Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (18): 3600-3612.doi: 10.3864/j.issn.0578-1752.2022.18.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of Nitrification on Ammonium Toxicity to Citrus in Acidic Soil

ZiHan FAN(),YaYin LUO,HuaYe XIONG,YuWen ZHANG,FuRong KANG,YuHeng WANG,Jie WANG,XiaoJun SHI,YueQiang ZHANG()   

  1. College of Resources and Environment, Southwest University, Chongqing 400715
  • Received:2021-08-11 Accepted:2021-09-17 Online:2022-09-16 Published:2022-09-22
  • Contact: ZHANG YueQiang E-mail:fanzihan0466@163.com;zhangyq82@swu.edu.cn

Abstract:

【Objective】The response process of citrus to NH4+-N was elaborated by observing the impact of NH4+-N level on different pH soil solutions, combined with a study on the impact of orange rootstock seedling growth and physiological indicators, which provided theoretical support for the best citrus nitrogen management in acid soil. 【Method】 The experiment was designed as a two-factor experiment, with 2 soils as the main treatment and 5 N levels as the secondary treatment. Using acidic yellow soil and alkaline purple soil as the test soil, the seedlings of Xiangcheng (junos Sieb. ex Tanaka) were selected as the test material, and five NH4+-N levels of 0 (A0), 50 (A50), 100 (A100), 200 (A200), and 400 mg·kg-1 (A400) were set. The effects of ammonium application level on the concentration of ammonium nitrogen and nitrate nitrogen in soil solution and on the biomass, root morphology, nitrogen absorption, antioxidant system, nitrogen metabolism, MDA content and root activity of citrus were studied. 【Result】 Compared with calcareous soil, the nitrification process in acid soil was slowed down. The NH4+-N concentration and NH4+/ NO3- ratio in the soil solution of acid soil remained at a higher level at 30 days of the test. The root length of the citrus under A400 treatment was reduced by 13% when compared with the A0 treatment, and the root vitality was significantly negatively correlated with the ammonium application level. The MDA content of leaves and roots was positively correlated with the ammonium level, which stimulated the oxidative stress response of the roots, especially increased the POD enzyme activity of the leaves. Compared with calcareous soil, the total nitrogen accumulation of citrus on acid soil decreased by 17.6%, while the ratio of ammonium to nitrate in leaves and roots increased by 27.2% and 61.1%, respectively. Cluster analysis showed that citrus in acidic soil was toxic when N application rate exceeded 100 mg kg-1, while citrus in alkaline soil was not significantly stressed.【Conclusion】 In acidic soil, the excessive application of ammonium nitrogen caused the accumulation of ammonium nitrogen in soil solution for a long time, resulting in the increase of MDA content, cell membrane damage and nitrogen metabolism disorders as well as other ammonium toxic phenomena, indicating that ammonium toxicity in citrus was closely related to soil nitrification.

Key words: nitrogen, citrus, soil solution, ammonium toxicity, antioxidant system

Fig. 1

Schematic diagram of soil solution collection device"

Fig. 2

Effects of NH4+-N levels on concentrations of ammonium nitrogen and nitrate nitrogen in soil solution AS: Acid soil, CS: Calcareous soil; N represents nitrogen application rate, D represents sampling time. P<0.05 is significant, P<0.01 is extremely significant. The same as below"

Fig. 3

Effects of NH4+-N level on NH4+/NO3- of soil solution"

Fig. 4

Effect of NH4+-N level on pH of soil solution"

Table 1

Effects of NH4+-N levels on citrus biomass"

处理
Treatment

Stem
(g/pot)

Leaf
(g/pot)
地上部
Aboveground
(g/pot)

Root
(g/pot)
总生物量
Total biomass
(g/pot)
根冠比
Root shoot ratio
(%)
土壤类型Soil type
酸性土壤Acid soil 1.15 b 1.94 b 3.09 b 1.94 a 5.03 b 62.7 a
石灰性土壤Calcareous soil 1.70 a 2.06 a 3.76 a 1.98 a 5.74 a 53.0 a
施氮处理N treatment
A0 1.33 a 1.88 b 3.21 b 2.00 a 5.21 a 62.3 a
A50 1.41 a 2.04 ab 3.45 ab 1.94 a 5.39 a 56.2 a
A100 1.47 a 2.26 a 3.73 a 2.04 a 5.77 a 54.7 a
A200 1.55 a 1.92 b 3.47 ab 1.95 a 5.42 a 56.2 a
A400 1.39 a 1.92 b 3.31 ab 1.88 a 5.19 a 56.8 a
变异来源Source of variation
施氮处理N treatment (N) ns *** *** ns *** ***
土壤类型Soil type (S) *** *** *** ns *** ns
施氮×土壤类型N×S ns *** *** ns *** ns

Table 2

Effects of NH4+-N levels on root morphology of citrus seedlings in two soils"

处理
Treatment
根长
Root length (cm/plant)
根表面积
Root area (cm2/plant)
根体积
Root volume (cm3/plant)
平均根直径
Mean root diameter (mm)
土壤类型Soil type
酸性土壤Acid soil 459 a 73.4 a 1.15 a 0.60 a
石灰性土壤Calcareous soil 378 b 72.2 a 1.00 a 0.55 a
施氮处理N treatment
A0 376 bc 78.9 a 1.34 a 0.58 a
A50 506 a 86.8 a 1.27 a 0.59 a
A100 476 ab 83.0 a 1.23 a 0.58 a
A200 410 abc 58.8 a 0.85 a 0.59 a
A400 327 c 56.6 a 0.76 a 0.53 a
变异来源Source of variation
施氮处理N treatment (N) ** ns ns ns
土壤类型Soil type (S) ** ns ns ns
施氮×土壤类型N×S ns ns ns ns

Fig. 5

Effects of NH4+-N levels on root activity of citrus seedlings in two soils"

Table 3

Effects of NH4+-N levels on antioxidant enzyme activities in citrus leaves grown in different soils"

处理
Treatment
叶 Leaf 根 Root
丙二醛
MDA
(μmol·g-1)
过氧化
氢酶
CAT
(U·g-1·min-1)
抗坏血酸
过氧化物酶APX
(μmol·g-1·min-1)
超氧化物
歧化酶
SOD
(U·g-1)
过氧化物酶POD
(U·g-1·min-1)
丙二醛
MDA
(μmol·g-1)
过氧化
氢酶
CAT
(U·g-1·min-1)
抗坏血酸
过氧化物酶
APX
(μmol·g-1·min-1)
超氧化物
歧化酶
SOD
(U·g-1)
过氧化物酶POD
(U·g-1·min-1)
土壤类型 Soil type
酸性土壤
Acid soil
13.7 a 125 a 3.98 a 1063 b 16277 a 12.2 a 48.9 b 1.99 a 1244 b 109 a
石灰性土壤
Calcareous soil
12.9 a 118 b 3.82 a 1188 a 15380 a 10.1 b 100 a 2.47 a 1306 a 84.5 b
施氮处理N treatment
A0 9.18 b 122 a 3.81 a 1147 ab 5046 e 8.19 b 68.4 a 1.73 b 1021 b 73.7 b
A50 10.6 b 119 a 4.12 a 1199 a 8421 d 10.1 a 77.7 a 2.50 a 1113 b 92.6 bc
A100 15.0 a 121 a 3.77 a 1127 ab 29420 a 11.9 ab 74.2 a 2.29 ab 1477 a 96.3 b
A200 15.8 a 121 a 4.03 a 1122 ab 22692 b 12.9 a 70.7 a 2.33 a 1353 a 123 a
A400 16.0 a 125 a 3.78 a 1033 b 13438 c 12.7 a 81.4 a 2.29 ab 1411 a 97.5 b
取样时间 Sample time
15 d 13.3 a 165 a 4.76 a 1267 a 14065 b 11.1 a 104 a 2.10 b 1384 a 85 b
30 d 13.2 a 77.7 b 3.05 b 984 b 17592a 11.2 a 45.1b 2.36 a 1166 b 109 a
变异来源Source of variation
施氮处理
N treatment (N)
*** ns ns *** *** *** ns ns *** ***
土壤类型
Soil type (S)
ns *** ns *** ns *** *** ns *** ns
取样时间
Sample time (T)
ns *** *** *** ** ns *** *** *** **
施氮×土壤类型N×S ns ns *** *** ns * ns *** *** ns
施氮×取样时间N×T * ns ns ns ns ns ns ns ns ns
取样时间×土壤类型 T×S ns *** *** ns ns ns *** *** ns ns
施氮×取样时间×土壤类型
N×T×S
ns ns ns ns ns ns ns ns ns ns

Table 4

Effects of ammonium levels on nitrogen metabolism enzyme activities in citrus leaves on different soil"

处理
Treatment
叶 Leaf 根 Root
谷氨酰胺
合成酶
GS
(U·g-1·min-1)
谷氨酸
合成酶
GOGAT
(U·g-1·min-1)
谷氨酸
脱氢酶
GDH
(U·g-1·min-1)
天冬氨酸
合成酶
AS
(U·g-1·min-1)
硝酸
还原酶
NR
(U·g-1·min-1)
谷氨酰胺
合成酶
GS
(U·g-1·min-1)
谷氨酸
合成酶
GOGAT
(U·g-1·min-1)
谷氨酸
脱氢酶
GDH
(U·g-1·min-1)
天冬氨酸
合成酶
AS
(U·g-1·min-1)
硝酸
还原酶
NR
(U·g-1·min-1)
土壤类型Soil type
酸性土壤
Acid soil
149 b 204 a 484 a 287 b 8.99 b 64.3 a 385 b 1849 a 124 a 17.0 a
石灰性土壤Calcareous soil 186 a 107 b 279 b 307 a 7.99 a 49.3 b 645 a 1002 b 69.0 b 8.29 b
施氮处理N treatment
A0 127 b 169 a 448 a 201 b 13.8 a 41.6 b 645 a 1858 a 65.9 c 15.6 a
A50 164 ab 157 a 360 ab 189 b 4.93c 53.2 ab 577 a 1526 ab 69.5 c 15.4 a
A100 218 a 186 a 483 a 411 a 8.72 b 61.4 ab 601 a 1520 ab 85.7 bc 11.7 ab
A200 170 ab 152 a 360 ab 348 a 8.29 b 68.8 a 550 ab 1214 bc 117 ab 13.9 ab
A400 159 ab 114 a 257 b 335 a 6.75 bc 58.8 b 202 b 1010 c 145 a 6.78 b
取样时间Sample time
15 d 260a 201 a 446 a 312 a 7.64 b 76.9 a 855 a 1270 b 113 a 16.75 a
30 d 75b 110 b 317 b 282 b 9.39 a 36.6 b 175 b 1581 a 79.8 b 8.58 b
变异来源Source of variation
施氮处理N treatment (N) *** *** *** *** *** *** *** *** *** ***
土壤类型
Soil type(S)
*** *** *** *** *** *** *** *** *** ***
取样时间
Sample time(T)
*** *** *** *** *** *** *** *** *** ***
施氮×土壤类型N×S *** *** ns *** *** *** *** ns *** ***
施氮×取样时间N×T ** *** *** *** *** ** *** *** *** ***
取样时间×
土壤类型T×S
ns *** *** ns *** ns *** *** ns ***
施氮×取样时间×土壤类型 N×T×S ** *** *** ** *** ** *** *** ** ***

Table 5

Effects of NH4+-N levels on inorganic nitrogen content in citrus leaves in different soils"

处理
Treatment
叶 Leaf 根 Root
铵态氮NH4+-N
(mg·kg-1 FW)
硝态氮NO3--N
(mg·kg-1 FW)
铵态氮NH4+-N
(mg·kg-1 FW)
硝态氮NO3--N
(mg·kg-1 FW)
土壤类型Soil type
酸性土壤Acid soil 254 a 101 b 158 a 136 b
石灰性土壤Calcareous soil 261 a 132 a 181 a 251 a
施氮处理N treatment
A0 202 c 114 a 143 b 167 a
A50 231 bc 116 a 152 b 189 a
A100 295 a 86.6 b 199 a 187 a
A200 268 ab 132 a 200 a 203 a
A400 292 a 135 a 152 b 221 a
变异来源Source of variation
施氮处理N treatment (N) *** * ** ***
土壤类型Soil type(S) ns ** *** ns
施氮×土壤类型N×S *** ns * **

Table 6

Effects of NH4+-N levels on nitrogen concentration and accumulation in citrus leaves in different soils"

处理
Treatment
氮含量 Nitrogen concentration 氮累积量 Nitrogen accumulation
茎 Stem
(g·kg-1)
叶 Leaf
(g·kg-1)
根 Root
(g·kg-1)
茎 Stem
(g/plant)
叶 Leaf
(g/plant)
根 Root
(g/plant)
总 Total
(g/plant)
土壤类型Soil type
酸性土壤Acid soil 13.8 a 28.1 b 20.6 a 7.94 b 27.3 b 20.0 a 55.2 b
石灰性土壤 Calcareous soil 15.3 a 33.8 a 18.3 a 13.0 a 34.8 a 18.1 a 66.9 a
施氮处理N treatment
A0 12.4 b 26.3 c 15.0 b 8.25 b 24.7 b 15.0 c 48.0 c
A50 14.2 b 30.5 b 20.9 a 10.0 ab 31.1 a 20.3 ab 61.4 ab
A100 14.3 b 32.8 ab 20.4 a 10.5 ab 37.1 a 20.8 ab 68.4 a
A200 16.0 a 33.8 a 22.0 a 12.4 a 32.4 a 21.5 a 66.3 ab
A400 16.6 a 31.2 ab 19.0 a 11.5 a 30.0 ab 17.9 b 59.3 b
变异来源Source of variation
施氮处理N treatment (N) *** ** *** *** *** ns ***
土壤类型Soil type (S) * *** * *** *** *** ***
施氮×土壤类型N×S ns ns ** ns * * *

Fig. 6

Cluster analysis of NH4+-N level on growth related indexes of Xiangcheng seedling"

[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020.
National Bureau of Statistics of the People's Republic of China. China statistic yearly book. Beijng: China Statistics Press, 2020. (in Chinese)
[2] FAO. Statistics. http://www.fao.org. 2020.
[3] 张超博, 邱洁雅, 王敏, 李有芳, 朱攀攀, 王彤, 邓崇岭, 付行政, 凌丽俐, 刘升球, 陈传武, 彭良志. 桂北柑橘园土壤化学性状研究. 土壤, 2020, 52(6): 1187-1195.
ZHANG C B, QIU J Y, WANG M, LI Y F, ZHU P P, WANG T, DENG C L, FU X Z, LING L L, LIU S Q, CHEN C W, PENG L Z. Study on soil chemical properties of Citrus orchards in northern Guangxi. Soils, 2020, 52(6): 1187-1195. (in Chinese)
[4] 李一凡, 王玉杰, 王彬, 李通. 西南酸雨区重庆缙云山常绿阔叶林土壤氮矿化特征. 林业科学, 2019, 55(6): 1-12.
LI Y F, WANG Y J, WANG B, LI T. Soil nitrogen mineralization characteristics of evergreen broad-leaved forest in Jinyun Mountain in Chongqing in the acid rain zone, southwest China. Scientia Silvae Sinicae, 2019, 55(6): 1-12. (in Chinese)
[5] 周鑫斌, 温明霞, 王秀英, 樊晓翠, 孙彭寿, 石孝均, 李伟, 戴亨林. 三峡重庆库区柑橘园氮素平衡状况研究. 植物营养与肥料学报, 2011, 17(1): 88-94.
ZHOU X B, WEN M X, WANG X Y, FAN X C, SUN P S, SHI X J, LI W, DAI H L. Soil nitrogen balance in Citrus orchards of the Three Gorges area in Chongqing. Plant Nutrition and Fertilizer Science, 2011, 17(1): 88-94. (in Chinese)
[6] DEFOREST J L, OTUYA R K. Soil nitrification increases with elevated phosphorus or soil pH in an acidic mixed mesophytic deciduous forest. Soil Biology and Biochemistry, 2020, 142: 107716.
doi: 10.1016/j.soilbio.2020.107716
[7] 张昊青, 赵学强, 张玲玉, 沈仁芳. 石灰和双氰胺对红壤酸化和硝化作用的影响及其机制. 土壤学报, 2021, 58(1): 169-179.
ZHANG H Q, ZHAO X Q, ZHANG L Y, SHEN R F. Effects of liming and dicyandiamide (DCD) application on soil pH and nitrification of acidic red soil. Acta Pedologica Sinica, 2021, 58(1): 169-179. (in Chinese)
[8] WANG J, TU X S, ZHANG H M, CUI J Y, NI K, CHEN J L, CHENG Y, ZHANG J B, CHANG S X. Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil. Science of the Total Environment, 2020, 747: 141340.
doi: 10.1016/j.scitotenv.2020.141340
[9] 樊卫国, 葛会敏. 不同形态及配比的氮肥对枳砧脐橙幼树生长及氮素吸收利用的影响. 中国农业科学, 2015, 48(13): 2666-2675.
FAN W G, GE H M. Effects of nitrogen fertilizer of different forms and ratios on the growth, nitrogen absorption and utilization of young navel orange trees grafted on Poncirus trifoliata. Scientia Agricultura Sinica, 2015, 48(13): 2666-2675. (in Chinese)
[10] 梁珊珊. 我国柑橘主产区氮磷钾肥施用现状及减施潜力研究[D]. 武汉: 华中农业大学, 2017.
LIANG S S. Studies on NPK fertilization status and the potential of reducing application rate in major Citrus planting regions of China[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[11] 雷靖, 梁珊珊, 谭启玲, 胡承孝, 孙学成, 赵小虎. 我国柑橘氮磷钾肥用量及减施潜力. 植物营养与肥料学报, 2019, 25(9): 1504-1513.
LEI J, LIANG S S, TAN Q L, HU C X, SUN X C, ZHAO X H. NPK fertilization rates and reducing potential in the main Citrus producing regions of China. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1504-1513. (in Chinese)
[12] 李文涛. 纽荷尔脐橙氮磷钾养分推荐技术初步研究[D]. 重庆: 西南大学, 2018.
LI W T. Preliminary studies on recommended fertilization for nitrogen, phosphorus, potassium of newhall navel orange[D]. Chongqing: Southwest University, 2018. (in Chinese)
[13] 王秀英. 重庆地区柑橘园土壤养分现状及优化施肥研究[D]. 重庆: 西南大学, 2011.
WANG X Y. Study on soil nutrient status of Citrus orchards and optimization fertilization in Chongqing area[D]. Chongqing: Southwest University, 2011. (in Chinese)
[14] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.
doi: 10.1126/science.1182570
[15] YANG M, LONG Q, LI W L, WANG Z C, HE X H, WANG J, WANG X Z, XIONG H Y, GUO C Y, ZHANG G C, LUO B, QIU J, CHEN X P, ZHANG F S, SHI X J, ZHANG Y Q. Mapping the environmental cost of a typical Citrus-producing County in China: hotspot and optimization. Sustainability, 2020, 12(5): 1827.
doi: 10.3390/su12051827
[16] BRITTO D T, KRONZUCKER H J. NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology, 2002, 159(6): 567-584.
doi: 10.1078/0176-1617-0774
[17] BALIGAR V C, FAGERIA N K. Influence of nitrogen forms and levels on the growth and nutrition of cacao. Journal of Plant Nutrition, 2017, 40(5): 709-718.
doi: 10.1080/01904167.2016.1262401
[18] WENG L Y, ZHANG M X, WANG K, CHEN G L, DING M, YUAN W, ZHU Y Y, XU W F, XU F Y. Potassium alleviates ammonium toxicity in rice by reducing its uptake through activation of plasma membrane H+-ATPase to enhance proton extrusion. Plant Physiology and Biochemistry, 2020, 151: 429-437.
doi: 10.1016/j.plaphy.2020.03.040
[19] TAMIR G, AFIK G, ZILKAH S, DAI N, BAR-TAL A. The use of increasing proportions of N-NH4+ among the total applied inorganic N to improve acidification and the nutritional status and performance of blueberry plants in soilless culture. Scientia Horticulturae, 2021, 276: 109754.
doi: 10.1016/j.scienta.2020.109754
[20] 汤丹丹, 刘美雅, 范凯, 阮建云. 茶树氮素吸收利用机制研究进展. 园艺学报, 2017, 44(9): 1759-1771.
TANG D D, LIU M Y, FAN K, RUAN J Y. Research progress of nitrogen utilization and assimilation in tea plant. Acta Horticulturae Sinica, 2017, 44(9): 1759-1771. (in Chinese)
[21] 唐伟杰, 官春云, 林良斌, 李丽萍, 张振华, 王峰, 肖钢, 李博, 刘屹湘. 不同硝铵比对油菜生长、生理与产量的影响. 植物营养与肥料学报, 2018, 24(5): 1338-1348.
TANG W J, GUAN C Y, LIN L B, LI L P, ZHANG Z H, WANG F, XIAO G, LI B, LIU Y X. Effects of nitrate and ammonium supply ratios on growth, physiology and yield of oilseed rape(Brassica napus L.). Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1338-1348. (in Chinese)
[22] KE J, PU W X, WANG H, LIU L H, SHENG S. Phenotypical evidence of effective amelioration of ammonium-inhibited plant (root) growth by exogenous low urea. Journal of Plant Physiology, 2020, 255: 153306.
doi: 10.1016/j.jplph.2020.153306
[23] 张梦, 梁永江, 张长华, 陈小明, 杨宇虹, 袁玲. 不同氮源对烤烟漂浮育苗氮素利用及烟苗生长的影响. 植物营养与肥料学报, 2012, 18(1): 139-145.
ZHANG M, LIANG Y J, ZHANG C H, CHEN X M, YANG Y H, YUAN L. Effects of nitrogen sources on nitrogen utilization and growth of flue-cured tobacco in the floating-seeding system. Plant Nutrition and Fertilizer Science, 2012, 18(1): 139-145. (in Chinese)
[24] ZHOU Q Y, GAO J Q, ZHANG R M, ZHANG R Q. Ammonia stress on nitrogen metabolism in tolerant aquatic plant-Myriophyllum aquaticum. Ecotoxicology and Environmental Safety, 2017, 143: 102-110.
doi: 10.1016/j.ecoenv.2017.04.016
[25] PODGÓRSKA A, BURIAN M, RYCHTER A M, RASMUSSON A G, SZAL B. Short-term ammonium supply induces cellular defence to prevent oxidative stress in Arabidopsis leaves. Physiologia Plantarum, 2017, 160(1): 65-83.
doi: 10.1111/ppl.12538
[26] 高青海, 王亚坤, 陆晓民, 贾双双. 硅对铵态氮胁迫下黄瓜幼苗生理特性的影响. 应用生态学报, 2014, 25(5): 1395-1400.
GAO Q H, WANG Y K, LU X M, JIA S S. Effects of exogenous silicon on physiological characteristics of cucumber seedlings under ammonium stress. Chinese Journal of Applied Ecology, 2014, 25(5): 1395-1400. (in Chinese)
[27] 孙朝晖, 程斐, 赵玉国, 李式军. 铵态氮促进水培番茄膜质过氧化产物形成. 园艺学报, 2002, 29(1): 4.
SUN Z H, CHENG F, ZHAO Y G, LI S J. NH4+-N accelerated lipid peroxidation materials in tomato leaves in nutrient solution cultivation. Acta Horticulturae Sinica, 2002, 29(1): 4. (in Chinese)
[28] 王笑, 蔡剑, 周琴, 戴廷波, 姜东. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展. 中国农业科学, 2021, 54(11): 2287-2301.
WANG X, CAI J, ZHOU Q, DAI T B, JIANG D. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: a review. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301. (in Chinese)
[29] 徐晓鹏, 傅向东, 廖红. 植物铵态氮同化及其调控机制的研究进展. 植物学报, 2016, 51(2): 152-166.
doi: 10.11983/CBB15077
XU X P, FU X D, LIAO H. Advances in study of ammonium assimilation and its regulatory mechanism in plants. Chinese Bulletin of Botany, 2016, 51(2): 152-166. (in Chinese)
doi: 10.11983/CBB15077
[30] DAI J L, ZHU Y G, HUANG Y Z, ZHANG M, SONG J L. Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. Plant and Soil, 2006, 289(1): 301-308.
doi: 10.1007/s11104-006-9139-7
[31] 刘学彤, 杨军芳, 黄少辉, 贾良良, 邢素丽, 杨云马, 王欣雅, 刘子轩. 尿素硝铵溶液对冬小麦产量及土壤无机氮含量的影响. 中国土壤与肥料, 2019(4): 116-120, 126.
LIU X T, YANG J F, HUANG S H, JIA L L, XING S L, YANG Y M, WANG X Y, LIU Z X. Effects of urea ammonium nitrogen on the yield of winter wheat and the concentration of soil mineral nitrogen. Soil and Fertilizer Sciences in China, 2019(4): 116-120, 126. (in Chinese)
[32] 鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[33] 王学奎. 植物生理生化实验原理和技术. 2版. 北京: 高等教育出版社, 2006.
WANG X K. Principles and Techniques of Plant Physiological Biochemical Experiment. 2nd ed. Beijing: Higher Education Press, 2006. (in Chinese)
[34] 白鹏, 冉春艳, 谢小玉. 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响. 中国农业科学, 2014, 47(18): 3566-3576.
BAI P, RAN C Y, XIE X Y. Influence of drought stress on physiological characteristics and agronomic traits at bud stage of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2014, 47(18): 3566-3576. (in Chinese)
[35] 鲍俊丹, 石美, 张妹婷, 梁东丽, 吴雄平. 中国典型土壤硝化作用与土壤性质的关系. 中国农业科学, 2011, 44(7): 1390-1398.
BAO J D, SHI M, ZHANG M T, LIANG D L, WU X P. Nitrification of main soils in China and its relationship with soil properties. Scientia Agricultura Sinica, 2011, 44(7): 1390-1398. (in Chinese)
[36] STEVENS R J, LAUGHLIN R J, MALONE J P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biology and Biochemistry, 1998, 30(8/9): 1119-1126.
doi: 10.1016/S0038-0717(97)00227-7
[37] 张苗苗, 王伯仁, 李冬初, 贺纪正, 张丽梅. 长期施加氮肥及氧化钙调节对酸性土壤硝化作用及氨氧化微生物的影响. 生态学报, 2015, 35(19): 6362-6370.
ZHANG M M, WANG B R, LI D C, HE J Z, ZHANG L M. Effects of long-term N fertilizer application and liming on nitrification and ammonia oxidizers in acidic soils. Acta Ecologica Sinica, 2015, 35(19): 6362-6370. (in Chinese)
[38] 张昊青, 赵学强, 张玲玉, 沈仁芳. 石灰和双氰胺对红壤酸化和硝化作用的影响及其机制. 土壤学报, 2021, 58(1): 169-179.
ZHANG H Q, ZHAO X Q, ZHANG L Y, SHEN R F. Effects of liming and dicyandiamide (DCD) application on soil pH and nitrification of acidic red soil. Acta Pedologica Sinica, 2021, 58(1): 169-179. (in Chinese)
[39] 沈兆敏, 刘焕东. 柑橘营养与施肥. 北京: 中国农业出版社, 2013.
SHEN Z M, LIU H D. Citrus Nutrition and Fertilization. Beijing: Chinese Agriculture Press, 2013. (in Chinese)
[40] 张彦东, 白尚斌. 氮素形态对树木养分吸收和生长的影响. 应用生态学报, 2003, 14(11): 204-2048.
ZHANG Y D, BAI S B. Effects of nitrogen forms on nutrient uptake and growth of trees. Chinese Journal of Applied Ecology, 2003, 14(11): 204-2048. (in Chinese)
[41] CHEN H H, JIA Y M, XU H, WANG Y W, ZHOU Y, HUANG Z R, YANG L T, LI Y, CHEN L S, GUO J X. Ammonium nutrition inhibits plant growth and nitrogen uptake in Citrus seedlings. Scientia Horticulturae, 2020, 272: 109526.
doi: 10.1016/j.scienta.2020.109526
[42] 刘扬, 孙淑珍, 雷康琦, 田中伟, 戴廷波. 外源硝态氮对高铵胁迫下小麦幼苗生长的影响. 麦类作物学报, 2019, 39(12): 1477-1485.
LIU Y, SUN S Z, LEI K Q, TIAN Z W, DAI T B. Effect of exogenous substances on seed germination and seedling growth under elevated ammonium stress in wheat. Journal of Triticeae Crops, 2019, 39(12): 1477-1485. (in Chinese)
[43] 李庆余, 徐新娟, 顾海龙, 高虹艳, 朱毅勇, 董彩霞, 沈其荣. 氮素形态对樱桃番茄果实发育中氮代谢的影响. 应用生态学报, 2010, 21(9): 2335-2341.
LI Q Y, XU X J, GU H L, GAO H Y, ZHU Y Y, DONG C X, SHEN Q R. Effects of applying different nitrogen form on cherry tomato nitrogen metabolism during fruit development. Chinese Journal of Applied Ecology, 2010, 21(9): 2335-2341. (in Chinese)
[44] 黄秀, 叶昌, 燕金香, 李福明, 褚光, 徐春梅, 陈松, 章秀福, 王丹英. 不同氮吸收效率水稻品种的苗期铵吸收特性及生长差异分析. 中国农业科学, 2021, 54(7): 1455-1468.
HUANG X, YE C, YAN J X, LI F M, CHU G, XU C M, CHEN S, ZHANG X F, WANG D Y. Analysis of ammonium uptake and growth differences of rice varieties with different nitrogen recovery efficiency at seedling stage. Scientia Agricultura Sinica, 2021, 54(7): 1455-1468. (in Chinese)
[1] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[2] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[3] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[4] ZHAO HaiXuan,ZHANG YiTao,LI WenChao,MA WenQi,ZHAI LiMei,JU XueHai,CHEN HanTing,KANG Rui,SUN ZhiMei,XI Bin,LIU HongBin. Spatial Characteristic and Its Factors of Nitrogen Surplus of Crop and Livestock Production in the Core Area of the Baiyangdian Basin [J]. Scientia Agricultura Sinica, 2023, 56(1): 118-128.
[5] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[6] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[7] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[8] WU Yue,SUI XinHua,DAI LiangXiang,ZHENG YongMei,ZHANG ZhiMeng,TIAN YunYun,YU TianYi,SUN XueWu,SUN QiQi,MA DengChao,WU ZhengFeng. Research Advances of Bradyrhizobia and Its Symbiotic Mechanisms with Peanut [J]. Scientia Agricultura Sinica, 2022, 55(8): 1518-1528.
[9] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[10] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[12] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[13] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[14] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[15] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!