Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2954-2965.doi: 10.3864/j.issn.0578-1752.2023.15.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Nitrogen and Phosphorus Surplus and Soil Nitrate Nitrogen Accumulation in Typical Rice-Vegetable Rotation and Banana Garden in Hainan

ZHAO YongJian(), ZHANG BoFei, ZHANG Chong(), JU XiaoTang()   

  1. College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228
  • Received:2023-03-03 Accepted:2023-05-11 Online:2023-08-01 Published:2023-08-05

Abstract:

【Objective】 Hainan is the province with a large area of rice-vegetable rotation and banana cultivation in China, but the nitrogen (N) and phosphorus (P) fertilizers input by farmers far exceed the nutrient requirements of crops, which may have a negative impact on Hainan's ecological environment. The aim of this study was to investigate the N and P surpluses, and soil nitrate accumulation in typical cropping systems in Hainan, thus to provide scientific basis for evaluating nutrient losses and their impacts and achieving sustainable nutrient management. 【Method】 In 2021-2022, a typical area for rice-vegetable rotation and banana cultivation in Chengmai, Hainan, was selected as the research area and 20 rice-vegetable rotation plots and 15 banana orchards were identified. The information of chemical and organic fertilizer application, straw returning method and amount of above fields were obtained by real-time record of farmers' agricultural activities, crop biomass and the nutrient content were determined at crop harvest, and other nutrient input include nutrient deposition and biological N fixation were obtained by literature survey. Five banana orchards were selected and soil was collected by soil auger method and nitrate N accumulation was measured in the 0-400 cm soil profile.【Result】 The N and P fertilizer inputs to the rice-vegetable rotation were 1 308 kg N·hm-2 (975 kg N·hm-2 of chemical and 333 kg N·hm-2 of organic fertilizer) and 515 kg P·hm-2 (385 kg P·hm-2 of chemical and 130 kg P·hm-2 of organic fertilizer); the aboveground N and P uptake of the crop were 248 kg N·hm-2 and 48 kg P·hm-2; the surplus of N and P in rice and vegetable rotation was 1 196 kg N·hm-2 and 484 kg P·hm-2. The N and P fertilizer inputs to banana orchards were 1 340 kg N·hm-2 (1 293 kg N·hm-2 of chemical and 47 kg N·hm-2 of organic fertilizer) and 447 kg P·hm-2 (442 kg P·hm-2 of chemical and 5 kg P·hm-2 of organic fertilizer); the aboveground N and P uptake were 242 kg N·hm-2 and 23 kg P·hm-2; the banana N and P surpluses were 1 271 kg N·hm-2 and 435 kg P·hm-2. The nitrate-N accumulation in the 0-400 cm soil profile of banana orchards was 1 131 kg N·hm-2. 【Conclusion】 Excessive application of N and P fertilizers has led to the large nutrient surplus in typical soil-crop systems in Hainan, and large amount of nitrate-N has accumulated in banana orchard in the deep soil layer. Hainan produces typical high-value fruit and vegetables at the cost of large nutrient losses and negative environmental impacts, optimized nutrient management should be implemented to ensure its environmental safety.

Key words: rice-vegetable rotation, banana orchard, nitrogen and phosphorus surpluses, nitrate nitrogen accumulation, Hainan Province

Fig. 6

Soil nutrient content of different crops after harvest The horizontal lines in the figure represent the LSD0.05 values. The sample size of banana garden is 15, pepper field is 16, and paddy field is 11"

Fig. 1

Nutrient inputs in banana orchards, pepper fields and rice fields The horizontal coordinates are the abbreviations of farmers of bananas, peppers and rice fields, which represent farmers' fields that represent field surveys. The same as below"

Fig. 2

Organ yield of banana, pepper and rice"

Fig. 3

Nutrient uptake of banana, pepper and rice"

Fig. 4

Nutrient surplus in banana orchards, pepper fields and rice fields"

Table1

N inputs, outputs and surpluses in banana orchards and rice-vegetable rotations (kg N·hm-2)"

项目
Item
香蕉
Banana orchard (n=15)
稻菜轮作
Rice-vegetable rotation (n=11)
辣椒
Pepper (n=16)
水稻
Rice (n=11)
氮输入N inputs
化肥氮Chemical N fertilizer 1293±110a 975±93b 788±68b 110±11c
有机肥氮Manure N 47±15c 333±65a 272±54a 0
大气沉降氮N deposition 33 26.8 14.2 12.6
生物固氮 Biological fixation of nitrogen 15 18.5 7.5 11
秸秆还田氮 Straw turnover N 125±9a 91±5b 45±2c 44±3c
氮总投入Total input 1513±116a 1444±130a 1127±105a 178±10b
氮输出N outputs
作物携出氮Plant removed N 242±12a 248±8a 109±4b 135±7b
氮素盈余N surplus 1271±108a 1196±132a 1018±104a 43±15b

Table 2

P inputs, outputs and surpluses in banana orchards and rice-vegetable rotations (kg P·hm-2)"

项目
Item
香蕉园
Banana orchard(n=15)
稻菜轮作
Rice-vegetable rotation (n=11)
辣椒
Pepper(n=16)
水稻
Rice(n=11)
磷输入P inputs
化肥磷Chemical P fertilizer 442±30a 385±42a 344±30a 8±8b
有机肥磷Manure P 5±1b 130±25a 107±21a 0
大气沉降磷P deposition 1 0.9 0.5 0.3
秸秆还田磷 Straw turnover P 10±1b 16±1a 11±1b 4.9±0.3c
磷总投入Total input 458±31a 532±55a 463±44a 13±8b
磷输出P outputs
作物携出磷Plant removed P 23±2c 48±2a 15±1d 32±2b
磷素盈余P surplus 435±31a 484±55a 448±43a -19±8b

Fig. 5

Nitrate nitrogen accumulation in 0-100 cm soil layer in banana orchards, pepper fields and rice fields"

[1]
巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795.
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783-795. (in Chinese)
[2]
SUTTON M A, BLEEKER A, HOWARD C M, BEKUNDA M, GRIZZETTI B, DE V W, VAN GRINSVEN H J M, ABROL Y P, ADHYA T K, BILLEN G, DAVIDSON E A, DATTA A, DIAZ R, ERISMAN J W, LIU X J, OENEMA O, PALM C, RAGHURAM N, REIS S, SCHOLZ R W, SIMS T, WESTHOEK H, ZHANG F S. Our Nutrient World: The challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative, 2013.
[3]
ERISMAN J W, GALLOWAY J N, SEITZINGER S, BLEEKER A, DISE N B, ROXANA PETRESCU A M, LEACH A M, DE VRIES W. Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1621): 20130116.

doi: 10.1098/rstb.2013.0116
[4]
BOBBINK R, HICKS K, GALLOWAY J, SPRANGER T, ALKEMADE R, ASHMORE M, BUSTAMANTE M, CINDERBY S, DAVIDSON E, DENTENER F, EMMETT B, ERISMAN J W, FENN M, GILLIAM F, NORDIN A, PARDO L, DE VRIES W. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 2010, 20(1): 30-59.

pmid: 20349829
[5]
BLEEKER A, HICKS W K, DENTENER F, GALLOWAY J, ERISMAN J W. N deposition as a threat to the World's protected areas under the convention on biological diversity. Environmental Pollution, 2011, 159(10): 2280-2288.

doi: 10.1016/j.envpol.2010.10.036 pmid: 21122958
[6]
ZHANG X, DAVIDSON E A, ZOU T, LASSALETTA L, QUAN Z, LI T, ZHANG W. Quantifying nutrient budgets for sustainable nutrient management. Global Biogeochemical Cycles, 2020, 34(3): e2018GB006060.
[7]
赵凤亮, 邹刚华, 单颖, 丁哲利, 吴佩聪, 张鹏, 朱治强. 香蕉园化肥施用现状、面源污染风险及其养分综合管理措施. 热带作物学报, 2020, 41(11): 2346-2352.
ZHAO F L, ZOU G H, SHAN Y, DING Z L, WU P C, ZHANG P, ZHU Z Q. Current status of chemical fertilizer application in banana plantation, environmental risks and integrated nutrient management practices. Chinese Journal of Tropical Crops, 2020, 41(11): 2346-2352. (in Chinese)
[8]
ZHANG P, RUAN H M, DAI P D, ZHAO L R, ZHANG J B. Spatiotemporal River flux and composition of nutrients affecting adjacent coastal water quality in Hainan Island, China. Journal of Hydrology, 2020, 591: 125293.

doi: 10.1016/j.jhydrol.2020.125293
[9]
OENEMA O, KROS H, DE VRIES W. Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. European Journal of Agronomy, 2003, 20(1/2): 3-16.

doi: 10.1016/S1161-0301(03)00067-4
[10]
巨晓棠, 谷保静. 氮素管理的指标. 土壤学报, 2017, 54(2): 281-296.
JU X T, GU B J. Indexes of nitrogen management. Acta Pedologica Sinica, 2017, 54(2): 281-296. (in Chinese)
[11]
YANG S H, WU H Y, DONG Y, ZHAO X R, SONG X D, YANG J L, HALLETT P D, ZHANG G L. Deep nitrate accumulation in a highly weathered subtropical critical zone depends on the regolith structure and planting year. Environmental Science & Technology, 2020, 54(21): 13739-13747.

doi: 10.1021/acs.est.0c04204
[12]
海南省统计局. 海南统计年鉴(1990-2022). 北京: 中国统计出版社, 2022.
Hainan Statistical Bureau. Hainan Statistical Yearbook (1990-2022). Beijing: China Statistics Press, 2022. (in Chinese)
[13]
HERSBACH H, BELL B, BERRISFORD P, BIAVATI G, HORÁNYI A, MUÑOZ SABATER J, NICOLAS J, PEUBEY C, RADU R, ROZUM I, SCHEPERS D, SIMMONS A, SOCI C, DEE D, THÉPAUT J N. ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019.
[14]
水利部. 地下水动态月报. 2023年1月.
Ministry of Water Resources. Monthly report on groundwater dynamics. January 2023. (in Chinese)
[15]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[16]
XU W, LUO X S, PAN Y P, ZHANG L, TANG A H, SHEN J L, ZHANG Y, LI K H, WU Q H, YANG D W, ZHANG Y Y, XUE J, LI W Q, LI Q Q, TANG L, LU S H, LIANG T, TONG Y A, LIU P, ZHANG Q, XIONG Z Q, SHI X J, WU L H, SHI W Q, TIAN K, ZHONG X H, SHI K, TANG Q Y, ZHANG L J, HUANG J L, HE C E, KUANG F H, ZHU B, LIU H, JIN X, XIN Y J, SHI X K, DU E Z, DORE A J, TANG S, COLLETT J L Jr, GOULDING K, SUN Y X, REN J, ZHANG F S, LIU X J. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 2015, 15(21): 12345-12360.
[17]
杨小林, 贺梦微, 陈艺晏, 李义玲. 丹江口库区大气氮干湿沉降动态变化特征研究. 人民长江, 2022, 53(5): 62-68.
YANG X L, HE M W, CHEN Y Y, LI Y L. Dynamic characteristics of atmospheric nitrogen dry and wet deposition in Danjiangkou Reservoir area. Yangtze River, 2022, 53(5): 62-68. (in Chinese)
[18]
ZHU J X, WANG Q F, HE N P, SMITH M D, ELSER J J, DU J Q, YUAN G F, YU G R, YU Q. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1605-1616.

doi: 10.1002/2016JG003393
[19]
MA X, JIAO X N, SHA Z P, DING F, LI Y Z, XU W, TANG A H, XIA X P, FANGMEIER A, LIU X J. Characterization of atmospheric bulk phosphorus deposition in China. Atmospheric Environment, 2022, 279: 119127.

doi: 10.1016/j.atmosenv.2022.119127
[20]
WEN Z, WANG R Y, LI Q, LIU J N, MA X, XU W, TANG A H, COLLETT J L, LI H G, LIU X J. Spatiotemporal variations of nitrogen and phosphorus deposition across China. Science of the Total Environment, 2022, 830: 154740.

doi: 10.1016/j.scitotenv.2022.154740
[21]
GU B J, JU X T, CHANG J, GE Y, VITOUSEK P M. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8792-8797.
[22]
ZHANG C, JU X T, POWLSON D, OENEMA O, SMITH P. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environmental Science & Technology, 2019, 53(12): 6678-6687.

doi: 10.1021/acs.est.8b06383
[23]
LI T Y, HONG X Y, LIU S R, WU X Q, FU S, LIANG Y, LI J H, LI R, ZHANG C, SONG X T, ZHAO H W, WANG D F, ZHAO F L, RUAN Y Z, JU X T. Cropland degradation and nutrient overload on Hainan Island: A review and synthesis. Environmental Pollution, 2022, 313: 120100.

doi: 10.1016/j.envpol.2022.120100
[24]
洪秀杨, 钟于秀, 李伟芳, 刘烁然, 巨晓棠, 阮云泽, 李婷玉. 海南农田养分平衡状况及环境风险评价. 植物营养与肥料学报, 2022, 28(11): 2070-2081.
HONG X Y, ZHONG Y X, LI W F, LIU S R, JU X T, RUAN Y Z, LI T Y. Nutrient balance in farmlands and the resulting environmental risk in Hainan Province. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 2070-2081. (in Chinese)
[25]
张福锁, 陈新平, 陈清. 中国主要作物施肥指南. 北京: 中国农业大学出版社, 2009.
ZHANG F S, CHEN X P, CHEN Q. Guide to Fertilization of Main Crops in China. Beijing: China Agricultural University Press, 2009. (in Chinese)
[26]
BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1): 27-37.

doi: 10.1007/s11104-013-1696-y
[27]
ZHOU J Y, GU B J, SCHLESINGER W H, JU X T. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports, 2016, 6(1): 1-8.

doi: 10.1038/s41598-016-0001-8
[28]
JIA X X, ZHU Y J, HUANG L M, WEI X R, FANG Y T, WU L H, BINLEY A, SHAO M G. Mineral N stock and nitrate accumulation in the 50 to 200m profile on the Loess Plateau. Science of the Total Environment, 2018, 633: 999-1006.

doi: 10.1016/j.scitotenv.2018.03.249
[29]
GAO J B, WANG S M, LI Z Q, WANG L, CHEN Z J, ZHOU J B. High nitrate accumulation in the vadose zone after land-use change from croplands to orchards. Environmental Science & Technology, 2021, 55(9): 5782-5790.

doi: 10.1021/acs.est.0c06730
[30]
张金波, 程谊, 蔡祖聪. 土壤调配氮素迁移转化的机理. 地球科学进展, 2019, 34(1): 11-19.

doi: 10.11867/j.issn.1001-8166.2019.01.0011
ZHANG J B, CHENG Y, CAI Z C. The mechanisms of soil regulating nitrogen dynamics. Advances in Earth Science, 2019, 34(1): 11-19. (in Chinese)

doi: 10.11867/j.issn.1001-8166.2019.01.0011
[31]
CHEN Z M, DING W X, XU Y H, MÜLLER C, RÜTTING T, YU H Y, FAN J L, ZHANG J B, ZHU T B. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis. Soil Biology and Biochemistry, 2015, 91: 65-75.

doi: 10.1016/j.soilbio.2015.08.026
[32]
巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58(1): 1-13.
JU X T, ZHANG C. The principles and indicators of rational N fertilization. Acta Pedologica Sinica, 2021, 58(1): 1-13. (in Chinese)
[33]
钟秀明, 武雪萍. 我国农田污染与农产品质量安全现状、问题及对策. 中国农业资源与区划, 2007, 28(5): 27-32.
ZHONG X M, WU X P. Present status, existing problems and counter measures of farmland pollution and quality and safety of agricultural products in China. China Journal of Agricultural Resources and Regional Planning, 2007, 28(5): 27-32. (in Chinese)
[34]
郝晓燕, 韩一军, 刘乃郗. 京津冀地区氮磷钾肥施用量与种植业产值的关联性分析. 华中农业大学学报(社会科学版), 2015(6): 29-36.
HAO X Y, HAN Y J, LIU N X. Correlation analysis on NPK fertilizer usage amount and output value of crop in Beijing-Tianjin-Hebei. Journal of Huazhong Agricultural University (Social Sciences Edition), 2015(6): 29-36. (in Chinese)
[35]
ZHANG C, WANG D D, ZHAO Y J, XIAO Y L, CHEN H X, LIU H P, FENG L Y, YU C H, JU X T. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system. Journal of Integrative Agriculture, 2022, 22(6): 1883-1895.

doi: 10.1016/j.jia.2022.12.008
[1] LIU RUI, ZHAO YuHan, GU XinYi, WANG YanXia, JIN XueHui, WU WeiHuai, ZHANG YaLing. Distribution and Variation Analysis of AVR-Pita Family in Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(3): 466-480.
[2] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!