Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 368-378.doi: 10.3864/j.issn.0578-1752.2023.02.013

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Evaluation of Regulatory Effect of Guiqi Yimu Oral Liquid on Rumen of Postpartum Dairy Cows Based on UPLC-MS/MS Metabolomics Technology

TANG YuLin1(),ZHANG Bo1,REN Man1,ZHANG RuiXue1,QIN JunJie2,ZHU Hao2,GUO YanSheng1()   

  1. 1College of Agriculture, Ningxia University, Yinchuan 750021
    2Beijing Center Biology Co., Ltd, Beijing 102600
  • Received:2021-09-22 Accepted:2022-08-22 Online:2023-01-16 Published:2023-02-07

Abstract:

【Background】Under the background of ban on antibiotics in animal feed at the current, the use of low residue, non-toxic Chinese herbal medicine preparations for perinatal health care has been favored by the majority of breeding enterprises. The previous studies found that Guiqi Yimu oral liquid could reduce inflammatory response, enhance immunity and relieve negative energy balance in postpartum cows, but the detailed mechanism of action was unclear. 【Objective】This study aimed to reveal the mechanism of action of Guiqi Yimu oral liquid from a new perspective through the regulatory effect of the prescription on rumen metabolism in postpartum cow with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) metabolomics technology. 【Method】 18 healthy parturient Holstein cows with similar body condition and 2-3 parities were selected and averagely divided into the control group and the test group. From Day 0 to Day 6 after birth, the cows of test group were administrated Guiqi Yimu oral liquid, and those of control group were orally administrated water oral. Rumen fluids of all cows were collected at postpartum Day 0 before administration and postpartum Day 7 before first meal. After pretreatment, the metabolites in rumen were qualified and quantified with UPLC-MS/MS technology. The obtained data was imported into MetaboAnanlyst 5.0 software to perform principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA), investigating alteration in metabolic profiles of rumen fluids between the two groups, and screening differential metabolites for cluster and metabolic pathway enrichment analysis. 【Result】 The rumen metabolic profile of the test group was obvious different with the control group at postpartum Day 7 due to the concentrations of 43 rumen metabolites changed significantly (VIP>1, P<0.05). Compared wtih the control group, 8 metabolites were up-regulated (P<0.05), including 9-oxoODE, punicic acid, 6-dimethylaminopurine, L-proline, maleic acid, N-acetyl-5-hydroxytryptamine, pantothenol, and formononetin, and 35 metabolites were down-regulated in the test group (P<0.05), including organic acids and their derivatives, nucleotides and their metabolites, carbohydrates and their metabolites. Metabolic pathway enrichment analysis showed Guijiyimu oral liquid obviously altered rumen histidine metabolism, pentose and glucuronic acid mutual conversion, arginine and proline metabolism tryptophan metabolism, pyrimidine metabolism and purine metabolism pathways in postpartum dairy cows. 【Conclusion】 Guiqi Yimu oral liquid promoted the metabolic function of rumen flora in postpartum dairy cows, which was one of the mechanisms to alleviate the negative energy balance, enhance immunity, anti-inflammation and maintain intestinal homeostasis in postpartum dairy cows.

Key words: Guiqi Yimu oral liquid, postpartum dairy cows, rumen fluid, UPLC-MS/MS metabolomics

Fig. 1

Effects of Guiqi Yimu Oral Liquid on PCA in rumen fluid of dairy cows on day 0 postpartum a: A compared with F, b: B compared with G"

Fig. 2

2D scatter plot (a) and validation map (b) of OPLS-DA metabolites in rumen fluid of dairy cows at 7 d postpartum"

Table 1

Up-regulation of differential metabolites in rumen fluid of dairy cows at 7 days postpartum"

差异代谢物
Differential metabolite
含量变化
Content change
重要变量投影值Variable importance projection value P
P value
9-氧代-10E,12Z-十八碳二烯酸
9-oxoODE[9-oxo-10E,12Z-octadecadienoic acid]
上调Up 2.51 5.71×10-5
石榴酸 Punicic Acid 上调Up 2.11 2.09×10-3
6-二甲基氨基嘌呤 6-Dimethylaminopurine 上调Up 2.10 2.24×10-3
L-脯氨酸 L-Proline 上调Up 1.88 7.83×10-3
马来酸 Maleic Acid 上调Up 1.87 8.30×10-3
N-乙酰基5-羟色胺
O-N-Acetyl-5-Hydroxytryptamine
上调Up 1.75 0.015
DL-泛酰醇 Pantothenol 上调Up 1.67 0.022
刺芒柄花素 Formononetin 上调Up 1.61 0.029

Table 2

Differential metabolites down-regulated in rumen fluid of dairy cows at 7 d postpartum"

差异代谢物
Differential metabolite
含量变化
Content change
重要变量投影值
Variable importance projection value
P
P value
1-辛烯-3-酮 1-Octen-3-one 下调Down 2.54 3.64×10-5
1,2-二氯乙烷 1,2-Dichloroethane 下调Down 2.53 4.16×10-5
冰片 (+)-borneol 下调Down 2.52 4.81×10-5
6-甲基-5-庚烯-2-酮 6-Methyl-5-hepten-2-one 下调Down 2.51 5.23×10-5
(±)-萜烯-4-醇 p-Menth-1-en-4-ol 下调Down 2.50 6.17×10-5
磷酸三乙酯 Triethyl phosphate 下调Down 2.48 7.72×10-5
(±)9,10-二羟基-12Z-十八碳烯酸
9,10-DiHOME [(+-)9,10-dihydroxy-12Z-octadecenoic acid]
下调Down 2.29 4.91×10-4
溶血卵磷脂酰胆碱16:0 Lysopc 16:0 下调Down 1.95 5.32×10-3
2,6-二氨基庚二酸 2,6-Diaminooimelic Acid 下调Down 1.91 6.85×10-3
吲哚-3-丙酸 3-Indolepropionic Acid 下调Down 1.89 7.40×10-3
溶血磷脂酰胆碱 18:3 Lysopc 18:3 下调Down 1.88 7.95×10-3
3-羟基-2-吡啶甲酸 3-Hydroxypicolinic acid 下调Down 1.88 8.04×10-3
3-羟基 - DL-犬尿氨酸 4-3-Hydroxy-DL-kynurenine 下调Down 1.87 8.15×10-3
脱氧鸟苷 Deoxyguanosine 下调Down 1.85 9.18×10-3
胸腺嘧啶 Thymine 下调Down 1.78 1.30×10-2
猪去氧胆酸 Hyodeoxycholic Acid 下调Down 1.76 0.014
2,2'-硫代二乙醇酸 Thiodiglycolic Acid 下调Down 1.71 0.018
尿刊酸 Urocanic Acid 下调Down 1.54 0.019
对苯二甲酸 Phthalic Acid 下调Down 1.70 0.019
L-胱氨酸 L-Cystine 下调Down 1.69 0.019
2,4-二羟基苯甲酸 2,4-Dihydroxybenzoic Acid 下调Down 1.67 0.021
溶血卵磷脂酰乙醇胺16:0 Lysope 16:0 下调Down 1.67 0.022
新蝶呤 Neopterin 下调Down 1.63 0.025
腐胺 Putrescine 下调Down 1.60 0.029
2-吲哚甲酸 Indole-2-Carboxylic Acid 下调Down 1.59 0.031
蛋氨酸亚砜 Methionine Sulfoxide 下调Down 1.58 0.032
乙基丙二酸Ethylmalonate 下调Down 1.57 0.032
土木香内酯 Alantolactone 下调Down 1.56 0.034
溶血卵磷脂酰胆碱18:2 Lysopc 18:2 下调Down 1.55 0.034
十八碳烯酸(反-9) Elaidic Acid (C18:1N9T) 下调Down 1.56 0.034
木糖 Xylose 下调Down 1.55 0.035
尿苷 Uridine 下调Down 1.55 0.036
9S-羟基-10E,12Z,15Z-十八碳三烯酸
9-HOTrE [9S-hydroxy-10E,12Z,15Z-octadecatrienoic acid]
下调Down 1.50 0.044
苯乙酰甘氨酸 N-Phenylacetylglycine 下调Down 1.49 0.045
鸟苷 Guanosine 下调Down 1.48 0.046

Fig. 3

Clustering heat map of differential metabolites in the first 10 rumen fluids of dairy cows at 7 days postpartum"

Fig. 4

Metabolic pathways and partial pathway names of differential metabolites in rumen juice of dairy cows at 7 days postpartum 1: Histidine metabolism; 2: Interconversion of pentose and glucuronic acid; 3: Arginine and proline metabolism; 4: Tryptophan metabolism; 5: Pyrimidine metabolism; 6: Purine metabolism"

Fig. 5

Violin diagram of differential metabolites in metabolic pathways between the control group and the test group 7 days postpartum"

[1] ALERI J W, HINE B C, PYMAN M F, MANSELL P D, WALES W J, MALLARD B, FISHER A D. Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period. Research in Veterinary Science, 2016, 108: 8-17. doi:10.1016/j.rvsc.2016.07.007.
doi: 10.1016/j.rvsc.2016.07.007 pmid: 27663364
[2] KHAN M Z, ZHANG Z C, LIU L, WANG D, MI S Y, LIU X Q, LIU G, GUO G, LI X Z, WANG Y C, YU Y. Folic acid supplementation regulates key immunity-associated genes and pathways during the periparturient period in dairy cows. Asian-Australasian Journal of Animal Sciences, 2019, 33(9): 1507-1519. doi:10.5713/ajas.18.0852.
doi: 10.5713/ajas.18.0852 pmid: 31010964
[3] 邹素华, 徐坤玲, 汪德刚. 归芪益母汤作用机理及其在兽医临床上的应用. 中兽医医药杂志, 2017, 36(2): 76-78. doi:10.13823/j.cnki.jtcvm.2017.02.033.
doi: 10.13823/j.cnki.jtcvm.2017.02.033
ZOU S H, XU K L, WANG D G. Research progress of veterinary clinical application and mechanism of Guiqi Yimu Decoction. Journal of Traditional Chinese Veterinary Medicine, 2017, 36(2): 76-78. doi:10.13823/j.cnki.jtcvm.2017.02.033. (in Chinese)
doi: 10.13823/j.cnki.jtcvm.2017.02.033
[4] 何永明, 刘钟杰, 许剑琴, 焦淑贤, 王清兰. 归芪益母散对奶牛产后气虚血瘀证血浆一氧化氮含量的影响. 中国兽医杂志, 2003, 39(7): 26-27.
HE Y M, LIU Z J, XU J Q, JIAO S X, WANG Q L. Effect of Gui-qi-yi-mu powder on plasma NO level in postpartum cows with Qi-deficency and Blood-stasis syndrome. Chinese Journal of Veterinary Medicine, 2003, 39(7): 26-27. (in Chinese)
[5] 许小琴, 韦旭斌, 刘学忠, 李金贵, 胡仲明, 柳巨雄, 王治, 张玉国. 归芪益母汤耐缺氧及抗氧化作用. 中国兽医学报, 2005, 25(2): 208-210. doi:10.16303/j.cnki.1005-4545.2005.02.033.
doi: 10.16303/j.cnki.1005-4545.2005.02.033
XU X Q, WEI X B, LIU X Z, LI J G, HU Z M, LIU J X, WANG Z, ZHANG Y G. Effect of Gui qi yimu decoction on hypoxia tolerance and anti-oxidation in mice. Chinese Journal of Veterinary, 2005, 25(2): 208-210. doi:10.16303/j.cnki.1005-4545.2005.02.033. (in Chinese)
doi: 10.16303/j.cnki.1005-4545.2005.02.033
[6] 李子健, 李大彪, 高民, 王典, 兰儒冰. 不同生理阶段荷斯坦奶牛瘤胃细菌多样性研究. 动物营养学报, 2018, 30(8): 3017-3025.
LI Z J, LI D B, GAO M, WANG D, LAN R B. Rumen bacteria diversity in Holstein dairy cows at different physiological phases. Chinese Journal of Animal Nutrition, 2018, 30(8): 3017-3025. (in Chinese)
[7] 蒋丽红. 奶牛蹄叶炎模型中瘤胃微生物菌群及代谢产物的变化研究[D]. 哈尔滨: 东北农业大学, 2020.
JIANG L H. Study on the Changes of Rumen Microbial Population and Metabolites in Dairy Cow Laminitis Model[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese)
[8] 胡晓宇. 奶牛瘤胃菌群紊乱与乳腺炎的关联性及机制研究[D]. 长春: 吉林大学, 2020.
HU X Y. The correlation and mechanism between rumen microbiota disturbance and mastitis in dairy cows[D]. Changchun: Jilin University, 2020. (in Chinese)
[9] WILLIAMS Y J, POPOVSKI S, REA S M, SKILLMAN L C, TOOVEY A F, NORTHWOOD K S, WRIGHT A D G. A vaccine against rumen methanogens can alter the composition of archaeal populations. Applied and Environmental Microbiology, 2009, 75(7): 1860-1866. doi:10.1128/AEM.02453-08.
doi: 10.1128/AEM.02453-08 pmid: 19201957
[10] MALMUTHUGE N, LI M J, FRIES P, GRIEBEL P J, GUAN L L. Regional and age dependent changes in gene expression of Toll-like receptors and key antimicrobial defence molecules throughout the gastrointestinal tract of dairy calves. Veterinary Immunology and Immunopathology, 2012, 146(1): 18-26. doi:10.1016/j.vetimm.2012.01.010.
doi: 10.1016/j.vetimm.2012.01.010 pmid: 22321738
[11] 贾知锋, 王纯洁, 敖日格乐, 贺美玲, 张欣, 徐进, 吕文亭, 付鹤, 任书男, 田艳萍, 刘佳乐. 阿茹拉-7味散早期干预形成的瘤胃微生物环境对感染致病性大肠杆菌犊牛免疫力的影响. 中国农业大学学报, 2020, 25(12): 58-66.
JIA Z F, WANG C J, AORIGELE, HE M L, ZHANG X, XU J, LV W T, FU H, REN S N, TIAN Y P, LIU J L. Effect of rumen microbiota environment formed by Baatar-7 powder early intervention on immunity of calves infected with pathogenic Escherichia coli. Journal of China Agricultural University, 2020, 25(12): 58-66. (in Chinese)
[12] LIMA F S, OIKONOMOU G, LIMA S F, BICALHO M L S, GANDA E K, FILHO J C, LORENZO G, TROJACANEC P, BICALHOA R C. Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Applied and Environmental Microbiology, 2015, 81(4): 1327-1337. doi:10.1128/AEM.03138-14.
doi: 10.1128/AEM.03138-14 pmid: 25501481
[13] 郭启勇, 陶金忠, 吴心华, 郭延生. 归芪益母口服液对产后奶牛免疫机能和生产性能的影响. 中国兽医学报, 2020, 40(10): 2013-2019. doi:10.16303/j.cnki.1005-4545.2020.10.21.
doi: 10.16303/j.cnki.1005-4545.2020.10.21
GUO Q Y, TAO J Z, WU X H, GUO Y S. Effect of Guiqi Yimu oral liquid on immune function and production performance of postpartum dairy cows. Chinese Journal of Veterinary Science, 2020, 40(10): 2013-2019. doi:10.16303/j.cnki.1005-4545.2020.10.21. (in Chinese)
doi: 10.16303/j.cnki.1005-4545.2020.10.21
[14] 董朕, 白东东, 刘利利, 白玉彬, 王玮玮, 张继瑜, 周绪正. 基于网络药理学分析归芪益母汤治疗牛气血两虚证的作用机制. 畜牧兽医学报, 2018, 49(12): 2733-2744. doi:10.11843/j.issn.0366-6964.2018.12.023.
doi: 10.11843/j.issn.0366-6964.2018.12.023
DONG Z, BAI D D, LIU L L, BAI Y B, WANG W W, ZHANG J Y, ZHOU X Z. The mechanism of Gui qi yimu decoction powder in treating cow qi and blood two deficiency syndrome based on network pharmacology. Acta Veterinaria et Zootechnica Sinica, 2018, 49(12): 2733-2744. doi:10.11843/j.issn.0366-6964.2018.12.023. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2018.12.023
[15] 刘鸣昊, 张丽慧, 马庆亮, 赵文霞. 槲皮素对非酒精性脂肪性肝炎大鼠的作用及其机制研究. 中国临床药理学杂志, 2019, 35(20): 2597-2601. doi:10.13699/j.cnki.1001-6821.2019.20.018.
doi: 10.13699/j.cnki.1001-6821.2019.20.018
LIU M H, ZHANG L H, MA Q L, ZHAO W X. Effect of the quercetin on the non-alcoholic steatohepatitis in rats and its mechanism. The Chinese Journal of Clinical Pharmacology, 2019, 35(20): 2597-2601. doi:10.13699/j.cnki.1001-6821.2019.20.018. (in Chinese)
doi: 10.13699/j.cnki.1001-6821.2019.20.018
[16] 赵明智, 张磊, 周丹, 丁琪琼, 林晓萌. 山奈酚调控PI3K/AKT/ GSK-3β信号通路促进人炎性乳腺癌SUM190细胞株凋亡的研究. 广西医科大学学报, 2019, 36(6): 872-877. doi:10.16190/j.cnki.45-1211/r.2019.06.003.
doi: 10.16190/j.cnki.45-1211/r.2019.06.003
ZHAO M Z, ZHANG L, ZHOU D, DING Q Q, LIN X M. Kaempferol regulates PI3K/AKt/GSK-3β signaling pathway and promotes apoptosis of human inflammatory breast cancer SUM190 cell line. Journal of Guangxi Medical University, 2019, 36(6): 872-877. doi:10.16190/j.cnki.45-1211/r.2019.06.003. (in Chinese)
doi: 10.16190/j.cnki.45-1211/r.2019.06.003
[17] IONKOVA I, MOMEKOV G, PROKSCH P. Effects of cycloartane saponins from hairy roots of Astragalus membranaceus Bge., on human tumor cell targets. Fitoterapia, 2010, 81(5): 447-451. doi:10.1016/j.fitote.2009.12.007.
doi: 10.1016/j.fitote.2009.12.007
[18] 高咏梅, 仵妍, 徐晖, 周晓, 鲁强. 芒柄花黄素对宫颈癌细胞放疗敏感性的影响. 中国老年学杂志, 2019, 39(16): 4066-4069. doi:10.3969/j.issn.1005-9202.2019.16.062.
doi: 10.3969/j.issn.1005-9202.2019.16.062
GAO Y M, WU Y, XU H, ZHOU X, LU Q. Effect of formononetin on radiosensitivity of cervical cancer cells. Chinese Journal of Gerontology, 2019, 39(16): 4066-4069. doi:10.3969/j.issn.1005-9202.2019.16.062. (in Chinese)
doi: 10.3969/j.issn.1005-9202.2019.16.062
[19] 杜倩倩, 黄璐璐, 刘春霞, 唐梅, 闫辰, 李燕. 异鼠李素与索拉非尼联合对肾癌的抑制作用及作用机制. 药学学报, 2019, 54(8): 1424-1430. doi:10.16438/j.0513-4870.2018-1138.
doi: 10.16438/j.0513-4870.2018-1138
DU Q Q, HUANG L L, LIU C X, TANG M, YAN C, LI Y. Anti-tumor activity and mechanisms of isorhamnetin in combination with sorafenib for renal cancer. Acta Pharmaceutica Sinica, 2019, 54(8): 1424-1430. doi:10.16438/j.0513-4870.2018-1138. (in Chinese)
doi: 10.16438/j.0513-4870.2018-1138
[20] 贺绍君, 刘德义, 李静, 赵书景, 车传燕, 王标. 加味归芪益母汤对围产期奶牛血常规的影响. 赤峰学院学报(自然科学版), 2013, 29(22): 15-17. doi:10.13398/j.cnki.issn1673-260x.2013.22.008.
doi: 10.13398/j.cnki.issn1673-260x.2013.22.008
HE S J, LIU D Y, LI J, ZHAO S J, CHE C Y, WANG B. Effects of Modified Guiqi Yimu Decoction on Blood Routine of Dairy Cows in Perinatal Period. Journal of Chifeng University (Natural Science Edition), 2013, 29(22): 15-17. doi:10.13398/j.cnki.issn1673-260x.2013.22.008. (in Chinese)
doi: 10.13398/j.cnki.issn1673-260x.2013.22.008
[21] 张博. 归芪益母散对产后奶牛瘤胃代谢物及血液生化和细胞因子的调节[D]. 银川: 宁夏大学, 2021.
ZHANG B. Regulation of Gui qi yi mu San on rumen metabolites and blood biochemical indicators and cytokines in postpartum dairy cows[D]. Yinchuan: Ningxia University, 2021. (in Chinese)
[22] PLAIZIER J C, LI S C, DANSCHER A M, DERAKSHANI H, ANDERSEN P H, KHAFIPOUR E. Changes in microbiota in rumen digesta and feces due to a grain-based subacute ruminal acidosis (SARA) challenge. Microbial Ecology, 2017, 74(2): 485-495. doi:10.1007/s00248-017-0940-z.
doi: 10.1007/s00248-017-0940-z pmid: 28175972
[23] WADUD S, ONODERA R, OR-RASHID M M, OSHIRO S. In vitro catabolism of histidine by mixed rumen bacteria and protozoa. Current Microbiology, 2001, 42(1): 12-17. doi:10.1007/s002840010170.
doi: 10.1007/s002840010170
[24] WANG H, ZHANG S D, YANG F, XIN R H, WANG S Y, CUI D A, SUN Y. The gut microbiota confers protection in the CNS against neurodegeneration induced by manganism. Biomedicine & Pharmacotherapy, 2020, 127: 110150. doi:10.1016/j.biopha.2020.110150.
doi: 10.1016/j.biopha.2020.110150
[25] SUN H Z, SHI K, WU X H, XUE M Y, WEI Z H, LIU J X, LIU H Y. Lactation-related metabolic mechanism investigated based on mammary gland metabolomics and 4 biofluids' metabolomics relationships in dairy cows. BMC Genomics, 2017, 18(1): 936. doi:10.1186/s12864-017-4314-1.
doi: 10.1186/s12864-017-4314-1
[26] 黄金莉, 吕卉芸, 李华军. 普拉梭菌在肠道微生态中的功能及作用研究. 胃肠病学和肝病学杂志, 2019, 28(3): 245-249.
HUANG J L, LÜ H Y, LI H J. Research of role and function of F.prausnitzii in intestinal microecology. Chinese Journal of Gastroenterology and Hepatology, 2019, 28(3): 245-249. (in Chinese)
[27] 陈秋萍, 徐生祥, 刘庆友, 石德顺. 脯氨酸对母猪繁殖性能影响的研究进展. 中国畜牧兽医, 2017, 44(3): 767-772. doi:10.16431/j.cnki.1671-7236.2017.03.021.
doi: 10.16431/j.cnki.1671-7236.2017.03.021
CHEN Q P, XU S X, LIU Q Y, SHI D S. Research progress on effects of proline on reproductive performance of sows. China Animal Husbandry & Veterinary Medicine, 2017, 44(3): 767-772. doi:10.16431/j.cnki.1671-7236.2017.03.021. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2017.03.021
[28] FICHMAN Y, GERDES S Y, KOVÁCS H, SZABADOS L, ZILBERSTEIN A, CSONKA L N. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biological Reviews of the Cambridge Philosophical Society, 2015, 90(4): 1065-1099. doi:10.1111/brv.12146.
doi: 10.1111/brv.12146 pmid: 25367752
[29] 吴志勇, 李由然, 顾正华, 丁重阳, 张梁, 石贵阳. 枯草芽孢杆菌L-脯氨酸合成途径中glnA、proB、proA基因功能探究. 微生物学报, 2018, 58(1): 39-50. doi:10.13343/j.cnki.wsxb.20170011.
doi: 10.13343/j.cnki.wsxb.20170011
WU Z Y, LI Y R, GU Z H, DING Z Y, ZHANG L, SHI G Y. Function of glnA, proB and proA genes in L-proline anabolic pathway of Bacillus subtilis. Acta Microbiologica Sinica, 2018, 58(1): 39-50. doi:10.13343/j.cnki.wsxb.20170011. (in Chinese)
doi: 10.13343/j.cnki.wsxb.20170011
[30] 吴万春, 陈宗舜. 褪黑素在消化生理和病理中的作用. 国外医学(生理、病理科学与临床分册), 2000, 20(3): 232-234.
WU W C, CHEN Z S. The role of melatonin in digestive physiology and pathology. Foreign Medical Sciences (Section of Pathophysiology and Clinical Medicine), 2000, 20(3): 232-234. (in Chinese)
[31] 薛纯, 欧阳佳良, 陈培根, 王梦芝. 胃肠道褪黑素的合成及其对消化道微生物群体影响的研究进展. 中国畜牧杂志, 2021, 57(1): 41-48. doi:10.19556/j.0258-7033.20200609-07.
doi: 10.19556/j.0258-7033.20200609-07
XUE C, OUYANG J L, CHEN P G, WANG M Z. Research progress on melatonin synthesis in gastrointestinal tract and its effects on digestive microbial population. Chinese Journal of Animal Science, 2021, 57(1): 41-48. doi:10.19556/j.0258-7033.20200609-07. (in Chinese)
doi: 10.19556/j.0258-7033.20200609-07
[32] BUBENIK G A, HACKER R R, BROWN G M, BARTOS L. Melatonin concentrations in the luminal fluid, mucosa, and muscularis of the bovine and porcine gastrointestinal tract. Journal of Pineal Research, 1999, 26(1): 56-63. doi:10.1111/j.1600-079x.1999.tb00567.x.
doi: 10.1111/j.1600-079x.1999.tb00567.x pmid: 10102761
[33] WANG G, HUANG S, WANG Y M, CAI S, YU H T, LIU H B, ZENG X F, ZHANG G L, QIAO S Y. Bridging intestinal immunity and gut microbiota by metabolites. Cellular and Molecular Life Sciences: CMLS, 2019, 76(20): 3917-3937. doi:10.1007/s00018-019-03190-6.
doi: 10.1007/s00018-019-03190-6
[34] MORAÏS S, MIZRAHI I. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiology Reviews, 2019, 43(4): 362-379. doi:10.1093/femsre/fuz007.
doi: 10.1093/femsre/fuz007 pmid: 31050730
[35] EZER A, MATALON E, JINDOU S, BOROVOK I, ATAMNA N, YU Z T, MORRISON M, BAYER E A, LAMED R. Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus. Journal of Bacteriology, 2008, 190(24): 8220-8222. doi:10.1128/JB.00609-08.
doi: 10.1128/JB.00609-08
[36] 祁茹, 温建新, 程明, 肖宇, 褚永康, 胡静, 朱亚俊, 陈俏俏, 林英庭. 外源寡糖对奶山羊粪便微生物区系的影响. 动物营养学报, 2012, 24(6): 1165-1172.
QI R, WEN J X, CHENG M, XIAO Y, CHU Y K, HU J, ZHU Y J, CHEN Q Q, LIN Y T. Effects of exogenous oligosaccharides on fecal microflora of dairy goats. Chinese Journal of Animal Nutrition, 2012, 24(6): 1165-1172. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!