Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (3): 575-588.doi: 10.3864/j.issn.0578-1752.2022.03.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes

MA GaoXing1(),TAO TianYi1,PEI Fei1,FANG DongLu2,ZHAO LiYan2,HU QiuHui1,*()   

  1. 1 College of Food Science and Engineering, Nanjing University of Finance and Economics/Jiangsu Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023
    2 College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095
  • Received:2021-06-03 Accepted:2021-11-30 Online:2022-02-01 Published:2022-02-11
  • Contact: QiuHui HU E-mail:magaoxing@nufe.edu.cn;qiuhuihu@nufe.edu.cn

Abstract:

【Objective】 As a technology with the essence of unsteady heat transfer ability, the stir-fry process could improve the flavor of food significantly. Basically, the effects of different cooking time and temperature on the flavor characterization of Agaricus bisporus in novel ready-to-eat dishes (RTE dishes) were investigated in the present study, aiming to provide data basis for the development and production of edible mushroom RTE dishes. 【Method】 The volatile flavors of A. bisporus under different conditions were evaluated by electronic nose firstly, followed by gas chromatography-ion mobility spectrometry (GC-IMS) and free fatty acid content determination. Then, the non-volatile flavor analyzation through electronic tongue, soluble sugar (alcohol), free amino acids, flavor nucleotides and organic acids detection, as well as the evaluation of equivalent freshness concentration (EUC) were carried out. At last, the sensory quality analysis was utilized to estimate the differences in shape, color, flavor, organization and taste of A. bisporus in novel RTE dishes under different conditions, from which the quality of different products was evaluated based on consumers’ subjective perception.【Result】 The whole stir-fry process could be divided into three stages, mainly including 2 min, 4-8 min and 10 min based on the cooking time or 160-170℃, 180-190℃ and 200℃ based on the cooking temperature. The contents of 1-octene-3-ol and 3-octanol were considered the characteristic odor components of A. bisporus, which increased with the extension of cooking time. On the other side, the contents of 1-octene-3-ol and 3-octanol reached the maximum value at 180℃ with the increasing of cooking temperature. From the perspective of umami, the time of 4 min was the optimal time for the formation of non-volatile flavor of A. bisporus in RTE dishes. As for the cooking temperature, umami and sweet taste reached the highest peak at 180℃ with the increase of the cooking temperature. Moreover, the contents of soluble sugar (alcohol) and organic acids in the RTE dishes were decreased and increased, respectively, along with the cooking time extension. However, with the increasing of cooking temperature, the contents of soluble sugar (alcohol) increased first and then decreased, while the contents of organic acids displayed an increasing trend. In addition, it was found that different cooking conditions exhibited little effects on nucleotide, but longer cooking time or higher cooking temperature would reduce the contents of free amino acids in the RTE dishes. Finally, in accordance with the analysis of EUC and sensory evaluation, the umami and sensory evaluation of A. bisporus under the cooking time of 4 min and cooking temperature of 180℃ presented the highest score, indicating that the products prepared under this stir-fry conditions were mostly accepted by consumers. 【Conclusion】 In order to maintain the maximum freshness and sweetness, as well as the most suitable flavor of A. bisporus in the RTE dishes, the final stir-fry process conditions was intended to be stir-frying at 180℃ for 4 min.

Key words: ready-to-eat dishes (RTE dishes), frying processing, Agaricus bisporus, volatile flavor, non-volatile flavor

Table 1

Grouping of different frying time and temperature"

固定因素 Factor 梯度 Gradient
180℃2 min4 min6 min8 min10 min
4 min160℃170℃180℃190℃200℃

Fig. 1

Radar fingerprint charts and principal component analysis of E-nose of A. bisporus in RTE dishes with different cooking times (A) and temperatures (B)"

Fig. 2

IMS spectra of volatile flavor compounds of RTE dishes with different cooking times (A) and temperatures (B) Each column represents a sample, and each row represents a signal peak"

Table 2

Fatty acid content of A. bisporus in RTE dishes with different cooking times and temperatures"

游离脂肪酸
Free fatty acids (Relative contents, %)
炒制时间Cooking time (min) 炒制温度Cooking temperature (℃)
2 4 6 8 10 160 170 180 190 200
丁酸 Butyric acid14.28±0.25c16.07±0.23d27.82±0.46b26.07±0.32e34.47±0.35a38.32±0.03a31.61±0.02b15.17±0.04d20.61±0.02c20.99±0.04c
棕榈酸 Palmitic acid17.42±0.16a16.43±0.21b14.50±0.14c14.70±0.31c13.77±0.47c23.73±0.02a14.21±0.05c17.35±0.02b14.51±0.05c16.02±0.08c
硬脂酸 Stearic acid3.39±0.01a2.17±0.04c3.19±0.08b2.88±0.02d2.62±0.07b0.21±0.01c2.02±0.01b3.21±0.02a2.61±0.02b2.94±0.02b
油酸 Oleic acid16.08±0.07a15.72±0.02b12.40±0.08d14.18±0.03c10.70±0.13e14.95±0.01b12.56±0.01c16.62±0.03a11.78±0.06c14.58±0.03b
亚油酸 Linoleic acid42.83±0.16b45.56±0.05a36.60±0.24c36.61±0.02c33.22±0.37d15.23±0.01e34.75±0.05d40.97±0.01a35.69±0.09c38.94±0.09b
花生酸 Arachidic acid0.51±0.02c0.18±0.01d0.66±0.02b0.66±0.01b1.10±0.03a1.14±0.01b0.20±0.01c1.03±0.02b1.31±0.01a1.28±0.01a
γ-亚油酸
γ- linoleic acid
0.36±0.01b0.18±0.01c0.65±0.02a0.20±0.01c0.19±0.01c1.32±0.01a0.12±0.02d0.20±0.01c0.20±0.01c0.31±0.02b
顺-11-二十烯酸
cis-11-Eicosenoic acid
0.22±0.01b0.06±0.01d0.36±0.01a0.20±0.01b0.16±0.01c1.67±0.01a0.37±0.01b0.11±0.01d0.17±0.01c0.18±0.02c
α-亚油酸
α- linoleic acid
4.57±0.02a3.50±0.01d3.62±0.01c4.17±0.01b3.33±0.01e1.53±0.0c3.63±0.01b4.92±0.01a3.69±0.01b4.32±0.03a
二十二烷酸
Behenic Acid
0.29±0.01b0.08±0.01c0.12±0.01c0.27±0.01b0.39±0.01a1.85±0.02a0.48±0.02b0.38±0.01bc0.27±0.01c0.38±0.01b
ΣSFA35.91±0.04d34.95±0.03d46.32±0.03b44.31±0.01c51.96±0.01a65.27±0.03a48.55±0.03b37.16±0.02d48.44±0.02b41.63±0.04c
ΣMUFA16.31±0.03a15.75±0.01b12.78±0.01d14.39±0.01c11.39±0.01e16.61±0.02a12.93±0.02c16.73±0.01a11.96±0.01c14.77±0.01b
ΣPUFA47.77±0.04b49.25±0.02a40.89±0.02c40.99±0.01c36.99±0.01d18.09±0.01e38.52±0.03d46.09±0.01a39.59±0.01c43.59±0.04b
总脂肪酸含量
Total free fatty acids contents (mg/100 g)
28.76±1.28d92.69±2.44c88.23±2.13c103.1±1.49b127.42±2.04a28.02±1.50d64.30±1.71c97.49±1.33a69.31±1.89b69.90±1.68b

Table 3

Effects of different cooking times and temperatures on the soluble sugars (polyols) contents of A. bisporus in RTE dishes"

可溶性糖(醇)
Soluble sugar
(alcohol) (mg∙g-1 DW)
炒制时间 Cooking time (min) 炒制温度 Cooking temperature (℃)
2 4 6 8 10 160 170 180 190 200
果糖 Fructose58.23±1.03a54.16±1.16b41.75±0.03c39.82±0.26c41.44±1.44c37.36±0.54d55.80±1.46a57.02±0.85a51.64±1.35b47.09±0.92c
甘露醇 Mannitol4.45±0.05a3.68±0.28b2.27±0.39c1.54±0.15d1.42±0.15d2.90±0.30c3.56±0.05b3.98±0.21a3.94±0.12a3.52±0.09b
海藻糖 Trehalose0.29±0.01d0.84±0.06b0.41±0.01d0.62±0.05c1.10±0.14a0.91±0.01b0.70±0.02c1.71±0.09a1.56±0.10a1.05±0.02b
总量 Total contents62.98±2.09a58.69±1.82a44.44±0.39b42.00±0.46b43.97±1.58b40.92±0.31c61.75±0.75a63.87±1.62a54.56±0.42b52.05±0.70b

Fig. 3

Radar fingerprint charts and principal component analysis of E-tongue of A. bisporus in RTE dishes with different cooking times (A) and temperatures (B)"

Table 4

Effects of different cooking times and temperatures on the organic acid contents of A. bisporus in RTE dishes"

有机酸
Organic acid
(mg∙g-1 DW)
炒制时间Cooking time (min) 炒制温度Cooking temperature (℃)
2 4 6 8 10 160 170 180 190 200
酒石酸
Tartaric acid
13.45±0.06b27.90±1.62a26.04±1.13a25.45±0.37a26.14±0.96a24.35±0.49c25.27±1.62c25.61±1.52c29.26±0.04b33.08±0.96a
苹果酸
Malic acid
2.05±0.02c1.05±0.06d3.05±0.43a2.72±0.24b3.06±0.19a5.09±0.71b6.13±1.58a4.44±0.17bc3.65±0.01c4.99±0.30b
冰乙酸
Glacial acetic acid
5.37±0.54a0.86±0.28c2.92±0.44b3.44±0.80b3.19±0.28b3.55±0.58c4.30±0.02b4.51±0.03b4.29±0.06b6.98±0.12a
柠檬酸
Citric acid
9.16±0.13a6.98±1.36b6.59±1.04b8.55±0.65b7.34±0.71b12.56±1.52b13.05±0.52a13.09±0.87a9.12±0.15d10.89±0.10c
富马酸
Fumaric acid
7.62±0.41a3.63±0.18c3.67±0.15c3.55±0.04c4.66±0.28b3.35±0.14b0.23±0.02c0.31±0.01c0.23±0.01c0.26±0.01c
琥珀酸
Succinic acid
1.54±0.12c3.69±0.51a2.40±0.85b2.24±0.13bc2.50±0.12b3.76±0.80d4.91±0.02c7.19±0.02a6.81±0.01b6.16±0.14b
总量
Total contents
39.19±1.15c44.11±0.73b44.67±1.49b45.95±2.03b46.89 ±0.92a52.66±1.01b53.89±1.30b53.15±0.18b53.36±0.23b62.36±0.41a

Table 5

Effects of different cooking times and temperatures on the taste nucleotide contents of A. bisporus in RTE dishes"

呈味核苷酸
Flavor nucleotides
(mg∙g-1 DW)
炒制时间Cooking time (min) 炒制温度Cooking temperature (℃)
2 4 6 8 10 160 170 180 190 200
5′-胞苷单磷酸 5′-CMP3.42±0.03b3.65±0.03b4.16±0.34b4.65±0.17a4.41±0.01ab2.25±0.01b2.19±0.21b3.18±0.01a3.05±0.08a3.23±0.01a
5′-磷酸腺苷5′-AMP0.41±0.01a0.20±0.01b0.41±0.01a0.33±0.01a0.33±0.01a0.59±0.01d0.76±0.01c1.25±0.01a0.85±0.02b0.92±0.02b
5′-鸟苷酸钠 5′-GMP0.44±0.03ab0.40±0.02b0.40±0.01b0.41±0.02b0.48±0.01a0.54±0.23c0.60±0.06c0.83±0.11b1.09±0.50a1.11±0.43a
5′-尿苷酸 5′-UMP3.05±0.08c3.01±0.60c7.55±0.61b8.79±0.28b10.73±0.07a1.49±0.01c3.01±0.03a2.13±0.01b1.47±0.01c1.53±0.02c
5′-肌苷酸钠 5′-IMP0.03±0.02c0.30±0.09a0.24±0.02b0.06±0.01c0.03±0.01c0.22±0.02a0.29±0.03a0.28±0.03a0.04±0.02b0.05±0.01b
总量 Total contents7.35±0.15d7.56±0.76d12.74±0.92c14.59±0.55b15.98±0.10a5.09±0.24c6.86±0.13b7.67±0.11a6.49±0.47b6.84±0.46b

Fig. 4

Effects of different cooking times (A) and temperatures (B) on the EUC values of A. bisporus in RTE dishesDifferent lowercase letters indicate significant difference (P<0.05). The same as below"

Table 6

Effects of different cooking times and temperatures on the free amino acids contents of A. bisporus in RTE dishes"

游离氨基酸
Free amino acids
(mg∙g-1 DW)
炒制时间Cooking time (min) 炒制温度Cooking temperature (℃)
2 4 6 8 10 160 170 180 190 200
苏氨酸 Thr5.49±0.28ab5.87±0.32a5.41±0.24ab5.24±0.30b4.25±0.25c6.51±0.15a4.55±0.17b3.72±0.16c4.08±0.11d2.74±0.08e
缬氨酸 Val1.48±0.12a0.75±0.05b0.69±0.09b0.69±006b0.60±0.04b0.87±0.04a0.64±0.13b0.55±0.28c0.62±0.09b0.42±0.07d
蛋氨酸 Met0.65±0.08a0.32±0.05b0.20±0.02b0.20±0.01b0.17±0.04b0.71±0.15a0.49±0.16ab0.59±0.10ab0.47±0.12ab0.39±0.08b
异亮氨酸 Ile1.31±0.21a0.62±0.06b0.49±0.08b0.48±0.08b0.42±0.07b2.51±0.18a1.87±0.19b1.79±0.09b1.85±0.06b1.32±0.11c
亮氨酸 Leu2.42±0.15a1.06±0.09b0.92±0.04b0.93±0.06b0.80±0.05b2.65±0.13a1.92±0.07b1.80±0.05b1.89±0.12b1.32±0.18c
苯丙氨酸 Phe1.89±0.24a1.26±0.13b1.74±0.17b2.10±0.22a1.73±0.19ab2.59±0.21a1.73±0.18b1.63±0.22b1.60±0.12b1.18±0.06c
赖氨酸 Lys1.90±0.13a0.95±0.04b0.92±0.07b0.90±0.06b0.84±0.03b1.30±0.03a1.03±0.05ab0.86±0.02bc0.99±0.03b0.65±0.08c
必需氨基酸
Essential amino acid
15.16±1.02a10.86±0.80b10.39±0.73bc10.66±0.77bc8.85±0.85c17.17±1.44a12.26±1.27b10.97±0.89b11.52±0.92b8.05±0.95c
天冬氨酸Asp1.01±0.28a0.86±0.27a1.04±0.16a1.09±0.18a0.63±0.23a1.05±0.13c1.73±0.11a1.23±0.11bc1.89±0.09a1.46±0.10b
丙氨酸Ala6.29±0.11a4.31±0.20b3.81±0.17bc3.86±0.22bc3.45±0.16c7.31±0.61a5.02±0.49b4.74±0.52b5.02±0.43b3.36±0.40c
丝氨酸Ser3.18±0.16a2.18±0.10b1.94±0.10b1.99±0.08b1.68±0.04b2.41±0.12a1.78±0.10b1.53±0.14b1.72±0.16b1.18±0.18c
谷氨酸 Glu2.01±0.14b2.73±0.18a2.01±0.21b1.93±0.26b0.72±0.20c1.13±0.19d1.73±0.25c2.64±0.11a2.05±0.22b1.72±0.18c
甘氨酸 Gly1.18±0.02a0.68±0.03ab0.63±0.05ab0.66±0.04b0.58±0.03b1.04±0.08a0.72±0.02b0.66±0.04b0.73±0.06b0.47±0.01b
酪氨酸 Tyr0.54±0.02b1.33±0.07a1.22±0.06a1.26±0.07a1.12±0.04a2.13±0.18a1.39±0.08b1.40±0.10b1.35±0.15b0.98±0.03c
非必需氨基酸Nonessential amino acids14.24±0.86a13.37±0.97b10.68±0.92c10.77±0.85c8.18±0.93d15.10±1.59a12.38±1.42b11.93±1.38b12.78±1.47b9.18±1.03c
组氨酸 His0.97±0.03a0.68±0.06a0.60±0.02a0.63±0.03a0.55±0.04a0.42±0.05a0.28±0.06a0.32±0.08a0.25±0.09a0.18±0.05a
精氨酸 Arg2.57±0.13a1.71±0.02ab1.59±0.04ab1.66±0.03b1.49±0.02b1.22±0.17a0.65±0.04bc0.74±0.08b0.67±0.11bc0.42±0.08c
半必需氨基酸 Semi-essential amino acids3.55±0.14a2.39±0.07b2.19±0.07b2.29±0.05b2.04±0.06b1.64±0.21a0.93±0.08b1.06±0.15b0.93±0.14b0.60±0.13c
苦味氨基酸
Bitter amino acids
11.32±1.04a6.43±0.76b6.26±0.85b6.71±0.68b5.79±0.71b10.99±1.08a7.61±1.33b7.45±0.79b7.37±1.31b5.25±1.28c
甜味氨基酸
Sweet amino acids
16.15±1.22a13.06±1.03b11.81±1.10b11.77±1.15b9.99±0.89b17.29±1.74a12.08±1.29b10.67±1.60b11.57±1.34b7.75±0.86c
鲜味氨基酸
Umami amino acids
3.03±1.26a3.84±1.17a3.06±1.02a3.02±1.25a1.36±0.97b2.19±1.61b3.47±1.17a3.87±1.25a3.94±1.58a3.18±1.41a
总计
Total contents
32.97±3.12a25.63±3.43b23.28±2.98b23.77±3.22b19.12±2.54b33.92±3.79a25.60±3.86b23.27±3.41b25.24±2.92b17.84±2.67c

Fig. 5

Effects of different cooking times (A) and temperatures (B) on the sensory quality of A. bisporus in RTE dishes"

[19] CHEN M.Study on the flavor influence of dried pork slice in drying and baking based on GC-IMS technique [D]. Jiangsu: Jiangsu University, 2020. (in Chinese)
[20] ZENG X F, LIU J L, DING H, BAI W D, YU L M, LI X M.Variations of volatile flavour compounds in Cordyceps militaris chicken soup after enzymolysis pretreatment by SPME combined with GC-MS, GC×GC-TOF MS and GC-IMS. International Journal of Food Science and Technology, 2020, 55(2): 509-516.
doi: 10.1111/ijfs.v55.2
[21] 王钰杰. 上海熏鱼加工过程中脂肪酸降解和风味成分的变化[D]. 上海: 上海海洋大学, 2019.
WANG Y J.Changes in degradation of fatty acid, and flavor compound during the processing of Shanghai fried fish [D]. Shanghai: Shanghai Ocean University, 2019. (in Chinese)
[22] 周惠健, 袁静瑶, 朱丹, 李聪, 陈春梅, 刘瑞, 吴满刚, 葛庆丰, 于海. 杀菌方式对红烧老鹅脂肪酸组成和挥发性风味的影响. 食品科学, 2019, 40(18): 216-222.
ZHOU H J, YUAN J Y, ZHU D, LI C, CHEN C M, LIU R, WU M G, GE Q F, YU H.Effects of different sterilization methods on fatty acid composition and volatile flavor profile of braised goose in brown sauce. Food Science, 2019, 40(18): 216-222. (in Chinese)
[23] 邓文辉, 赵燕, 李建科, 涂勇刚, 马晓娟. 游离脂肪酸在几种常见食品风味形成中的作用. 食品工业科技, 2012, 33(11): 422-425.
DENG W H, ZHAO Y, LI J K, TU Y G, MA X J.The role of free fatty acid in the flavor of several common foods. Science and Technology of Food Industry, 2012, 33(11): 422-425. (in Chinese)
[24] MAU J L.The umami taste of edible and medicinal mushrooms. International Journal of Medicinal Mushrooms, 2005, 7(1): 119-126.
doi: 10.1615/IntJMedMushr.v7.i12
[25] RABE S, KRINGS U, BERGER R G.Influence of oil-in-water emulsion characteristics on initial dynamic flavour release. Journal of the Science of Food & Agriculture, 2003, 83(11): 1124-1133.
[26] ZAWIRSKA-WOJTASIAK R.Optical purity of (R)-(-)-1-octen-3-ol in the aroma of various species of edible mushrooms. Food Chemistry, 2004, 86(1): 113-118.
doi: 10.1016/j.foodchem.2003.08.016
[27] BELUHAN S, RANOGAJEC A.Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chemistry, 2011, 124(3): 1076-1082.
doi: 10.1016/j.foodchem.2010.07.081
[1] 邓力. 中式烹饪热/质传递过程数学模型的构建. 农业工程学报, 2013, 29(3): 285-292.
DENG L.Construction of mathematical model for heat and mass transfer of Chinese cooking. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 285-292. (in Chinese)
[28] BIELESKI R L. Sugar Alcohols. Plant Carbohydrates I.Berlin, Heidelberg: Springer, 1982.
[29] 郭鑫. 医药级蔗糖的研制[D]. 南宁: 广西大学, 2006.
GUO X.The technigues and preparation of the pharmaceutical grade sucrose [D]. Nanning: Guangxi University, 2006. (in Chinese)
[30] BOEKEL M A J S V. Formation of flavor compounds in the Maillard reaction. Biotechnology Advances, 2006, 24(2): 230-233.
doi: 10.1016/j.biotechadv.2005.11.004
[31] BARROS L, BAPTISTA P, CCRREIA D M, MORAIS J S, FERREIRA I C F R. Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. Journal of Agricultural and Food Chemistry, 2007, 55(12): 4781-4788.
doi: 10.1021/jf070407o
[32] BAINES D, BROWN M.Flavor enhancers: Characteristics and uses. Encyclopedia of Food and Health, 2016: 716-723.
[33] ZHANG Y, PAN Z L, CHANDRASEKAR V, MA H L, LI Y L.Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal. LWT-Food Science & Technology, 2015, 62(2): 1154-1161.
[34] LI W, GU Z, YANG Y, ZHOU S, LIU Y F, ZHANG J S.Non-volatile taste components of several cultivated mushrooms. Food Chemistry, 2014, 143: 427-431.
doi: 10.1016/j.foodchem.2013.08.006
[35] 李洪臣, 朱顺成. 氨基酸对不同烤烟品种烟叶美拉德反应的影响. 安徽农业科学, 2020, 48(3): 26-28, 53.
LI H C, ZHU S C.Effects of amino acid on maillard reaction in tobacco leaves among different varieties. Journal of Anhui Agricultural Sciences, 2020, 48(3): 26-28, 53. (in Chinese)
[36] POOJARY M M, ORLIEN V, PASSAMONTI P, OLSEN K.Enzyme-assisted extraction enhancing the umami taste amino acids recovery from several cultivated mushrooms. Food Chemistry, 2017, 234: 236-244.
doi: 10.1016/j.foodchem.2017.04.157
[2] FU Z, YAN W X, MA W T, ZHAO Y Z.The auto-cooking system for Chinese traditional dishes. Assembly Automation, 2010, 30(1): 75-81.
doi: 10.1108/01445151011016091
[3] ZHOU Q, JIA X, DENG Q C, CHEN H, TANG H, HUANG F H.Quality evaluation of rapeseed oil in Chinese traditional stir-frying. Food Science & Nutrition, 2019, 7(11): 3731-3741.
[4] LESTER DAVEY C L, GILBERT K V. Temperature-dependent cooking toughness in beef. Journal of the Science of Food and Agriculture, 2010, 25(8): 931-938.
doi: 10.1002/(ISSN)1097-0010
[5] 李丽丹, 邓力, 赵庭霞, 魏瑶, 李静鹏, 曾雪峰. 猪肝油炒过程中品质变化动力学分析. 现代食品科技, 2021, 37(5): 153-159, 187.
LI L D, DENG L, ZHAO T X, WEI Y, LI J P, ZENG X F.Kinetic analysis of quality change of pork liver during stir-frying with oil. Modern Food Science and Technology, 2021, 37(5): 153-159, 187. (in Chinese)
[6] 柏霜, 王永瑞, 罗瑞明, 丁丹, 柏鹤, 沈菲. 不同高温烹饪方式加工过程中滩羊肉风味化合物的差异比较[OL]. 食品科学: 1-28[2021-05-30]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201215. 1711.002.htm.
BAI S, WANG Y R, LUO R M, DING D, BAI H, SHEN F. Comparison of the formation and change of volatile flavor compounds in the process of Tan sheep meat by different high temperature cooking methods[OL]. Food Science: 1-28.[2021-05-30] http://kns.cnki.net/kcms/detail/11.2206.TS.20201215.1711.002.html. (in Chinese)
[7] 邓楷, 黄静, 罗丹, 卢付青, 游敬刚, 黄利春. 回锅肉工业化生产参数优化研究. 中国调味品, 2019, 44(10): 63-67, 72.
DENG K, HUANG J, LUO D, LU F Q, YOU J G, HUANG L C.Study on optimization of industrial production parameters of twice-cooked pork slices. China Condiment, 2019, 44(10): 63-67, 72. (in Chinese)
[8] 彭燕, 顾伟钢, 储银, 吴丹, 叶兴乾, 刘东红, 陈健初. 不同烹饪处理对芹菜感官和营养品质的影响. 中国食品学报, 2012, 12(2):
81-87.
9 PENG Y, GU W G, CHU Y, WU D, YE X Q, LIU D H, CHEN J C.Effect of different cooking methods on sensory and nutritional quality of celeries. Journal of Chinese Institute of Food Science and Technology, 2012, 12(2): 81-87. (in Chinese)
[9] 赵钜阳, 刘树萍, 石长波. 工业化生产和传统烹饪技术对黑椒牛柳品质和风味的影响. 中国调味品, 2018, 43(3): 1-5.
ZHAO J Y, LIU S P, SHI C B.The effect of commercial process and traditional cooking technique on quality and flavor of black pepper beef. China Condiment, 2018, 43(3): 1-5. (in Chinese)
[10] 吴浪, 徐俐, 谢婧, 夏晓峰, 王化东. 不同炒制温度对菜籽毛油挥发性风味物质的影响. 中国油脂, 2012, 37(11): 39-43.
WU L, XU L, XIE J, XIA X F, WANG H D.Influence of different cooking temperatures on volatile flavor compounds in crude rapeseed oil. China Oils and Fats, 2012, 37(11): 39-43. (in Chinese)
[11] 古明亮, 苏明, 阮嘉欣, 赵发菊, 黄漾. 炒制温度和时间对炒花生仁品质影响的研究. 粮食与食品工业, 2018, 25(6): 31-34, 39.
GU M L, SU M, RUAN J X, ZHAO F J, HUANG Y.Effect of roasted temperature and time on the quality of roasted peanuts kernels. Cereal & Food Industry, 2018, 25(6): 31-34, 39. (in Chinese)
[12] 刘辉聪. 智能炒菜机器人设计与研究[D]. 北京: 北京林业大学, 2019.
LIU H C.Design and research of intelligent cooking robot [D]. Beijing: Beijing Forestry University, 2019. (in Chinese)
[13] 徐嘉. 中式烹饪油炒火候原理初探[D]. 贵阳: 贵州大学, 2019.
XU J.A preliminary study on the principle of the control of cooking time of stir-frying processing in Chinese cusine [D]. Guiyang: Guizhou University, 2019. (in Chinese)
[14] 刘常园, 方东路, 汤静, 胡秋辉, 赵立艳. 基于电子鼻和GC-IMS分析复热对香菇汤挥发性风味物质的影响. 食品科学技术学报, 2020, 38(4): 46-53.
LIU C Y, FANG D L, TANG J, HU Q H, ZHAO L Y.Based on electronic nose and GC-IMS to study effects of reheating on volatile flavor substances of Lentinus edodes soups. Journal of Food Science and Technology, 2020, 38(4): 46-53. (in Chinese)
[15] TSAI S Y, TSAI H L, MAU J L.Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis. Food Chemistry, 2008, 107(3): 977-983.
doi: 10.1016/j.foodchem.2007.07.080
[16] LI Q, ZHANG H H, IRAKOZE P C, ZHU K X, PENG W, ZHOU H M.Effect of different cooking methods on the flavor constituents of mushroom (Agaricus bisporus (Lange) Sing) soup. International Journal of Food Science & Technology, 2011, 46(5): 1100-1108.
[17] TAYLOR M W, HERSHEY H V, LEVINE R A, COY K, OLIVELLE S.Improved method of resolving nucleotides by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1981, 219(1): 133-139.
doi: 10.1016/S0021-9673(00)80584-1
[18] LI B, KIMATU B M, PEI F, CHEN S Y, FENG X, HU Q H, ZHAO L Y.Non-volatile flavour components in Lentinus edodes after hot water blanching and microwave blanching. International Journal of Food Properties, 2017, 20(sup3): S2532-S2542.
doi: 10.1080/10942912.2017.1373667
[19] 陈明杰. 基于GC-IMS技术的干燥与烘烤工艺对猪肉脯风味影响的研究[D]. 江苏: 江苏大学, 2020.
[1] WANG Chao,FANG DongLu,ZHANG PanRong,JIANG Wen,PEI Fei,HU QiuHui,MA Ning. Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics [J]. Scientia Agricultura Sinica, 2022, 55(23): 4728-4742.
[2] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[3] CHEN YanFang,ZHANG MingWei,ZHANG Yan,DENG YuanYuan,WEI ZhenCheng,TANG XiaoJun,LIU Guang,LI Ping. Effects of Germination and Extrusion on Volatile Flavor Compounds in Brown Rice [J]. Scientia Agricultura Sinica, 2021, 54(1): 190-202.
[4] ZHANG WenQiang,CHEN QingJun,ZHANG GuoQing,SHI ShiDa,CAO Na,ABLAT· Tohtirjap,GUO YuXin,LIN WenCai. Effects of Protein Supplements on Agronomic Characters and Quality of the Mushroom Agaricus bisporus [J]. Scientia Agricultura Sinica, 2020, 53(10): 2091-2100.
[5] SUN Zhen, HAN Dong, ZHANG Chun-hui, LI Hai, LI Xia, LIU Zhi-bin, XU Shi-ming. Profile Analysis of the Volatile Flavor Compounds of Quantitative Marinated Chicken During Processing [J]. Scientia Agricultura Sinica, 2016, 49(15): 3030-3045.
[6] LIU Lei, WANG Hao, ZHANG Ming-wei, ZHANG Yan, ZHANG Rui-fen, TANG Xiao-jun, DENG Yuan-yuan. Optimization of the Process Conditions and Change of Volatile Flavor Components of Longan Pulp Fermented by Lactic Acid Bacteria [J]. Scientia Agricultura Sinica, 2015, 48(20): 4147-4158.
[7] LIU Jin-Kai-1, 2 , GAO Yuan-1, WANG Zhen-Yu-1, CHEN Li-1, ZHANG De-Quan-1, AI Qi-Jun-2. Effect of Oxidized Sheep Bone Oil on Volatile Flavor Compounds of Mutton Flavor Seasoning [J]. Scientia Agricultura Sinica, 2014, 47(4): 749-758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!