Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 379-390.doi: 10.3864/j.issn.0578-1752.2023.02.014

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Study on Milk Quality Based on Circadian Rhythm

YANG GaiQing1(),WANG LinFeng2(),LI WenQing3,ZHU HeShui4(),FU Tong2,LIAN HongXia2,ZHANG LiYang2,TENG ZhanWei2,ZHANG LiJie2,REN Hong2,XU XinYing2,LIU XinHe2,WEI YuXuan2,GAO TengYun2()   

  1. 1Laboratory and Equipment Management Office of Henan Agricultural University, Zhengzhou 450046
    2College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046
    3College of Life Science, Henan Agricultural University, Zhengzhou 450002
    4College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046
  • Received:2021-09-18 Accepted:2022-06-24 Online:2023-01-16 Published:2023-02-07

Abstract:

【Background】 Circadian rhythm is a common natural phenomenon undergoing in the biological world. With the change of day-night cycle, there are plenty of diverse reactions and changes taking place in living cells. So does it in animals, circadian rhythm affects the metabolism and physiological function inside the body, and further affects the growth, production, and reproductive of animals. Milk is the popular and near-perfect food in the world. On account of technological limitation, the knowledge on milk is just rested on the nutrition, ignored the physicochemical property and physiological function, especially physicochemical property and physiological function of day and night milk responding to circadian rhythm. 【Objective】 Through the research on the physical and chemical characteristics and physiological function of milk in day and night, it was proposed to collect milk according to the physiological function of milk in different periods, which could lay a theoretical basis for the classification, processing and scientific drinking of milk in day and night. 【Method】 This research collected night milk (5:00, produced from 21:00 to 5:00) and day milk (13:00, produced from 6:00 to 13:00) to detecte milk nutrients composition and fatty acids composition by lipidomics. The tiny molecular composition were investigatued by metabonomics and physicochemical properties antioxidation ability, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), gluathione reductase (GR), malondialdehyde (MDA), and metabolism related hormones, such as melatonin (MT), growth hormone (GH), triiodothyronine (T3), insulin (INS) and glucagon, as well as immune factors, such as immune globulin A (IgA), immune globulin G (IgG), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interferons-γ (IFN-γ), heat shock protein 70 (HSP70), heat shock protein 90 (HSP90) etc. 【Result】 The milk fat, protein, lactose, and total milk solids were not different between night milk and day milk, but the small molecules, metabolites, lipids, hormones and cytokines differed between day milk and night milk. Night milk was differ from day milk in physicochemical property, for antioxidant activity and immunity activity of night milk were significant high than that of day milk. The content of MT and IFN-γ in night milk were markedly higher than those in day milk, and the content of MDA, heat shock protein (HSP70, HSP90) were significantly increased. The result of metabolomics revealed that there were 36 differential metabolites were detected between night-milk and day-milk. Except 3 of them in night-milk were lower than that of day-milk, the rest 33 in night-milk were higher than that of day-milk. These metabolites were belonging to carbohydrate (such as dihydroxyacetone phosphate, D-glucose 6-phosphate, D-lactose, 2-ethoxyethanol, dihydroxyacetone, acetyl phosphate, acamprosate, alpha-D-glucose, D-galacturonic acid, raffinose, D-sorbitol, cis-aconitate, etc.), lipid (such as DL-α-hydroxybutyric acid, cis-9-palmitoleic acid, stearidonic acid, myristoleic acid, eicosapentaenoic acid, cholic acid, tridecylic acid, myo-inositol, DL-2-aminoadipic acid, etc.), amino acids (such as L-citrulline, D-ornithine, D-proline, taurine, N6-acetyl-L-lysine, N-acetylneuraminic acid, lys-leu, L-alanine, etc; N6-methyl-L-lysine, etc.) and other aromatic compounds (such as S-methyl-5'-thioadenosine, 2'-O-methylcytidine, 2'-deoxyuridine, etc.). Lipidomics analyses showed a total of 21 lipid classes and 1 094 lipid species were detected in the milk samples. The majority of the lipid species were TGs (379), accounts for 34%. These lipids included triglycerides (TG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), sphingomyelin (SM), ceramide (Cer), O-acyl-ω-hydroxy fatty acid (OAHF), and diacylglycerol (DAG) categories. The composition of the lipids was very different between night milk and day milk. 【Conclusion】 Based on these differents, this research put forward a strategic method on milk classifying, processing, selling and drinking, in an attempt to meet the demands of people at different period and physiological status. This could make full use of the milk physiological property and better serve for human health at the time of providing nutrition and better serve the health of human beings.

Key words: circadian rhythm, milk, physiological property, classification, process, human health

Table 1

Nutrition composition, physicochemical property and related hormones of day-milk and night-milk"

项目 Item 白天奶 Day-milk 夜间奶 Night-milk 标准误 SEM PP-value
乳脂肪Milk fat (%) 4.12 4.44 0.22 0.260
乳蛋白Milk protein (%) 3.25 3.33 0.20 0.714
乳糖Milk lactose (%) 4.85 4.89 0.12 0.771
总固形物Total milk solids (%) 13.50 13.68 0.62 0.780
超氧化物歧化酶 SOD (μg·mL-1) 1.27 1.37 0.07 0.212
谷胱甘肽过氧化物酶 GSH-Px (ng·mL-1) 18.56 16.51 1.45 0.212
谷胱甘肽还原酶GR (ng·mL-1) 1.90 1.97 0.27 0.806
丙二醛 MDA (ng·mL-1) 6.01 5.24 0.33 0.044
褪黑素MT (pg·mL-1) 90.21 120.07 7.21 0.002
皮质醇CORT (ng·mL-1) 113.72 102.69 7.99 0.198
三碘甲腺原氨酸T3 (ng·mL-1) 176.55 168.05 15.77 0.602
胰高血糖素GC (ng·mL-1) 2.68 2.56 0.252 0.653
生长激素 GH (ng·mL-1) 4.85 4.76 0.808 0.915
胰岛素 INS (ng·mL-1) 0.81 0.80 0.087 0.910
肾上腺素ADR (ng·mL-1) 10.32 8.25 0.996 0.065

Table 2

Immune parameters of day-milk and night-milk"

项目Item 白天奶Day-milk 夜间奶Night-milk 标准误SEM PP-value
免疫球蛋白A IgA (mg·mL-1) 0.92 0.98 0.055 0.332
免疫球蛋白G IgG (mg·mL-1) 3.67 3.72 0.334 0.876
肿瘤坏死因子α TNF-α (pg·mL-1) 85.72 88.61 5.31 0.599
白介素1β IL-1β(pg·mL-1) 78.60 73.93 8.87 0.611
白介素6 IL-6 (pg·mL-1) 191.31 141.46 21.52 0.059
白介素8 IL-8 (pg·mL-1) 64.79 68.56 4.44 0.416
干扰素γ IFN-γ(pg·mL-1) 55.54 70.40 5.01 0.014
热休克蛋白70 HSP70 (ng·mL-1) 5.50 4.19 0.36 0.005
热休克蛋白90 HSP90 (ng·mL-1) 3.83 3.42 0.147 0.022
T-辅助淋巴细胞4 CD4 (ng·mL-1) 4.23 3.97 0.264 0.374
T-抑制细胞8 CD8 (ng·mL-1) 2.39 1.99 0.320 0.236
CD4/CD8 1.86 2.00 0.173 0.431

Fig. 1

Volcano plot of metabolomics showing the positive (A) and negative (B) ion modes Red points represent significantly different metabolites based on the results of fold change (FC) analysis and the t-test in positive and negative modes (FC>1.5 and P<0.05). FC=fold change, mean value of peak area obtained from day-milk group/mean value of peak area obtained from night-milk group"

Table 3

The prominently difference triglyceride between day-milk and night-milk via lipidomics"

脂质分子
Lipid ion
脂质亚类
Class
脂质分子式
Ion formula
理论质荷比
CalMz
保留时间
RT-(min)
变量权重值
VIP
变异倍数
FC
P
P-value
TG(16:0/14:0/18:2)+NH4 TG C51 H98 O6 N1 820.74 22.95 0.58 2.54 0.019
TG(19:1/18:1/18:2)+NH4 TG C58 H108 O6 N1 914.82 23.30 0.54 1.62 0.023
TG(18:1/18:1/22:4)+NH4 TG C61 H110 O6 N1 952.83 23.20 0.70 1.51 0.030

Fig. 2

Enlightenment of rhythm on milk production, category, processing and drinking"

[1] DAS R, SAILO L, VERMA N, BHARTI P, SAIKIA J, IMTIWATI, KUMAR R. Impact of heat stress on health and performance of dairy animals: a review. Veterinary World, 2016, 9(3): 260-268. doi:10.14202/vetworld.2016.260-268.
doi: 10.14202/vetworld.2016.260-268 pmid: 27057109
[2] LIU Z, EZERNIEKS V, WANG J, ARACHCHILLAGE N W, GARNER J B, WALES W J, COCKS B G, ROCHFORT S. Heat stress in dairy cattle alters lipid composition of milk. Scientific Reports, 2017, 7: 961. doi:10.1038/s41598-017-01120-9.
doi: 10.1038/s41598-017-01120-9 pmid: 28424507
[3] JAEGGI J J, WENDORFF W L, ROMERO J, BERGER Y M, JOHNSON M E. Impact of seasonal changes in ovine milk on composition and yield of a hard-pressed cheese. Journal of Dairy Science, 2005, 88(4): 1358-1363. doi:10.3168/jds.S0022-0302(05)72802-2.
doi: 10.3168/jds.S0022-0302(05)72802-2 pmid: 15778303
[4] WPCG W, HETTIARACHI S, MPK J. Factors affecting the quality of raw milk: effect of time taken for Transportation and practices at field level in small farms in SriLanka. Journal of Food and Dairy Technology, 2017.
[5] HILL D L, WALL E. Dairy cattle in a temperate climate: the effects of weather on milk yield and composition depend on management. Animal, 2015, 9(1): 138-149. doi:10.1017/S1751731114002456.
doi: 10.1017/S1751731114002456 pmid: 25315451
[6] MCGRATH B A, FOX P F, MCSWEENEY P L H, KELLY A L. Composition and properties of bovine colostrum: a review. Dairy Science & Technology, 2016, 96(2): 133-158. doi:10.1007/s13594-015-0258-x.
doi: 10.1007/s13594-015-0258-x
[7] TENG Z W, YANG G Q, WANG L F, FU T, LIAN H X, SUN Y, HAN L Q, ZHANG L Y, GAO T Y. Effects of the circadian rhythm on milk composition in dairy cows: does day milk differ from night milk? Journal of Dairy Science, 2021, 104(7): 8301-8313. doi:10.3168/jds.2020-19679.
doi: 10.3168/jds.2020-19679
[8] PATKE A, YOUNG M W, AXELROD S. Molecular mechanisms and physiological importance of circadian rhythms. Nature Reviews Molecular Cell Biology, 2020, 21(2): 67-84. doi:10.1038/s41580-019-0179-2.
doi: 10.1038/s41580-019-0179-2 pmid: 31768006
[9] ALBRECHT U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron, 2012, 74(2): 246-260. doi:10.1016/j.neuron.2012.04.006.
doi: 10.1016/j.neuron.2012.04.006 pmid: 22542179
[10] MARTCHENKO A, MARTCHENKO S E, BIANCOLIN A D, BRUBAKER P L. Circadian rhythms and the gastrointestinal tract: relationship to metabolism and gut hormones. Endocrinology, 2020, 161(12): bqaa167. doi:10.1210/endocr/bqaa167.
doi: 10.1210/endocr/bqaa167
[11] PILORZ V, HELFRICH-FÖRSTER C, OSTER H. The role of the circadian clock system in physiology. Pflugers Archiv: European Journal of Physiology, 2018, 470(2): 227-239. doi:10.1007/s00424-017-2103-y.
doi: 10.1007/s00424-017-2103-y pmid: 29302752
[12] ITALIANER M F, NANINCK E F G, ROELANTS J A, VAN DER HORST G T J, REISS I K M, GOUDOEVER J, JOOSTEN K F M, CHAVES I, VERMEULEN M J. Circadian variation in human milk composition, a systematic review. Nutrients, 2020, 12(8): 2328. doi:10.3390/nu12082328.
doi: 10.3390/nu12082328
[13] CASTRO N, SPENGLER M, LOLLIVIER V, WELLNITZ O, MEYER H H D, BRUCKMAIE R M. Diurnal pattern of melatonin in blood and milk of dairy cows. Milchwissenschaft, 2011, 66(4): 352-353.
[14] TOUITOU Y, REINBERG A, TOUITOU D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sciences, 2017, 173: 94-106. doi:10.1016/j.lfs.2017.02.008.
doi: S0024-3205(17)30045-0 pmid: 28214594
[15] ZISAPEL N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. British Journal of Pharmacology, 2018, 175(16): 3190-3199. doi:10.1111/bph.14116.
doi: 10.1111/bph.14116 pmid: 29318587
[16] DELA PEÑA I J I, HONG E, DE LA PEÑA J B, KIM H J, BOTANAS C J, HONG Y S, HWANG Y S, MOON B S, CHEONG J H. Milk collected at night induces sedative and anxiolytic-like effects and augments pentobarbital-induced sleeping behavior in mice. Journal of Medicinal Food, 2015, 18(11): 1255-1261. doi:10.1089/jmf.2015.3448.
doi: 10.1089/jmf.2015.3448 pmid: 26501383
[17] VALTONEN M, NISKANEN L, KANGAS A P, KOSKINEN T. Effect of melatonin-rich night-time milk on sleep and activity in elderly institutionalized subjects. Nordic Journal of Psychiatry, 2005, 59(3): 217-221. doi:10.1080/08039480510023034.
doi: 10.1080/08039480510023034 pmid: 16195124
[18] GALANO A, TAN D X, REITER R J. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. Journal of Pineal Research, 2013, 54(3): 245-257. doi:10.1111/jpi.12010.
doi: 10.1111/jpi.12010 pmid: 22998574
[19] REITER R J, MAYO J C, TAN D X, SAINZ R M, ALATORRE- JIMENEZ M, QIN L L. Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research, 2016, 61(3): 253-278. doi:10.1111/jpi.12360.
doi: 10.1111/jpi.12360 pmid: 27500468
[20] ZHONG J Y, LIU Y S. Melatonin and age-related cardiovascular diseases. Aging Medicine (Milton (N S W)), 2018, 1(2): 197-203. doi:10.1002/agm2.12036.
doi: 10.1002/agm2.12036
[21] BOGA J A, CABALLERO B, POTES Y, PEREZ-MARTINEZ Z, REITER R J, VEGA-NAREDO I, COTO-MONTES A. Therapeutic potential of melatonin related to its role as an autophagy regulator: a review. Journal of Pineal Research, 2019, 66(1): e12534. doi:10.1111/jpi.12534.
doi: 10.1111/jpi.12534
[22] 赵益文, 赵佳, 庞全海. 褪黑素对大鼠胰岛瘤细胞INS-1胰岛素和Gαi/o蛋白基因表达的影响. 中国农业科学, 2017, 50(17): 3429-3438.
ZHAO Y W, ZHAO J, PANG Q H. Effect of melatonin on insulin and Gαi/o expression in rat insulinoma cell line. Scientia Agricultura Sinica, 2017, 50(17): 3429-3438. (in Chinese)
[23] 顾沛沛, 丁春华. 牛奶的营养、功能与科学饮用[A]. 中国奶业协会. 第三届中国奶牛发展大会论文集[C]. 中国奶业协会, 2008, 3: 434-436.
GU P P, DING C H. Nutrition, Function and Scientific drinking of milk[A]. Chinese Dairy Association. Proceedings of the third China Dairy Cow Development Conference[C]. Chinese Dairy Association, 2008, 3: 434-436. (in Chinese)
[24] CHEN C Y, YANG C, WANG J, HUANG X, YU H T, LI S M, LI S P, ZHANG Z J, LIU J J, YANG X F, LIU G P. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer's disease. Journal of Pineal Research, 2021, 71(4): e12774. doi:10.1111/jpi.12774.
doi: 10.1111/jpi.12774
[25] SJÖBLOM M, FLEMSTRÖM G. Melatonin in the duodenal lumen is a potent stimulant of mucosal bicarbonate secretion. Journal of Pineal Research, 2003, 34(4): 288-293. doi:10.1034/j.1600-079x.2003.00044.x.
doi: 10.1034/j.1600-079x.2003.00044.x pmid: 12662352
[26] MACHURA E, MAZUR B, GOLEMIEC E, PINDEL M, HALKIEWICZ F. Staphylococcus aureus skin colonization in atopic dermatitis children is associated with decreased IFN-gamma production by peripheral blood CD4+ and CD8+ T cells. Pediatric Allergy and Immunology, 2008, 19(1): 37-45. doi:10.1111/j.1399-3038.2007.00586.x.
doi: 10.1111/j.1399-3038.2007.00586.x
[27] MOCK J R, TUNE M K, DIAL C F, TORRES-CASTILLO J, HAGAN R S, DOERSCHUK C M. Effects of IFN-γ on immune cell kinetics during the resolution of acute lung injury. Physiological Reports, 2020, 8(3): e14368. doi:10.14814/phy2.14368.
doi: 10.14814/phy2.14368
[28] NAGAYACH R, GUPTA U D, PRAKASH A. Expression profiling of hsp70 gene during different seasons in goats (Capra hircus) under sub-tropical humid climatic conditions. Small Ruminant Research, 2017, 147: 41-47. doi:10.1016/j.smallrumres.2016.11.016.
doi: 10.1016/j.smallrumres.2016.11.016
[29] SEJIAN V, BAGATH M, KRISHNAN G, RASHAMOL V P, PRAGNA P, DEVARAJ C, BHATTA R. Genes for resilience to heat stress in small ruminants: a review. Small Ruminant Research, 2019, 173: 42-53. doi:10.1016/j.smallrumres.2019.02.009.
doi: 10.1016/j.smallrumres.2019.02.009
[30] GENEST O, WICKNER S, DOYLE S M. Hsp90 and Hsp70 chaperones: collaborators in protein remodeling. The Journal of Biological Chemistry, 2019, 294(6): 2109-2120. doi:10.1074/jbc.REV118.002806.
doi: 10.1074/jbc.REV118.002806
[31] MAZZOCCOLI G, PAZIENZA V, VINCIGUERRA M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiology International, 2012, 29(3): 227-251. doi:10.3109/07420528.2012.658127.
doi: 10.3109/07420528.2012.658127 pmid: 22390237
[32] WANG M, ZHOU Z, KHAN M J, GAO J, LOOR J J. Clock circadian regulator (CLOCK) gene network expression patterns in bovine adipose, liver, and mammary gland at 3 time points during the transition from pregnancy into lactation. Journal of Dairy Science, 2015, 98(7): 4601-4612. doi:10.3168/jds.2015-9430.
doi: 10.3168/jds.2015-9430 pmid: 25912864
[33] KUMAR JHA P, CHALLET E, KALSBEEK A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Molecular and Cellular Endocrinology, 2015, 418: 74-88. doi:10.1016/j.mce.2015.01.024.
doi: 10.1016/j.mce.2015.01.024
[34] SANI M, GHANEM-BOUGHANMI N, GADACHA W, SEBAI H, BOUGHATTAS N A, REINBERG A, BEN-ATTIA M. Malondialdehyde content and circadian variations in brain, kidney, liver, and plasma of mice. Chronobiology International, 2007, 24(4): 671-685. doi:10.1080/07420520701535720.
doi: 10.1080/07420520701535720 pmid: 17701679
[35] VURAL H, SABUNCU T, ARSLAN S O, AKSOY N. Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. Journal of Pineal Research, 2001, 31(3): 193-198. doi:10.1034/j.1600-079x.2001.310301.x.
doi: 10.1034/j.1600-079x.2001.310301.x pmid: 11589752
[36] SISCOVICK D S, BARRINGER T A, FRETTS A M, WU J H Y, LICHTENSTEIN A H, COSTELLO R B, KRIS-ETHERTON P M, JACOBSON T A, ENGLER M B, ALGER H M, APPEL L J, MOZAFFARIAN D. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease. Circulation, 2017, 135(15): e867-e884. doi:10.1161/cir.0000000000000482.
doi: 10.1161/cir.0000000000000482
[37] BILLMAN G E. The effects of omega-3 polyunsaturated fatty acids on cardiac rhythm: a critical reassessment. Pharmacology & Therapeutics, 2013, 140(1): 53-80. doi:10.1016/j.pharmthera.2013.05.011.
doi: 10.1016/j.pharmthera.2013.05.011
[38] BHATT D L, STEG P G, MILLER M, BRINTON E A, JACOBSON T A, KETCHUM S B, DOYLE R T Jr, JR J, JIAO L X, GRANOWITZ C, TARDIF J C, BALLANTYNE C M, INVESTIGATORS R I. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. The New England Journal of Medicine, 2019, 380(1): 11-22. doi:10.1056/NEJMoa1812792.
doi: 10.1056/NEJMoa1812792 pmid: 30415628
[39] 钱俊青, 范菁, 童君, 龚峰. 多不饱和脂肪酸微胶囊改善小鼠学习记忆能力研究. 浙江工业大学学报, 2018, 46(1): 114-118.
QIAN J Q, FAN J, TONG J, GONG F. Microencapsulation of polyunsaturated fatty acids improves learning and memory of mice. Journal of Zhejiang University of Technology, 2018, 46(1): 114-118. (in Chinese)
[40] 陈英杰, 谢良杰, 庄耀东, 郭森仁. ω-3多不饱和脂肪酸对重型颅脑损伤患者伤后炎症反应和神经损害的影响. 中华临床营养杂志, 2015, 23(4): 224-228. doi:10.3760/cma.j.issn.1674-635X.2015.04.006.
doi: 10.3760/cma.j.issn.1674-635X.2015.04.006
CHEN Y J, XIE L J, ZHUANG Y D, GUO S R. Effect of omega-3 polyunsaturated fatty acids on the inflammatory response and nerve damage in severe traumatic brain injury patients. Chinese Journal of Clinical Nutrition, 2015, 23(4): 224-228. doi:10.3760/cma.j.issn.1674-635X.2015.04.006. (in Chinese)
doi: 10.3760/cma.j.issn.1674-635X.2015.04.006
[41] VOLPATO M, HULL M A. Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer. Cancer Metastasis Reviews, 2018, 37(2/3): 545-555. doi:10.1007/s10555-018-9744-y.
doi: 10.1007/s10555-018-9744-y
[42] TANAKA S, TATSUGUCHI A, FUTAGAMI S, GUDIS K, WADA K, SEO T, MITSUI K, YONEZAWA M, NAGATA K, FUJIMORI S, TSUKUI T, KISHIDA T, SAKAMOTO C. Monocyte chemoattractant protein 1 and macrophage cyclooxygenase 2 expression in colonic adenoma. Gut, 2006, 55(1): 54-61. doi:10.1136/gut.2004.059824.
doi: 10.1136/gut.2004.059824 pmid: 16085694
[43] WANG C C, YANG C J, WU L H, LIN H C, WEN Z H, LEE C H. Eicosapentaenoic acid reduces indoleamine 2, 3-dioxygenase 1 expression in tumor cells. International Journal of Medical Sciences, 2018, 15(12): 1296-1303. doi:10.7150/ijms.27326.
doi: 10.7150/ijms.27326
[44] WANG C C, DU L, SHI H H, DING L, YANAGITA T, XUE C H, WANG Y M, ZHANG T T. Dietary EPA-enriched phospholipids alleviate chronic stress and LPS-induced depression- and anxiety-like behavior by regulating immunity and neuroinflammation. Molecular Nutrition & Food Research, 2021, 65(17): e2100009. doi:10.1002/mnfr.202100009.
doi: 10.1002/mnfr.202100009
[45] LAMBERT I H, KRISTENSEN D M, HOLM J B, MORTENSEN O H. Physiological role of taurine: from organism to organelle. Acta Physiologica (Oxford, England), 2015, 213(1): 191-212. doi:10.1111/apha.12365.
doi: 10.1111/apha.12365
[46] CHEN C R, XIA S F, HE J L, LU G L, XIE Z X, HAN H J. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sciences, 2019, 231: 116584. doi:10.1016/j.lfs.2019.116584.
doi: 10.1016/j.lfs.2019.116584
[47] MELNIKOV S, MAILLIOT J, RIGGER L, NEUNER S, SHIN B S, YUSUPOVA G, DEVER T E, MICURA R, YUSUPOV M. Molecular insights into protein synthesis with proline residues. EMBO Reports, 2016, 17(12): 1776-1784. doi:10.15252/embr.201642943.
doi: 10.15252/embr.201642943 pmid: 27827794
[48] CHAKRABORTY A. The inositol pyrophosphate pathway in health and diseases. Biological Reviews of the Cambridge Philosophical Society, 2018, 93(2): 1203-1227. doi:10.1111/brv.12392.
doi: 10.1111/brv.12392 pmid: 29282838
[49] CHENG B, XIE R, DONG L, CHEN X. Metabolic remodeling of cell-surface sialic acids: principles, applications, and recent advances. Chembiochem, 2016, 17(1): 11-27. doi:10.1002/cbic.201500344.
doi: 10.1002/cbic.201500344 pmid: 26573222
[50] VALTONEN M, KANGAS A P, VOUTILAINEN M. Method for producing melatonin rich milk: Finland, PCT/ FI111324/WO001784(A1)[P]. 2001.
[51] BARRIE S H. Method for producing milk with an enhanced content of naturally expressed melatonin: UK, GB2387099(A)[P]. 2003.
[52] GNANN T. Method for the production of milk or milk products with a high proportion of melatonin: US8003130[P]. 2011-08-23.
[53] 张微, 赵广永, 张晓明, 莫放. 天然高褪黑素牛奶生产技术. 动物营养学报, 2016, 28(3): 635-640. doi:10.3969/j.issn.1006-267x.2016.03.001.
doi: 10.3969/j.issn.1006-267x.2016.03.001
ZHANG W, ZHAO G Y, ZHANG X M, MO F. Technology for production of cow' s milk rich in naturally expressed melatonin. Chinese Journal of Animal Nutrition, 2016, 28(3): 635-640. doi:10.3969/j.issn.1006-267x.2016.03.001. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2016.03.001
[54] 王晓鹃, 刘磊, 焦洪超, 赵景鹏, 林海. 生物钟在蛋鸡排卵-产蛋过程中的调控作用. 中国农业科学, 2018, 51(16): 3181-3190.
WANG X J, LIU L, JIAO H C, ZHAO J P, LIN H. Regulation of biological clock in ovulation-laying of laying hens. Scientia Agricultura Sinica, 2018, 51(16): 3181-3190. (in Chinese)
[55] 崔家杰, 谢强, 翟双双, 龚涛, 朱勇文, 杨琳, 王文策. 光照强度对樱桃谷肉鸭c-fos、生物钟基因表达及褪黑激素的影响. 中国农业科学, 2020, 53(4): 848-856. doi:10.3864/j.issn.0578-1752.2020.04.016.
doi: 10.3864/j.issn.0578-1752.2020.04.016
CUI J J, XIE Q, ZHAI S S, GONG T, ZHU Y W, YANG L, WANG W C. Effects of light intensity on c-fos, biological clock gene expression and melatonin in cherry valley meat ducks. Scientia Agricultura Sinica, 2020, 53(4): 848-856. doi:10.3864/j.issn.0578-1752.2020.04.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.04.016
[56] FARHADIPOUR M, DEPOORTERE I. The function of gastrointestinal hormones in obesity-implications for the regulation of energy intake. Nutrients, 2021, 13(6): 1839. doi:10.3390/nu13061839.
doi: 10.3390/nu13061839
[57] 霍伟, 陶树清. 褪黑素治疗骨质疏松的研究进展. 中国骨质疏松杂志, 2021, 27(1): 148-152.
HUO W, TAO S Q. Research progress of melatonin in the treatment of osteoporosis. Chinese Journal of Osteoporosis, 2021, 27(1): 148-152. (in Chinese)
[58] 黄冲, 刘金钊. 褪黑素对老年性骨质疏松症骨代谢的研究现状与展望. 中国骨质疏松杂志, 2011, 17(2): 176-180.
HUANG C, LIU J Z. Progress and prospect of effect of melatonin on bone metabolism of senile osteoporsis. Chinese Journal of Osteoporosis, 2011, 17(2): 176-180. (in Chinese)
[59] 陈维凯. 褪黑素通过SIRT1介导的抗氧化机制调控骨质疏松症防治的研究[D]. 苏州: 苏州大学, 2020.
CHEN W K. Melatonin treats osteoporosis via SIRT1-mediated antioxidant mechanisms[D]. Suzhou: Soochow University, 2020. (in Chinese)
[60] 王超炜. 褪黑素通过调控成骨/破骨分化平衡延缓骨质疏松症进程的机制研究[D]. 杭州: 浙江大学, 2020.
WANG C W. The study of melatonin in alleviating osteoporosis by regulating balance between osteogenesis and osteoclastogenesis[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
[61] SINGH S, ARORA R R, SINGH M, KHOSLA S. Eicosapentaenoic acid versus docosahexaenoic acid as options for vascular risk prevention: a fish story. American Journal of Therapeutics, 2016, 23(3): e905-e910. doi:10.1097/MJT.0000000000000165.
doi: 10.1097/MJT.0000000000000165
[62] MACARON T, GIUDICI K V, BOWMAN G L, SINCLAIR A, STEPHAN E, VELLAS B, DE SOUTO BARRETO P. Associations of Omega-3 fatty acids with brain morphology and volume in cognitively healthy older adults: a narrative review. Ageing Research Reviews, 2021, 67: 101300. doi:10.1016/j.arr.2021.101300.
doi: 10.1016/j.arr.2021.101300
[1] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[2] YANG BinJuan,LI Ping,HU QiLiang,HUANG GuoQin. Effects of the Mixted-cropping of Chinese Milk Vetch and Rape on Soil Nitrous Oxide Emission and Abundance of Related Functional Genes in Paddy Fields [J]. Scientia Agricultura Sinica, 2022, 55(4): 743-754.
[3] MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588.
[4] HUANG Chong,HOU XiangJun. Crop Classification with Time Series Remote Sensing Based on Bi-LSTM Model [J]. Scientia Agricultura Sinica, 2022, 55(21): 4144-4157.
[5] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[6] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[7] ZHU Lei,ZHANG HaiLiang,CHEN ShaoKan,AN Tao,LUO HanPeng,LIU Lin,HUANG XiXia,WANG YaChun. Impacts of Somatic Cell Count in Early Lactation on Production Performance over the Whole Lactation and Its Genetic Parameters in Holsteins Cattle [J]. Scientia Agricultura Sinica, 2022, 55(2): 403-414.
[8] HU ZhiQiang,SONG XiaoYu,QIN Lin,LIU Hui. Study on Seasonal Grazing Management Optimal Model in Alpine Desert Steppe [J]. Scientia Agricultura Sinica, 2022, 55(19): 3862-3874.
[9] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[10] GUO Can,YUE XiaoFeng,BAI YiZhen,ZHANG LiangXiao,ZHANG Qi,LI PeiWu. Research on the Application of a Balanced Sampling-Random Forest Early Warning Model for Aflatoxin Risk in Peanut [J]. Scientia Agricultura Sinica, 2022, 55(17): 3426-3436.
[11] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[12] LÜ ZhiWei,DU Kang,ZHOU ZhiGuo,ZHAO WenQing,HU Wei,ZHAO JianMing,ZHU SuQin,WANG YouHua. Research on Senescence Process and Suitable Indicators of Maize Ear Leaves [J]. Scientia Agricultura Sinica, 2022, 55(12): 2311-2323.
[13] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[14] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[15] CHEN Ge,CAO LiDong,XU ChunLi,ZHAO PengYue,CAO Chong,LI FengMin,HUANG QiLiang. Performance Study of Prothioconazole Microcapsules Prepared by Solvent Evaporation Method [J]. Scientia Agricultura Sinica, 2021, 54(4): 754-767.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!