Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (20): 3960-3969.doi: 10.3864/j.issn.0578-1752.2022.20.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Spatial-Temporal Variation of Cultivated Land Soil Basic Productivity for Main Food Crops in China

LI YuHao1(),WANG HongYe2(),CUI ZhenLing1,YING Hao1,QU XiaoLin2,ZHANG JunDa2,WANG XinYu2   

  1. 1College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193
    2Cultivated Land Quality Monitoring and Protection Center, Ministry of Agriculture and Rural Affairs, Beijing 100125
  • Received:2021-08-23 Accepted:2021-11-16 Online:2022-10-16 Published:2022-10-24
  • Contact: HongYe WANG E-mail:talyh2016@163.com;wwwhhyy119@163.com

Abstract:

【Objective】 Soil basic productivity is the cornerstone of realizing high and stable yield for food crops. The temporal change trends and spatial variation characteristics of cultivated land productivity for main food crops were defined, so as to provide the important theoretical support for ensuring food security and improve cultivated land quality in China. 【Method】 In this study, based on the national long-term positioning monitoring network of cultivated land quality from 1988 to 2019, the long-term monitoring data of the check area were selected with non-fertilization treatment and the conventional area with farmers' fertilization treatment in the first 3-5 years since the establishment of each monitoring point. The temporal and spatial changes in yield of maize, rice and wheat and soil productivity contribution rates were analyzed in China. 【Result】 In the past 30 years, the grain crops’ yield and soil productivity contribution rates showed an overall increasing trend with time, and the annual growth rate of crop yield showed the change law of non-fertilizer area < conventional area, rice < wheat < maize. The yield of maize, wheat and rice in the non-fertilizer area increased from 2 370, 1 712 and 3 111 kg·hm-2 in 1988 to 4 852, 3 258 and 4 167 kg·hm-2 in 2019, respectively, and increased by 104.7%, 90.2% and 34.0%, respectively. The yield of maize, wheat and rice in the conventional area increased from 5 356, 3 296 and 5 970 kg·hm-2 in 1988 to 8 859, 6 515 and 7 825 kg·hm-2 in 2019, respectively, with the increment of 65.4%, 97.6% and 31.0%, respectively. The contribution rate of soil productivity for the three major food crops in China from 2015 to 2019 was 52.7%, which was significantly increased by 7.3% compared with 45.4% in 1988-1994. Among them, the contribution rate from maize was 54.3%, which was 12.2% higher than that of 42.1% in 1988-1994. The contribution rate from rice was 53.3%, which was 6.7% higher than that of 46.6% in 1988-1994. The soil productivity contribution rate from wheat increased with the year as a whole, and was lower than that in maize and rice as a whole. The spatial distribution of soil productivity contribution rate for the three major grain crops was quite different. The Northeast region and Yellow River and Huaihai region were higher, which were 56.5% and 54.1%, respectively, followed by the Southwest region and South region, which were 53.7% and 52.9%, respectively. Gan Xin region and Qinghai-Tibet region were the lowest, only 38.7% and 40.4%, respectively. The random forest model was used to rank the soil factors affecting the basic soil productivity contribution rate in the three major grain crop systems. Among them, soil available potassium, organic matter content and soil bulk density were the key factors affecting the spatial distribution of maize basic soil fertility contribution rate; soil available phosphorus, available potassium and organic matter content were the key factors affecting the spatial distribution of wheat basic soil fertility contribution rate; soil pH, soil available phosphorus and organic matter content were the key factors affecting the spatial distribution of rice basic soil fertility contribution rate.【Conclusion】 Over the past 30 years, the soil basic productivity for three major grain crops in China has been continuously improved, but there were great differences among regions and the overall level was still low, which was far lower than that of developed countries in Europe and United States. Soil available potassium content, soil available phosphorus content and soil pH are the most key factors affecting the spatial distribution of basic soil fertility contribution rate of maize, wheat and rice, respectively.

Key words: rice, wheat, maize, crop yield, soil basic productivity

Table 1

Nine comprehensive agricultural regions and abbreviations"

区域
Region
缩写
Abbreviation
东北区 Northeast China NE
内蒙古及长城沿线区
Inner Mongolia and the area along the Great Wall
IG
黄淮海区 Yellow River and Huaihai YH
黄土高原区 Loess Plateau LP
长江中下游区 Middle and Lower Yangtze River YR
西南区 Southwest China SW
华南区 South China SC
甘新区 Gan Xin GX
青藏区 Qinghai Tibet QT

Fig. 1

Time change trend of the output of the three major food crops in the non-fertilizer area and the conventional area"

Fig. 2

Changes in the contribution rate of the three major food crops over time The box rectangular box in the solid line represents the median whisker plot, the dotted line represents the mean, the lower quartile (rectangular box edges) and the upper quartile (the upper edge of the rectangular box) represent 25% of all data and 75%, the lower edge and the upper edge line of the line representing the 5% and 95% of all the data, and the solid dots represent the vertical outliers. Values followed by different letters are significantly different among the different monitoring stages at the 5% level"

Fig. 3

The spatial distribution of the contribution rates of the three major food crops and their influencing factors"

Fig. 4

Partial dependence plot of influencing factors of spatial distribution of soil fertility contribution rate of three grain crops"

[6] 贡付飞. 长期施肥条件下潮土区冬小麦—夏玉米农田基础地力的演变规律分析[D]. 北京: 中国农业科学院, 2013.
GONG F F. The basic soil productivity change under long-term fertilizations in winter wheat and summer maize cropping system in fluvo-aquic soil area[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[7] MUELLER N D, GERBER J S, JOHNSTON M, RAY D K, RAMANKUTTY N, FOLEY J A. Closing yield gaps through nutrient and water management. Nature, 2012, 490(7419): 254-257. doi: 10.1038/nature11420.
doi: 10. 1038/nature11420
[8] 鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平. 连续施肥对不同肥力稻田土壤基础地力和土壤养分变化的影响. 中国农业科学, 2016, 49(21): 4169-4178. doi: 10.3864/j.issn.0578-1752.2016.21.011.
doi: 10.3864/j.issn.0578-1752.2016.21.011
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P. Effect of successive fertilization on dynamics of basic soil productivity and soil nutrients in double cropping paddy soils with different fertilities. Scientia Agricultura Sinica, 2016, 49(21): 4169-4178. doi: 10.3864/j.issn.0578-1752.2016.21.011. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.21.011
[9] 魏文良, 刘路, 仇恒浩. 有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响. 植物营养与肥料学报, 2020, 26(8): 1384-1394. doi: 10.11674/zwyf.19511.
doi: 10.11674/zwyf.19511
WEI W L, LIU L, QIU H H. Effects of different organic resources application combined with chemical fertilizer on yield and nitrogen use efficiency of main grain crops in China. Journal of Plant Nutrition and Fertilizer, 2020, 26(8): 1384-1394. doi: 10.11674/zwyf.19511. (in Chinese)
doi: 10.11674/zwyf.19511
[10] LI Y X, ZHANG W F, MA L, HUANG G Q, OENEMA O, ZHANG F S, DOU Z X. An analysis of China's fertilizer policies: impacts on the industry, food security, and the environment. Journal of Environmental Quality, 2013, 42(4): 972-981. doi: 10.2134/jeq2012.0465.
doi: 10.2134/jeq2012.0465 pmid: 24216349
[11] JU X T, GU B J, WU Y Y, GALLOWAY J N. Reducing China's fertilizer use by increasing farm size. Global Environmental Change, 2016, 41: 26-32. doi: 10.1016/j.gloenvcha.2016.08.005.
doi: 10.1016/j.gloenvcha.2016.08.005
[12] 康日峰, 任意, 吴会军, 张淑香. 26年来东北黑土区土壤养分演变特征. 中国农业科学, 2016, 49(11): 2113-2125. doi: 10.3864/j.issn.0578-1752.2016.11.008.
doi: 10.3864/j.issn. 0578-1752.2016.11.008
KANG R F, REN Y, WU H J, ZHANG S X. Changes in the nutrients and fertility of black soil over 26 years in northeast China. Scientia Agricultura Sinica, 2016, 49(11): 2113-2125. doi: 10.3864/j.issn.0578-1752.2016.11.008. (in Chinese)
doi: 10.3864/j.issn. 0578-1752.2016.11.008
[13] CUI Z L, CHEN X P, MIAO Y X, LI F, ZHANG F S, LI J L, YE Y L, YANG Z P, ZHANG Q, LIU C S. On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China plain. Agronomy Journal, 2008, 100(6): 1527-1534. doi: 10.2134/agronj2008.0005.
doi: 10.2134/agronj2008. 0005
[1] 茹振钢, 冯素伟, 李淦. 黄淮麦区小麦品种的高产潜力与实现途径. 中国农业科学, 2015, 48(17): 3388-3393. doi: 10.3864/j.issn.0578-1752.2015.17.006.
doi: 10.3864/j.issn.0578-1752.2015.17.006
RU Z G, FENG S W, LI G. High-yield potential and effective ways of wheat in yellow & Huai River valley facultative winter wheat region. Scientia Agricultura Sinica, 2015, 48(17): 3388-3393. doi: 10.3864/j.issn.0578-1752.2015.17.006. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.17.006
[14] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1): 27-37. doi: 10.1007/s11104-013-1696-y.
doi: 10.1007/s11104-013-1696-y
[15] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010. doi: 10.1126/science.1182570.
doi: 10.1126/science.1182570 pmid: 20150447
[16] 陈冬林, 易镇邪, 周文新, 屠乃美. 不同土壤耕作方式下秸秆还田量对晚稻土壤养分与微生物的影响. 环境科学学报, 2010, 30(8): 1722-1728. doi: 10.13671/j.hjkxxb.2010.08.026.
doi: 10.13671/j.hjkxxb.2010.08.026
CHEN D L, YI Z X, ZHOU W X, TU N M. Effects of straw return on soil nutrients and microorganisms in late rice under different soil tillage systems. Acta Scientiae Circumstantiae, 2010, 30(8): 1722-1728. doi: 10.13671/j.hjkxxb.2010.08.026. (in Chinese)
doi: 10.13671/j.hjkxxb.2010.08.026
[17] 沈仁芳, 王超, 孙波. “藏粮于地、藏粮于技”战略实施中的土壤科学与技术问题. 中国科学院院刊, 2018, 33(2): 135-144. doi: 10.16418/j.issn.1000-3045.2018.02.002.
doi: 10. 16418/j.issn.1000-3045.2018.02.002
SHEN R F, WANG C, SUN B. Soil related scientific and technological problems in implementing strategy of “storing grain in land and technology”. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 135-144. doi: 10.16418/j.issn.1000-3045.2018.02.002. (in Chinese)
doi: 10. 16418/j.issn.1000-3045.2018.02.002
[18] 曾勰婷, 王征, 赵明, 许发辉, 吴长春, 谢耀如. 贯彻新发展理念加快推进绿色农田建设: 基于对山西等六省试点项目建设的调研. 中国农业综合开发, 2021(2): 33-35.
ZENG X T, WANG Z, ZHAO M, XU F H, WU C C, XIE Y R. Implementing the new development concept and accelerating the construction of green farmland -- Based on the investigation of the construction of pilot projects in six provinces such as Shanxi. Agricultural Comprehensive Development in China, 2021(2): 33-35. (in Chinese)
[19] 许发辉, 杨宁, 赵明, 胡炎. 我国区域性耕地质量退化问题及改良培肥对策措施. 中国农技推广, 2020, 36(10): 3-7. doi: 10.3969/j.issn.1002-381X.2020.10.001.
doi: 10.3969/j. issn.1002-381X.2020.10.001
XU F H, YANG N, ZHAO M, HU Y. Quality degradation of regional cultivated land in China and Countermeasures for improvement and fertilization. China Agricultural Technology Extension, 2020, 36(10): 3-7. doi: 10.3969/j.issn.1002-381X.2020.10.001. (in Chinese)
doi: 10.3969/j. issn.1002-381X.2020.10.001
[20] 王树亮. 不同小麦品种对矿质元素吸收利用差异及农艺性状演变趋势[D]. 泰安: 山东农业大学, 2008.
WANG S L. The difference in absorption and utilization of mineral elements of different wheat varieties and evolution tendency of agronomic characters[D]. Taian: Shandong Agricultural University, 2008. (in Chinese)
[21] 汤勇华, 黄耀. 中国大陆主要粮食作物地力贡献率及其影响因素的统计分析. 农业环境科学学报, 2008, 27(4): 1283-1289. doi: 10.3321/j.issn:1672-2043.2008.04.003.
doi: 10.3321/j.issn: 1672-2043.2008.04.003
TANG Y H, HUANG Y. Statistical analysis of the percentage of soil fertility contribution to grain crop yield and driving factors in mainland China. Journal of Agro-Environment Science, 2008, 27(4): 1283-1289. doi: 10.3321/j.issn:1672-2043.2008.04.003. (in Chinese)
doi: 10.3321/j.issn: 1672-2043.2008.04.003
[22] 武红亮, 王士超, 闫志浩, 槐圣昌, 马常宝, 薛彦东, 徐明岗, 卢昌艾. 近30年我国典型水稻土肥力演变特征. 植物营养与肥料学报, 2018, 24(6): 1416-1424. doi: 10.11674/zwyf.18239.
doi: 10.11674/zwyf.18239
WU H L, WANG S C, YAN Z H, HUAI S C, MA C B, XUE Y D, XU M G, LU C G. Evolution characteristics of fertility of typical paddy soil in China in recent 30 years. Journal of Plant Nutrition and Fertilizer, 2018, 24(6): 1416-1424. doi: 10.11674/zwyf.18239. (in Chinese)
doi: 10.11674/zwyf.18239
[23] 李荣. 我国耕地质量现状及提升建议. 中国农业综合开发, 2020(7): 7-12.
LI R. Present situation and improvement suggestions of cultivated land quality in China. Agricultural Comprehensive Development in China, 2020(7): 7-12. (in Chinese)
[24] 白树彬. 辽宁省耕地地力评价及地力提升研究[D]. 沈阳: 沈阳农业大学, 2016.
BAI S B. Assessment and improvement of cultivated land fertility in Liaoning Province[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese)
[25] 李宗善, 杨磊, 王国梁, 侯建, 信忠保, 刘国华, 傅伯杰. 黄土高原水土流失治理现状、问题及对策. 生态学报, 2019, 39(20): 7398-7409. doi: 10.5846/stxb201909021821.
doi: 10.5846/stxb201909021821
LI Z S, YANG L, WANG G L, HOU J, XIN Z B, LIU G H, FU B J. The management of soil and water conservation in the Loess Plateau of China: present situations, problems, and counter-solutions. Acta Ecologica Sinica, 2019, 39(20): 7398-7409. doi: 10.5846/stxb201909021821. (in Chinese)
doi: 10.5846/stxb201909021821
[26] 孙波, 潘贤章, 王德建, 韩晓增, 张玉铭, 郝明德, 陈欣. 我国不同区域农田养分平衡对土壤肥力时空演变的影响. 地球科学进展, 2008, 23(11): 1201-1208. doi: 10.3321/j.issn:1001-8166.2008.11.011.
doi: 10.11867/j.issn.1001-8166.2008.11.1201
SUN B, PAN X Z, WANG D J, HAN X Z, ZHANG Y M, HAO M D, CHEN X. Effect of nutrient balance on spatial and temporal change of soil fertility in different agriculture area in China. Advances in Earth Science, 2008, 23(11): 1201-1208. doi: 10.3321/j.issn:1001-8166.2008.11.011. (in Chinese)
doi: 10.11867/j.issn.1001-8166.2008.11.1201
[27] 隋跃宇, 焦晓光, 高崇生, 程伟, 张兴义, 刘晓冰. 土壤有机质含量与土壤微生物量及土壤酶活性关系的研究. 土壤通报, 2009, 40(5): 1036-1039. doi: 10.19336/j.cnki.trtb.2009.05.013.
doi: 10.19336/j.cnki.trtb.2009.05.013
SUI Y Y, JIAO X G, GAO C S, CHENG W, ZHANG X Y, LIU X B. The relationship among organic matter content and soil microbial biomass and soil enzyme activities. Chinese Journal of Soil Science, 2009, 40(5): 1036-1039. doi: 10.19336/j.cnki.trtb.2009.05.013. (in Chinese)
doi: 10.19336/j.cnki.trtb.2009.05.013
[28] 郑昊楠, 王秀君, 万忠梅, 卢同平, 石慧瑾, 李娟茹. 华北地区典型农田土壤有机质和养分的空间异质性. 中国土壤与肥料, 2019(1): 55-61. doi: 10.11838/sfsc.1673-6257.18139
doi: 10.11838/sfsc.1673-6257.18139
ZHENG H N, WANG X J, WAN Z M, LU T P, SHI H J, LI J R. Spatial heterogeneity of soil organic matter and nutrients in typical farmland in the North China Plain. Soils and Fertilizers Sciences in China, 2019(1): 55-61. doi: 10.11838/sfsc.1673-6257.18139. (in Chinese)
doi: 10.11838/sfsc.1673-6257.18139
[29] FAN M S, LAL R, CAO J, QIAO L, SU Y S, JIANG R F, ZHANG F S. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980. PLoS One, 2013, 8(9): e74617. doi: 10.1371/journal.pone.0074617.
doi: 10.1371/journal.pone.0074617
[30] 柳开楼, 黄晶, 叶会财, 韩苗, 韩天富, 宋惠洁, 胡志华, 胡丹丹, 李大明, 余喜初, 黄庆海, 李文军, 陈国钧. 长期施钾对双季玉米钾素吸收利用和土壤钾素平衡的影响. 植物营养与肥料学报, 2020, 26(12): 2235-2245. doi: 10.11674/zwyf.20383.
doi: 10.11674/zwyf.20383
LIU K L, HUANG J, YE H C, HAN M, HAN T F, SONG H J, HU Z H, HU D D, LI D M, YU X C, HUANG Q H, LI W J, CHEN G J. Effects of long-term potassium fertilization on potassium uptake, utilization and soil potassium balance in double maize cropping system. Journal of Plant Nutrition and Fertilizer, 2020, 26(12): 2235-2245. doi: 10.11674/zwyf.20383. (in Chinese)
doi: 10.11674/zwyf.20383
[31] 马清霞, 王朝辉, 惠晓丽, 张翔, 张悦悦, 侯赛宾, 黄宁, 罗来超, 张世君, 党海燕. 基于产量和养分含量的旱地小麦施磷量和土壤有效磷优化. 中国农业科学, 2019, 52(1): 73-85. doi: 10.3864/j.issn.0578-1752.2019.01.008.
doi: 10.3864/j.issn. 0578-1752.2019.01.008
MA Q X, WANG Z H, HUI X L, ZHANG X, ZHANG Y Y, HOU S B, HUANG N, LUO L C, ZHANG S J, DANG H Y. Optimization of phosphorus rate and soil available phosphorus based on grain yield and nutrient contents in dryland wheat production. Scientia Agricultura Sinica, 2019, 52(1): 73-85. doi: 10.3864/j.issn.0578-1752.2019.01.008. (in Chinese)
doi: 10.3864/j.issn. 0578-1752.2019.01.008
[2] 张世煌, 徐志刚. 耕作制度改革及其对农业技术发展的影响. 作物杂志, 2009(1): 1-3. doi: 10.3969/j.issn.1001-7283.2009.01.001.
doi: 10.3969/j.issn.1001-7283.2009.01.001
ZHANG S H, XU Z G. Farming system reform and its impact on the development of agricultural technology. Crops, 2009(1): 1-3. doi: 10.3969/j.issn.1001-7283.2009.01.001. (in Chinese)
doi: 10.3969/j.issn.1001-7283.2009.01.001
[3] 乔磊, 江荣风, 张福锁, 范明生. 土壤基础地力对水稻体系的增产与稳产作用研究. 中国科技论文, 2016, 11(9): 1031-1034, 1045. doi: 10.3969/j.issn.2095-2783.2016.09.012.
doi: 10.3969/j.issn.2095-2783.2016.09.012
QIAO L, JIANG R F, ZHANG F S, FAN M S. Improving inherent soil productivity enhances yield and resilience of rice farming systems. China Sciencepaper, 2016, 11(9): 1031-1034, 1045. doi: 10.3969/j.issn.2095-2783.2016.09.012. (in Chinese)
doi: 10.3969/j.issn.2095-2783.2016.09.012
[4] 李建军, 徐明岗, 辛景树, 段建军, 任意, 李冬初, 黄晶, 申华平, 张会民. 中国稻田土壤基础地力的时空演变特征. 中国农业科学, 2016, 49(8): 1510-1519. doi: 10.3864/j.issn.0578-1752.2016.08.008.
doi: 10.3864/j.issn.0578-1752.2016.08.008
LI J J, XU M G, XIN J S, DUAN J J, REN Y, LI D C, HUANG J, SHEN H P, ZHANG H M. Spatial and temporal characteristics of basic soil productivity in China. Scientia Agricultura Sinica, 2016, 49(8): 1510-1519. doi: 10.3864/j.issn.0578-1752.2016.08.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.08.008
[5] 夏圣益. 土壤基础地力、施肥水平与农作物产量的关系. 上海农业科技, 1998(1): 6-8.
XIA S Y. Relationship between soil basic fertility, fertilization level and crop yield. Shanghai Agricultural Science and Technology, 1998(1): 6-8. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[5] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[6] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[7] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[8] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[9] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[10] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[11] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[12] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[13] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[14] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[15] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!