Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (15): 2941-2953.doi: 10.3864/j.issn.0578-1752.2023.15.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Phosphorus Reduction on Soil Phosphorus Pool Composition and Phosphorus Solubilizing Microorganisms

SHEN KaiQin(), LIU Qian, YANG GuoTao, CHEN Hong, LIANG Cheng, LAI Peng, LI Chong, WANG XueChun(), HU YunGao()   

  1. Rice Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan
  • Received:2022-07-19 Accepted:2022-09-27 Online:2023-08-01 Published:2023-08-05

Abstract:

【Objective】 The effects of continuous reduction of phosphorus fertilizer application on soil phosphorus components and phosphorus-solubilizing microorganisms were studied, and the transformation law of soil phosphorus was explored to provide a theoretical basis for rational application of phosphorus fertilizer and efficient utilization of phosphorus in soil. 【Method】 In 2014, the phosphorus reduction positioning test was carried out in Longmen Town, Mianyang, Sichuan province. The test set 4 treatments, namely P0 (no phosphorus fertilizer), P1 (1/2 reduction, 45 kg·hm-2), P2 (1/3 reduction, 60 kg·hm-2), and P3 (normal fertilization, 90 kg·hm-2), and 0-20 cm soil samples were collected to measure and analyze soil total phosphorus (TP), available phosphorus (AP), and phosphorus activation coefficient (PAC), phosphorus fractions and the change characteristics of phosphorus-dissolving microorganisms. 【Result】 Reducing the application of phosphorus fertilizer significantly reduced the TP content of the soil; compared with 2014, after 3 years of continuous treatment, the TP content under P0 and P1 treatments decreased by 7.2% and 0.9%, respectively, however, which under P2 and P3 treatments increased by 2.6% and 7.3%, respectively; after 6 years of continuous treatment, the TP difference between treatments was further expanded: compared with 6 years ago, the TP under P0 and P1 treatments decreased by 15.2% and 5.7%, respectively, which under the P2 and P3 treatments increased by 7.8% and 21.6%, respectively. The variation trend of AP content was similar to that of TP. After continuous treatment for 3 years, the content of AP under P0 treatment decreased by 18.1%, while that under P1, P2, and P3 treatments increased by 21.2%, 72.2%, and 132.1%, respectively; compared with 6 years ago, the AP variation of each treatment expanded to -24.6%-201.6% after continuous treatment for 6 years. The PAC was determined by the content of AP and TP, and its variation trend was generally consistent with that of AP. Reducing the application of phosphorus fertilizer mainly caused a significant decrease in the content of H2O-P, NaHCO3-Pi and NaOH-Pi, but had no significant effect on Residual-P. Among them, NaOH-Pi was the main phosphorus form that caused the change of soil TP content, and NaHCO3-Pi was the most critical phosphorus fraction in the process of soil phosphorus activation. There were differences in the abundance of phosphorus-solubilizing microorganisms in different phosphorus fertilizer treatments. Redundancy analysis results showed that Nocardioides, Mycobacterium, Bacillus, Hyphomicrobium and Rhizobium were positively correlated with each form of phosphorus, among which, the genus Hyphthora was highly correlated with NaHCO3-Pi and NaOH-Pi. 【Conclusion】 The reduction of phosphorus fertilizer significantly changed the composition of soil phosphorus pool, and the changes of soil AP and TP were mainly affected by the changes of NaHCO3-Pi and NaOH-Pi. There were significant differences in the abundance of soil phosphorus-dissolving microorganisms after 6 years of continuous reduction of phosphorus fertilizer, and the genus Hyphomicrobium was the key microorganism involved in the transformation of phosphorus in the experimental area. Reducing the application of 1/3 phosphorus fertilizer for 6 consecutive years could effectively reduce the accumulation of slow-release phosphorus in the soil in this experimental area while maintaining a high level of available phosphorus.

Key words: reducing phosphate fertilizer, phosphorus fractions, phosphate-solubilizing microorganisms, phosphorus changes, phosphorus availability

Table 1

The amount of phosphorus applied in each treatment in rapeseed-rice rotation"

处理
Treatment
油菜季
Rapeseed season
(kg P2O5·hm-2)
水稻季
Rice season
(kg P2O5·hm-2)
P0 0 60
P1 45 60
P2 60 60
P3 90 60

Fig. 1

Effects of reducing phosphorus fertilizer application on soil total phosphorus (a), available phosphorus content (b) and phosphorus activation coefficient (c) after 3 years and 6 years Different lowercase letters in the figure indicate significant differences between treatments at 0.05 level, P denotes different phosphate fertilizer treatments; Y denotes different years of fertilization, and * and ** indicate the significant at 0.05 and 0.01 levels. The same as below"

Table 2

Content of soil phosphorus components under different fertilization treatments (smean±SD)"

施肥年限
Fertilization years
处理
Treatment
高活性磷含量
Labile phosphorus content
(mg·kg-1)
中活性磷含量
Moderately labile phosphorus content (mg·kg-1)
低活性磷含量
Stable phosphorus content (mg·kg-1)
H2O-P NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po HCl-P Residual-P
连续施肥3年后
After 3 years
P0 10.35±1.27f 20.34±0.86f 17.52±0.88d 102.17±3.47e 48.65±2.37a 223.17±4.67ab 154.97±1.04a
P1 20.79±0.94e 28.68±2.86de 26.49±0.44ab 116.28±8.08d 48.70±3.42a 227.27±4.91a 151.28±2.95a
P2 24.41±1.47d 31.29±1.73cd 27.15±0.92ab 129.73±9.62c 48.73±1.91a 226.82±6.45a 153.47±1.67a
P3 31.57±2.94b 33.66±1.58c 27.17±1.13ab 147.36±4.29b 48.62±1.10a 227.95±7.36a 154.62±0.96a
连续施肥6年后
After 6 years
P0 6.62±0.78g 19.21±0.78f 10.77±0.50e 94.39±4.40e 37.68±1.64b 206.88±8.79c 154.68±0.79a
P1 21.38±1.92e 26.01±1.82e 21.97±1.84c 101.25±2.81e 48.97±0.43a 216.96±1.23b 153.37±1.56a
P2 27.43±2.68c 47.95±0.77b 25.83±1.62b 150.95±6.73b 48.66±0.77a 218.97±2.85b 154.49±4.30a
P3 42.24±1.36a 65.83±3.67a 28.20±1.90a 191.94±5.97a 49.37±0.75a 226.73±3.18a 156.13±2.92a
F value P 282.61** 342.93** 130.65** 314.11** 1.01 10.96** 2.52
Y 14.19** 247.81** 28.73** 34.74** 0.79 33.57** 0.01
P×Y 18.57** 132.64** 10.14** 56.69** 14.50** 4.11* 0.92

Fig. 2

Effects of different phosphorus fertilizer treatments on soil organic matter content, pH and phosphatase activity"

Fig. 3

Interaction among soil pH, organic matter, phosphatase and phosphorus components"

Fig. 4

The abundance of phosphate-solubilizing bacteria (a), phosphate-solubilizing fungi (b) and phosphate-solubilizing actinomycetes (c) in soil under different p fertilizer treatments Different lowercase letters indicate significant differences between treatments at 0.05 level. The same as below"

Fig. 5

Redundancy analysis (RDA) between phosphorus solubilizing microbial and different phosphorus forms The hollow arrows represent different phosphorus forms, and the solid arrows represent the types of phosphorus-dissolving microorganisms. The cosine value of the angle between the two arrows represents the level of the correlation between the two, and the larger the cosine value, the higher the correlation"

[1]
MACDONALD G K, BENNETT E M, POTTER P A, RAMANKUTTY N. Agronomic phosphorus imbalances across the world's croplands. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 3086-3091.
[2]
李冬初, 王伯仁, 黄晶, 张杨珠, 徐明岗, 张淑香, 张会民. 长期不同施肥红壤磷素变化及其对产量的影响. 中国农业科学, 2019, 52(21): 3830-3841. doi: 10.3864/j.issn.0578-1752.2019.21.012.

doi: 10.3864/j.issn.0578-1752.2019.21.012
LI D C, WANG B R, HUANG J, ZHANG Y Z, XU M G, ZHANG S X, ZHANG H M. Change of phosphorus in red soil and its effect to grain yield under long-term different fertilizations. Scientia Agricultura Sinica, 2019, 52(21): 3830-3841. doi: 10.3864/j.issn.0578-1752.2019.21.012. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.21.012
[3]
夏文建, 冀建华, 刘佳, 李祖章, 余喜初, 王萍, 李大明, 刘秀梅, 王少先, 李瑶. 长期不同施肥红壤磷素特征和流失风险研究. 中国生态农业学报, 2018, 26(12): 1876-1886.
XIA W J, JI J H, LIU J, LI Z Z, YU X C, WANG P, LI D M, LIU X M, WANG S X, LI Y. Effect of long-term fertilization on soil phosphorus characteristics and loss risk of red soil. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1876-1886. (in Chinese)
[4]
郭斗斗, 张珂珂, 王柏寒, 宋晓, 张水清, 岳克, 黄绍敏. 潮土累积磷的供磷能力及其有效磷消耗特征. 植物营养与肥料学报, 2021, 27(6): 949-956.
GUO D D, ZHANG K K, WANG B H, SONG X, ZHANG S Q, YUE K, HUANG S M. Supply capacity and depletion characteristics of accumulated phosphorus in fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 949-956. (in Chinese)
[5]
刘瑾, 杨建军. 近三十年农田土壤磷分子形态的研究进展. 土壤学报, 2021, 58(3): 558-567.
LIU J, YANG J J. Molecular speciation of phosphorus in agricultural soils: Advances over the last 30 years. Acta Pedologica Sinica, 2021, 58(3): 558-567. (in Chinese)
[6]
汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素. 北京大学学报(自然科学版), 2008, 44(6): 945-952.
WANG T, YANG Y H, MA W H. Storage, patterns and environmental controls of soil phosphorus in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(6): 945-952. (in Chinese)
[7]
孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展. 中国土壤与肥料, 2011(2): 1-9.
SUN G F, JIN J Y, SHI Y L. Research advance on soil phosphorous forms and their availability to crops in soil. Soil and Fertilizer Sciences in China, 2011(2): 1-9. (in Chinese)
[8]
张林, 吴宁, 吴彦, 罗鹏, 刘琳, 陈文年, 胡红宇. 土壤磷素形态及其分级方法研究进展. 应用生态学报, 2009, 20(7): 1775-1782.
ZHANG L, WU N, WU Y, LUO P, LIU L, CHEN W N, HU H Y. Soil phosphorus form and fractionation scheme: A review. Chinese Journal of Applied Ecology, 2009, 20(7): 1775-1782. (in Chinese)
[9]
汪红霞, 廖文华, 孙伊辰, 张伟, 刘建玲. 长期施用有机肥和磷肥对潮褐土土壤有机质及腐殖质组成的影响. 中国土壤与肥料, 2014(6): 39-43.
WANG H X, LIAO W H, SUN Y C, ZHANG W, LIU J L. Effects of long-term application of organic manure and phosphate fertilizer on soil organic matter and humus composition. Soil and Fertilizer Sciences in China, 2014(6): 39-43. (in Chinese)
[10]
YANG X, POST W M. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 2011, 8(10): 2907-2916.

doi: 10.5194/bg-8-2907-2011
[11]
曲均峰, 李菊梅, 徐明岗, 戴建军. 长期不施肥条件下几种典型土壤全磷和Olsen-P的变化. 植物营养与肥料学报, 2008, 14(1): 90-98.
QU J F, LI J M, XU M G, DAI J J. Total-P and Olsen-P dynamics of long-term experiment without fertilization. Plant Nutrition and Fertilizer Science, 2008, 14(1): 90-98. (in Chinese)
[12]
李若楠, 王政培, BATBAYAR Javkhlan, 张东杰, 张树兰, 杨学云. 等有机质土有效磷和无机磷形态的关系. 中国农业科学, 2019, 52(21): 3852-3865. doi: 10.3864/j.issn.0578-1752.2019.21.014.

doi: 10.3864/j.issn.0578-1752.2019.21.014
LI R N, WANG Z P, JAVKHLAN B, ZHANG D J, ZHANG S L, YANG X Y. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865. doi: 10.3864/j.issn.0578-1752.2019.21.014. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.21.014
[13]
徐晓峰, 米倩, 刘迪, 付森林, 王旭刚, 郭大勇, 周文利. 磷肥施用量对石灰性土壤磷组分和作物磷积累量的影响. 中国生态农业学报(中英文), 2021, 29(11): 1857-1866.
XU X F, MI Q, LIU D, FU S L, WANG X G, GUO D Y, ZHOU W L. Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1857-1866. (in Chinese)
[14]
单艳红, 杨林章, 沈明星, 王建国, 陆长婴, 吴彤东. 长期不同施肥处理水稻土磷素在剖面的分布与移动. 土壤学报, 2005, 42(6): 970-976.
SHAN Y H, YANG L Z, SHEN M X, WANG J G, LU C Y, WU T D. Accumulation and downward transport of phosphorus in paddy soil in long-term fertilization experiments. Acta Pedologica Sinica, 2005, 42(6): 970-976. (in Chinese)
[15]
李巧玲, 李爱博, 黄志远, 盖旭, 卞方圆, 钟哲科, 张小平. 解磷微生物在林业土壤生态修复中的应用进展. 世界林业研究, 2022, 35(1): 15-20.
LI Q L, LI A B, HUANG Z Y, GAI X, BIAN F Y, ZHONG Z K, ZHANG X P. Application of phosphorus solubilizing microorganisms in forestry soil ecological restoration. World Forestry Research, 2022, 35(1): 15-20. (in Chinese)
[16]
WANG H, ZHU J, FU Q L, XIONG J W, HONG C, HU H Q, VIOLANTE A. Adsorption of phosphate onto ferrihydrite and ferrihydrite-humic acid complexes. Pedosphere, 2015, 25(3): 405-414.

doi: 10.1016/S1002-0160(15)30008-4
[17]
春雪, 赵雨森, 辛颖, 李金享, 梁东哲. 大兴安岭重度火烧迹地恢复后土壤磷形态与解磷细菌分布特征. 应用生态学报, 2020, 31(2): 388-398.

doi: 10.13287/j.1001-9332.202002.033
CHUN X, ZHAO Y S, XIN Y, LI J X, LIANG D Z. Soil phosphorus forms and phosphorus solubilizing bacteria distribution after restoration from seriously burning in Greater Khingan Mountain areas, China. Chinese Journal of Applied Ecology, 2020, 31(2): 388-398. (in Chinese)

doi: 10.13287/j.1001-9332.202002.033
[18]
池景良, 郝敏, 王志学, 李杨. 解磷微生物研究及应用进展. 微生物学杂志, 2021, 41(1): 1-7.
CHI J L, HAO M, WANG Z X, LI Y. Advances in research and application of phosphorus-solubilizing microorganism. Journal of Microbiology, 2021, 41(1): 1-7. (in Chinese)
[19]
SILVA A M M, ESTRADA-BONILLA G A, LOPES C M, MATTEOLI F P, COTTA S R, FEILER H P, RODRIGUES Y F, CARDOSO E J B N. Does organomineral fertilizer combined with phosphate-solubilizing bacteria in sugarcane modulate soil microbial community and functions? Microbial Ecology, 2022, 84(2): 539-555.

doi: 10.1007/s00248-021-01855-z
[20]
HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976.

doi: 10.2136/sssaj1982.03615995004600050017x
[21]
LIU W Z, LIU G H, LI S Y, ZHANG Q F. Phosphorus sorption and desorption characteristics of wetland soils from a subtropical reservoir. Marine and Freshwater Research, 2010, 61(5): 507.

doi: 10.1071/MF09013
[22]
BUTTERLY C R, BÜNEMANN E K, MCNEILL A M, BALDOCK J A, MARSCHNER P. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology and Biochemistry, 2009, 41(7): 1406-1416.

doi: 10.1016/j.soilbio.2009.03.018
[23]
SACCHETTI G, MAIETTI S, MUZZOLI M, SCAGLIANTI M, MANFREDINI S, RADICE M, BRUNI R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 2005, 91(4): 621-632.

doi: 10.1016/j.foodchem.2004.06.031
[24]
CHENG H Y, ZHU X Z, SUN R X, NIU Y N, YU Q, SHEN Y F, LI S Q. Effects of different mulching and fertilization on phosphorus transformation in upland farmland. Journal of Environmental Management, 2020, 253: 109717.

doi: 10.1016/j.jenvman.2019.109717
[25]
刘彦伶, 李渝, 张艳, 张雅蓉, 黄兴成, 张萌, 张文安, 蒋太明. 长期施用磷肥和有机肥黄壤微生物量磷特征. 中国农业科学, 2021, 54(6): 1188-1198. doi: 10.3864/j.issn.0578-1752.2021.06.010.

doi: 10.3864/j.issn.0578-1752.2021.06.010
LIU Y L, LI Y, ZHANG Y, ZHANG Y R, HUANG X C, ZHANG M, ZHANG W A, JIANG T M. Characteristics of microbial biomass phosphorus in yellow soil under long-term application of phosphorus and organic fertilizer. Scientia Agricultura Sinica, 2021, 54(6): 1188-1198. doi: 10.3864/j.issn.0578-1752.2021.06.010. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.06.010
[26]
POBLETE-GRANT P, CARTES P, PONTIGO S, BIRON P, DE LA LUZ MORA M, RUMPEL C. Phosphorus fertiliser source determines the allocation of root-derived organic carbon to soil organic matter fractions. Soil Biology and Biochemistry, 2022, 167: 108614.

doi: 10.1016/j.soilbio.2022.108614
[27]
尉芳, 刘京, 夏利恒, 徐仲炜, 龙小翠. 陕西渭北旱塬区农田土壤有机质空间预测方法. 环境科学, 2022, 43(2): 1097-1107.
WEI F, LIU J, XIA L H, XU Z W, LONG X C. Spatial prediction method of farmland soil organic matter in Weibei dryland of Shaanxi Province. Environmental Science, 2022, 43(2): 1097-1107. (in Chinese)

doi: 10.1021/es8023397
[28]
YANG X Y, CHEN X W, YANG X T. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research, 2019, 187: 85-91.

doi: 10.1016/j.still.2018.11.016
[29]
FONTE S J, NESPER M, HEGGLIN D, VELÁSQUEZ J E, RAMIREZ B, RAO I M, BERNASCONI S M, BÜNEMANN E K, FROSSARD E, OBERSON A. Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biology and Biochemistry, 2014, 68: 150-157.

doi: 10.1016/j.soilbio.2013.09.025
[30]
NOBILE C M, BRAVIN M N, BECQUER T, PAILLAT J M. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 2020, 239: 124709.

doi: 10.1016/j.chemosphere.2019.124709
[31]
杨文娜, 余泺, 罗东海, 熊子怡, 王蓥燕, 徐曼, 王子芳, 高明. 化肥和有机肥配施生物炭对土壤磷酸酶活性和微生物群落的影响. 环境科学, 2022, 43(1): 540-549.
YANG W N, YU L, LUO D H, XIONG Z Y, WANG Y Y, XU M, WANG Z F, GAO M. Effect of combined application of biochar with chemical fertilizer and organic fertilizer on soil phosphatase activity and microbial community. Environmental Science, 2022, 43(1): 540-549. (in Chinese)
[32]
刘彦伶, 李渝, 张雅蓉, 黄兴成, 朱华清, 杨叶华, 张萌, 蒋太明, 张文安. 长期施肥对黄壤稻田和旱地土壤磷酸酶活性的影响. 土壤通报, 2022, 53(4): 948-955.
LIU Y L, LI Y, ZHANG Y R, HUANG X C, ZHU H Q, YANG Y H, ZHANG M, JIANG T M, ZHANG W A. Effects of long-term fertilization on phosphatase activities in paddy and dryland of yellow soil. Chinese Journal of Soil Science, 2022, 53(4): 948-955. (in Chinese)
[33]
MNDZEBELE B, NCUBE B, FESSEHAZION M, MABHAUDHI T, AMOO S, DU PLOOY C, VENTER S, MODI A. Effects of cowpea-amaranth intercropping and fertiliser application on soil phosphatase activities, available soil phosphorus, and crop growth response. Agronomy, 2020, 10(1): 79.

doi: 10.3390/agronomy10010079
[34]
王飞, 李清华, 林诚, 何春梅. 长期不同供磷水平下南方黄泥田生产力及磷组分特征. 中国生态农业学报(中英文), 2020, 28(7): 960-968.
WANG F, LI Q H, LIN C, HE C M. Yellow-mud paddy soil productivity and phosphorus fractions under long-term different phosphorus supply levels in Southern China. Chinese Journal of Eco-Agriculture, 2020, 28(7): 960-968. (in Chinese)
[35]
吴璐璐, 张水清, 黄绍敏, 杜伟, 柳小琪, 王晓红, 吕家珑. 长期定位施肥对潮土磷素形态和有效性的影响. 土壤通报, 2021, 52(2): 379-386.
WU L L, ZHANG S Q, HUANG S M, DU W, LIU X Q, WANG X H, J L. Effect of long-term fertilization on phosphorus fraction and availability in fluvo-aquic soil. Chinese Journal of Soil Science, 2021, 52(2): 379-386. (in Chinese)
[36]
李帅帅, 郭俊杰, 刘文波, 韩春龙, 贾海飞, 凌宁, 郭世伟. 不同施肥模式下轮作制度引起的土壤磷素有效性变化及其影响因素. 中国农业科学, 2022, 55(1): 96-110. doi: 10.3864/j.issn.0578-1752.2022.01.009.

doi: 10.3864/j.issn.0578-1752.2022.01.009
LI S S, GUO J J, LIU W B, HAN C L, JIA H F, LING N, GUO S W. Influence of typical rotation systems on soil phosphorus availability under different fertilization strategies. Scientia Agricultura Sinica, 2022, 55(1): 96-110. doi: 10.3864/j.issn.0578-1752.2022.01.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.01.009
[37]
MANDER C, WAKELIN S, YOUNG S, CONDRON L, O'CALLAGHAN M. Incidence and diversity of phosphate- solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biology and Biochemistry, 2012, 44(1): 93-101.

doi: 10.1016/j.soilbio.2011.09.009
[38]
陈凤, 王晓双, 甘国渝, 李燕丽, 邹家龙, 李继福. 长期施用磷肥对稻-油轮作土壤磷组分及微生物多样性的影响. 华中农业大学学报, 2021, 40(1): 168-178.
CHEN F, WANG X S, GAN G Y, LI Y L, ZOU J L, LI J F. Effects of long-term application of phosphorus fertilizer on soil phosphorus fractions and microbial diversity in rice-rapeseed rotation. Journal of Huazhong Agricultural University, 2021, 40(1): 168-178. (in Chinese)
[39]
ALORI E T, GLICK B R, BABALOLA O O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 2017, 8: 971.

doi: 10.3389/fmicb.2017.00971 pmid: 28626450
[40]
蔡涵冰, 冯雯雯, 董永华, 马中良, 曹慧锦, 孙俊松, 张保国. 畜禽粪便和桃树枝工业化堆肥过程中微生物群演替及其与环境因子的关系. 环境科学, 2020, 41(2): 997-1004.
CAI H B, FENG W W, DONG Y H, MA Z L, CAO H J, SUN J S, ZHANG B G. Microbial community succession in industrial composting with livestock manure and peach branches and relations with environmental factors. Environmental Science, 2020, 41(2): 997-1004. (in Chinese)
[41]
齐巍, 王向东, 蒋文举, 刘小燕, 李霞. 铁、 锰氧化细菌在环境污染治理中的应用. 环境污染治理技术与设备, 2004(6): 76-79.
QI W, WANG X D, JIANG W J, LIU X Y, LI X. The application of ferromanganese-oxidizing bacteria in environmental pollution control. Techniques and Equipment for Environmental Pollution Control, 2004(6): 76-79. (in Chinese)
[42]
QIN G B, WU J F, ZHENG X M, ZHOU R W, WEI Z Q. Phosphorus forms and associated properties along an urban-rural gradient in southern China. Water, 2019, 11(12): 2504.

doi: 10.3390/w11122504
[43]
聂毅磊, 贾纬, 曾艳兵, 罗立津, 陈星伟, 庄鸿, 陈宏. 两株好氧反硝化聚磷菌的筛选、鉴定及水质净化研究. 生物技术通报, 2017, 33(3): 116-121.

doi: 10.13560/j.cnki.biotech.bull.1985.2017.03.017
NIE Y L, JIA W, ZENG Y B, LUO L J, CHEN X W, ZHUANG H, CHEN H. Screening and identification of two aerobic denitrifying phosphorusaccumulating strains, and denitrifying biological phosphorus removal. Biotechnology Bulletin, 2017, 33(3): 116-121. (in Chinese)
[44]
陈莎莎, 孙敏, 王文超, 李真, 王世梅, 戴乐天, 徐阳春. 溶磷真菌固体发酵菌肥对玉米生长及根际细菌群落结构的影响. 农业环境科学学报, 2018, 37(9): 1910-1917.
CHEN S S, SUN M, WANG W C, LI Z, WANG S M, DAI L T, XU Y C. Effects of solid biofertilizers of phosphate-solubilizing fungi on maize growth and the bacterial community structure in rhizospheres. Journal of Agro-Environment Science, 2018, 37(9): 1910-1917. (in Chinese)
[45]
李世雄, 王彦龙, 王玉琴, 尹亚丽. 土壤细菌群落特征对高寒草甸退化的响应. 生物多样性, 2021, 29(1): 53-64.
LI S X, WANG Y L, WANG Y Q, YIN Y L. Response of soil bacterial community characteristics to alpine meadow degradation. Biodiversity Science, 2021, 29(1): 53-64. (in Chinese)

doi: 10.17520/biods.2020137
[46]
ARIA M M, LAKZIAN A, HAGHNIA G H, BERENJI A R, BESHARATI H, FOTOVAT A. Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorus of hard rock phosphate. Bioresource Technology, 2010, 101(2): 551-554.

doi: 10.1016/j.biortech.2009.07.093
[47]
LI F, CHEN L, ZHANG J B, YIN J, HUANG S M. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology, 2017, 8: 187.

doi: 10.3389/fmicb.2017.00187 pmid: 28232824
[48]
杜伟, 赵秉强, 林治安, 袁亮, 李燕婷. 有机复混磷肥对石灰性土壤无机磷形态组成及其变化的影响. 植物营养与肥料学报, 2011, 17(6): 1388-1394.
DU W, ZHAO B Q, LIN Z A, YUAN L, LI Y T. Effects of organic and inorganic phosphorus compound fertilizer on transformation of inorganic phosphorus pool in lime soils. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1388-1394. (in Chinese)
[49]
曹宁, 陈新平, 张福锁, 曲东. 从土壤肥力变化预测中国未来磷肥需求. 土壤学报, 2007, 44(3): 536-543.
CAO N, CHEN X P, ZHANG F S, QU D. Prediction of phosphate fertilizer demand in China based on change in soil phosphate fertility. Acta Pedologica Sinica, 2007, 44(3): 536-543. (in Chinese)
[1] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[2] LU Peng,LI WenHai,NIU JinCan,BATBAYAR Javkhlan,ZHANG ShuLan,YANG XueYun. Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil [J]. Scientia Agricultura Sinica, 2022, 55(1): 111-122.
[3] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[4] JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[5] LI RuoNan,WANG ZhengPei,BATBAYAR Javkhlan,ZHANG DongJie,ZHANG ShuLan,YANG XueYun. Relationship Between Soil Available Phosphorus and Inorganic Phosphorus Forms Under Equivalent Organic Matter Condition in a Tier Soil [J]. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865.
[6] LI Chun-Yue, WANG Yi, PhilipBrookes , DANG Ting-Hui, WANG Wan-Zhong. Effect of Soil pH on Soil Microbial Carbon Phosphorus Ratio [J]. Scientia Agricultura Sinica, 2013, 46(13): 2709-2716.
[7] GUAN Lian-Zhu, CHAN Zhong-Xiang, ZHANG Jin-Hai, ZHANG Guang-Cai, ZHANG Yun. Influence of Carbonized Maize Stalks on Fractions and Availability of Phosphorus in Brown Soil [J]. Scientia Agricultura Sinica, 2013, 46(10): 2050-2057.
[8] YU Hai-ying,LI Ting-xuan,ZHANG Shu-jin,ZHANG Xi-zhou
. The Accumulation and Migration of Inorganic Phosphorus Fractions in Soils Under Greenhouse Cultivation
[J]. Scientia Agricultura Sinica, 2011, 44(5): 956-962 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!