其衍生物
Organic acids and derivatives
3.41 263.1 neg 2.02 3.33 2.29 3.11 0.027 0.001
4 1-羟基-3-壬酮
1-Hydroxy-3-nonanone
脂质和类脂质分子
Lipids and lipid-like molecules
4.59 203.1 neg 1.30 1.82 0.85 0.80 0.043 0.008

Table 9

Enrichment analysis of KEGG pathway in serum of 14 and 21 d old squabs among the control group and P-supplemented groups"

日龄
Day (d)
比较组别
Groups
代谢通路
Metabolic pathways
代谢物个数
Number
P
P value
校正P
Corrected P value
14 0.4% vs.
Control
胆汁分泌Bile secretion 1 0.023 0.023
戊糖和葡萄糖醛酸的相互转化 Pentose and glucuronate interconversions 1 0.013 0.026
0.8% vs.
Control
维生素B6代谢Vitamin B6 metabolism 1 0.0262 0.0656
氧化磷酸化Oxidative phosphorylation 1 0.0151 0.0753
21 0.4% vs.
Control
胆酸生物合成Primary bile acid biosynthesis 1 0.0221 0.0221
味觉传导Taste transduction 1 0.0151 0.0302
0.8% vs.
Control
多巴胺能突触Dopaminergic synapse 1 0.0085 0.0291
催乳素信号通路Prolactin signaling pathway 1 0.0078 0.0312
柠檬酸循环Citrate cycle (TCA cycle) 1 0.0141 0.0377
苯丙氨酸、酪氨酸和色氨酸的生物合成
Phenylalanine, tyrosine and tryptophan biosynthesis
1 0.0239 0.0383
单巴坦生物合成Monobactam biosynthesis 1 0.0274 0.0412
β-丙氨酸代谢Beta-Alanine metabolism 1 0.0226 0.0416
味觉传导Taste transduction 1 0.0226 0.0416
丙氨酸、天冬氨酸和谷氨酸代谢Alanine, aspartate and glutamate metabolism 1 0.0198 0.0431
硫胺素代谢Thiamine metabolism 1 0.0219 0.0437
胰高血糖素信号通路Glucagon signaling pathway 1 0.0183 0.044
氨基酰-tRNA生物合成Aminoacyl-tRNA biosynthesis 1 0.0365 0.0461
组氨酸代谢Histidine metabolism 1 0.033 0.0466
蛋白质消化和吸收Protein digestion and absorption 1 0.033 0.0466
乙醛酸和二羧酸代谢Glyoxylate and dicarboxylate metabolism 1 0.0434 0.0496
苯丙氨酸代谢Phenylalanine metabolism 1 0.042 0.0504
黑色素生成Melanogenesis 1 0.0043 0.0511
[1]
AHMADI H, RODEHUTSCORD M. A meta-analysis of responses to dietary nonphytate phosphorus and phytase in laying hens. Poultry Science, 2012, 91(8): 2072-2078.

doi: 10.3382/ps.2012-02193 pmid: 22802206
[2]
NIE W, YANG Y, YUAN J M, WANG Z, GUO Y M. Effect of dietary nonphytate phosphorus on laying performance and small intestinal epithelial phosphate transporter expression in Dwarf pink-shell laying hens. Journal of Animal Science and Biotechnology, 2013, 4(1): 34.

doi: 10.1186/2049-1891-4-34 pmid: 24028402
[3]
LIU X J, LOCASALE J W. Metabolomics: A primer. Trends in Biochemical Sciences, 2017, 42(4): 274-284.

doi: S0968-0004(17)30018-X pmid: 28196646
[4]
GOLDANSAZ S A, GUO A C, SAJED T, STEELE M A, PLASTOW G S, WISHART D S. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE, 2017, 12(5): e0177675.

doi: 10.1371/journal.pone.0177675
[5]
SABBAGH Y, GIRAL H, CALDAS Y, LEVI M, SCHIAVI S C. Intestinal phosphate transport. Advances in Chronic Kidney Disease, 2011, 18(2): 85-90.

doi: 10.1053/j.ackd.2010.11.004 pmid: 21406292
[6]
LI J H, YUAN J M, MIAO Z Q, GUO Y M. Effects of age on intestinal phosphate transport and biochemical values of broiler chickens. Asian-Australasian Journal of Animal Sciences, 2017, 30(2): 221-228.

doi: 10.5713/ajas.16.0540 pmid: 27703131
[7]
BAI L, COLLINS J F, GHISHAN F K. Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. American Journal of Physiology Cell Physiology, 2000, 279(4): C1135-C1143.

doi: 10.1152/ajpcell.2000.279.4.C1135
[8]
MURER H, HERNANDO N, FORSTER L, BIBER J. Molecular mechanisms in proximal tubular and small intestinal phosphate reabsorption (plenary lecture). Molecular Membrane Biology, 2001, 18(1): 3-11.

pmid: 11396609
[9]
FORSTER I C, HERNANDO N, BIBER J, MURER H. Phosphate transporters of the SLC20 and SLC34 families. Molecular Aspects of Medicine, 2013, 34(2/3): 386-395.

doi: 10.1016/j.mam.2012.07.007
[10]
YAN F, ANGEL R, ASHWELL C M. Characterization of the chicken small intestine type IIb sodium phosphate cotransporter. Poultry Science, 2007, 86(1): 67-76.

pmid: 17179418
[11]
LI J H, YUAN J M, GUO Y M, SUN Q J, HU X F. The influence of dietary calcium and phosphorus imbalance on intestinal NaPi-IIb and calbindin mRNA expression and Tibia parameters of broilers. Asian-Australasian Journal of Animal Sciences, 2012, 25(4): 552-558.

doi: 10.5713/ajas.2011.11266
[12]
LIU S B, HU Y X, LIAO X D, LU L, LI S F, ZHANG L Y, TAN H Z, YANG L, SUO H Q, LUO X G. Kinetics of phosphorus absorption in ligated small intestinal segments of broilers. Journal of Animal Science, 2016, 94(8): 3312-3320.

pmid: 27695808
[13]
HU Y X, LIAO X D, WEN Q A, LU L, ZHANG L Y, LUO X G. Phosphorus absorption and gene expression levels of related transporters in the small intestine of broilers. British Journal of Nutrition, 2018, 119(12): 1346-1354.

doi: 10.1017/S0007114518000934
[14]
HILFIKER H, HATTENHAUER O, TRAEBERT M, FORSTER I, MURER H, BIBER J. Characterization of a murine type II sodium- phosphate cotransporter expressed in mammalian small intestine. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(24): 14564-14569.
[15]
WERNER A, KINNE R K H. Evolution of the Na-Picotransport systems. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2001, 280(2): R301-R312.
[16]
TENENHOUSE H S. Regulation of phosphorus homeostasis by the type Ⅱa Na/phosphate cotransporter. Annual Review of Nutrition, 2005, 25: 197-214.

doi: 10.1146/nutr.2005.25.issue-1
[17]
HUBER K, ZELLER E, RODEHUTSCORD M. Modulation of small intestinal phosphate transporter by dietary supplements of mineral phosphorus and phytase in broilers. Poultry Science, 2015, 94(5): 1009-1017.

doi: 10.3382/ps/pev065 pmid: 25834252
[18]
SHETTY S, BHARATHI L, SHENOY K B, HEGDE S N. Biochemical properties of pigeon milk and its effect on growth. Journal of Comparative Physiology B, 1992, 162(7): 632-636.

doi: 10.1007/BF00296644
[19]
ZHANG X Y, ZHANG N N, WAN X P, LI L L, ZOU X T. Gene expression of amino acid transporter in pigeon (Columbia livia) intestine during post-hatch development and its correlation with amino acid in pigeon milk. Poultry Science, 2017, 96(5): 1120-1131.

doi: 10.3382/ps/pew320 pmid: 27697933
[20]
SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 2008, 3(6): 1101-1108.

doi: 10.1038/nprot.2008.73
[21]
JI F, ZHANG S, AN Y, WANG Z, SHAO Y X, DU S H, LI X, SUN X S. Influence of dietary phosphorus concentrations on the performance of rearing pigeons (Columba livia), and bone properties of squabs. Poultry Science, 2022, 101(4): 101744.

doi: 10.1016/j.psj.2022.101744
[22]
GILLESPIE M J, STANLEY D, CHEN H L, DONALD J A, NICHOLAS K R, MOORE R J, CROWLEY T M. Functional similarities between pigeon ‘milk’ and mammalian milk: induction of immune gene expression and modification of the microbiota. PLoS ONE, 2012, 7(10): e48363.

doi: 10.1371/journal.pone.0048363
[23]
JI F, ZHANG D Y, SHAO Y X, YU X H, LIU X Y, SHAN D C, WANG Z. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Scientific Reports, 2020, 10: 19978.

doi: 10.1038/s41598-020-76821-9
[24]
ZELLER E, SCHOLLENBERGER M, KÜHN I, RODEHUTSCORD M. Dietary effects on inositol phosphate breakdown in the crop of broilers. Archives of Animal Nutrition, 2016, 70(1): 57-71.

doi: 10.1080/1745039X.2015.1112622 pmid: 26631507
[25]
RAMA RAO S V, RAJU M V L N, REDDY M R, PAVANI P. Interaction between dietary calcium and non-phytate phosphorus levels on growth, bone mineralization and mineral excretion in commercial broilers. Animal Feed Science and Technology, 2006, 131(1/2): 135-150.

doi: 10.1016/j.anifeedsci.2006.02.011
[26]
ROMÁN-GARCÍA P, CARRILLO-LÓPEZ N, FERNÁNDEZ-MARTÍN J L, NAVES-DÍAZ M, RUIZ-TORRES M P, CANNATA-ANDÍA J B. High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone, 2010, 46(1): 121-128.

doi: 10.1016/j.bone.2009.09.006
[27]
LI X K, WANG J Z, WANG C Q, ZHANG C H, LI X, TANG C H, WEI X L. Effect of dietary phosphorus levels on meat quality and lipid metabolism in broiler chickens. Food Chemistry, 2016, 205: 289-296.

doi: 10.1016/j.foodchem.2016.02.133
[28]
DAVIES W L. The composition of the crop milk of pigeons. The Biochemical Journal, 1939, 33(6): 898-901.

doi: 10.1042/bj0330898
[29]
孙晓珊, 林冬梅, 邵玉新, 王铮, 黄建国. 不同日龄鸽乳粗蛋白质和矿物元素含量变化规律的研究. 中国畜牧兽医, 2022, 49(5): 1697-1706.

doi: 10.16431/j.cnki.1671-7236.2022.05.011
SUN X S, LIN D M, SHAO Y X, WANG Z, HUANG J G. Study on the changes of crude protein and mineral elements in pigeon milk at different ages. China Animal Husbandry & Veterinary Medicine, 2022, 49(5): 1697-1706. (in Chinese)
[30]
曾秋凤. 0-10日龄乳鸽人工鸽乳的研制及其饲用价值的研究[D]. 长沙: 湖南农业大学, 2002.
ZENG Q F. Studies on crop milk substitute for squabs from hatching to ten days of age & its feeding value in pigeon[D]. Changsha: Hunan Agricultural University, 2002. (in Chinese)
[31]
江勇. 22-42日龄肉仔鸡玉米—豆粕型饲粮非植酸磷需要量研究[D]. 北京: 中国农业科学院, 2013.
JIANG Y. Study on dietary non-phytate phosphorus requirement of broiler chicks from 22 to 42 days of age[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[32]
邢冠中. 饲粮钙、磷缺乏对肉仔鸡骨骼钙、磷代谢利用和佝偻病发病率的影响[D]. 秦皇岛: 河北科技师范学院, 2019.
XING G Z. Effects of dietary calcium and phosphorus deficiency on bone calcium and phosphorus metabolism and rickets incidence in broilers[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2019. (in Chinese)
[33]
刘松柏. 肉仔鸡对饲料标准磷利用率、可利用磷需要量及小肠磷吸收机制研究[D]. 北京: 中国农业科学院, 2012.
LIU S B. Studies on standardized phosphorus availabilities in feedstuffs, available phosphorus requirement and mechanism of phosphorus absorption in the small intestine of broiler chicks[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[34]
MARKS J, SRAI S K, BIBER J, MURER H, UNWIN R J, DEBNAM E S. Intestinal phosphate absorption and the effect of vitamin D: A comparison of rats with mice. Experimental Physiology, 2006, 91(3): 531-537.

pmid: 16431934
[35]
胡义信. 饲粮非植酸磷水平对肉仔鸡小肠磷吸收及其相关磷转运载体基因表达的影响[D]. 北京: 中国农业科学院, 2016.
HU Y X. Effect of dietary non-phytate phosphorus level on intestinal phosphorus absorption and gene expressions of related phosphate transporters of broilers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[36]
KETAREN P P, BATTERHAM E S, DETTMANN E B, FARRELL D J. Phosphorus studies in pigs. British Journal of Nutrition, 1993, 70(1): 289-311.

doi: 10.1079/BJN19930123
[37]
FERNÁNDEZ J. Calcium and phosphorus metabolism in growing pigs. II. Simultaneous radio-calcium and radio-phosphorus kinetics. Livestock Production Science, 1995, 41(3): 243-254.

doi: 10.1016/0301-6226(94)00064-E
[38]
DUDAS P L, VILLALOBOS A R, GOCEK-SUTTERLIN G, LAVERTY G, RENFRO J L. Regulation of transepithelial phosphate transport by PTH in chicken proximal tubule epithelium. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2002, 282(1): R139-R146.

doi: 10.1152/ajpregu.00427.2001 pmid: 11742832
[39]
HUBER K, HEMPEL R, RODEHUTSCORD M. Adaptation of epithelial sodium-dependent phosphate transport in jejunum and kidney of hens to variations in dietary phosphorus intake. Poultry Science, 2006, 85(11): 1980-1986.

pmid: 17032833
[40]
聂伟. 日粮磷水平对矮小型蛋鸡产蛋性能、蛋壳品质及钙磷吸收的影响[D]. 北京: 中国农业大学, 2013.
NIE W. Effects of dietary phosphorus levels on laying performance, egg shell quality and Ca and P absorption in laying hens with drawf gene[D]. Beijing: Chinese Agricultural University, 2013. (in Chinese)
[41]
SHAO Q J, MA J J, XU Z R, HU W L, XU J Z, XIE S Q. Dietary phosphorus requirement of juvenile black seabream, Sparus macrocephalus. Aquaculture, 2008, 277(1/2): 92-100.

doi: 10.1016/j.aquaculture.2008.01.029
[42]
马霞, 朱连勤, 朱风华, 郭振环. 低磷或低钙高能量日粮对蛋鸡脂肪代谢的影响//中国畜牧兽医学会家畜内科学分会2009年学术研讨会论文集. 青岛, 2009: 274-277.
MA X, ZHU L Q, ZHU F H, GUO Z H. Effect of high-energy diets containing low-P or low-Ca on lipid metabolism of laying hens. Proceedings of Chinese Association of Veterinary Internal Medicine. Qingdao, 2009: 274-277. (in Chinese)
[43]
CHENG W X, LIU Y Z, MENG X B, ZHENG Z T, LI L L, KE L Q, LI L, HUANG C S, ZHU G Y, PAN H D, QIN L, WANG X L, ZHANG P. PLGA/β-TCP composite scaffold incorporating cucurbitacin B promotes bone regeneration by inducing angiogenesis. Journal of Orthopaedic Translation, 2021, 31: 41-51.

doi: 10.1016/j.jot.2021.10.002
[1] ZHANG PengYun, CHEN Min, LIU MingXing, ZHOU Hong, LIN HuiXing, FAN HongJie. Development and Application of Indirect ELISA Kits for Antibody Detection of Haemophilus parasuis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1606-1614.
[2] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[3] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[4] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[5] JIANG WenYang, CHEN JunNan, ZAN ZhiMan, WANG JiangTao, ZHENG Bin, LIU Ling, LIU Juan, JIAO NianYuan. Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut [J]. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670.
[6] KAYOUMU MiReZhaTiJiang, WUMAIERJIANG XiErAiLi, LI XiaoTong, WANG XiangRu, GUI HuiPing, ZHANG HengHeng, ZHANG XiLing, DONG Qiang, SONG MeiZhen. Screening of Low Phosphorus Tolerant Germplasm in Cotton at Seedling Stage and Comprehensive Evaluation of Low Phosphorus Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(21): 4150-4162.
[7] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[8] SHEN KaiQin, LIU Qian, YANG GuoTao, CHEN Hong, LIANG Cheng, LAI Peng, LI Chong, WANG XueChun, HU YunGao. Effects of Phosphorus Reduction on Soil Phosphorus Pool Composition and Phosphorus Solubilizing Microorganisms [J]. Scientia Agricultura Sinica, 2023, 56(15): 2941-2953.
[9] ZHAO YongJian, ZHANG BoFei, ZHANG Chong, JU XiaoTang. Nitrogen and Phosphorus Surplus and Soil Nitrate Nitrogen Accumulation in Typical Rice-Vegetable Rotation and Banana Garden in Hainan [J]. Scientia Agricultura Sinica, 2023, 56(15): 2954-2965.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[12] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[13] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[14] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[15] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!