Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (24): 5277-5289.doi: 10.3864/j.issn.0578-1752.2021.24.010

• HORTICULTURE • Previous Articles     Next Articles

Accumulation of Sugar and Flavonoids as Well as Their Association with Changes of Light Intensity During Fruit Development of Rosa roxburghii

FAN WeiGuo(),PAN XueJun,HE ChunLi,CHEN Hong,ZHOU YuJia   

  1. Guizhou University/Engineering Technology Research Centre for Rosa Roxburghii of National Forestry andGrassland Adminstration, Guiyang 550025
  • Received:2021-02-25 Accepted:2021-06-28 Online:2021-12-16 Published:2021-12-28
  • Contact: WeiGuo FAN E-mail:wgfan@gzu.edu.cn

Abstract:

【Objective】The accumulation of sugar and total flavonoids and their association with changes of light intensity during fruits development of Rosa roxburghii Tratt. were studied, so as to provide a scientific basis for the fruit quality control of Rosa roxburghii. 【Method】 Four-year-old ‘Guinong 5’ fruit-bearing trees of Rosa roxburghii was used as the material in the experiment, the natural light intensity was used as control (R0, CK), and three treatments were set up with the light intensity reduced by 20% (R20), 40% (R40) and 60% (R60), respectively. The accumulations of soluble sugar and total flavonoids as well as activities of related anabolic enzymes in fruits were analyzed, and the relationship between them and light intensity was determined. 【Result】Sugar and total flavonoids were accumulated continuously during the growth and development of Rosa roxburghii fruit, but their accumulation of different development periods had significant differences. The sugar in fruits began to accumulate rapidly after the slow growth stage, and the accumulation of total soluble sugar and sucrose reached the highest at maturity stage, in which the accumulation of sucrose accounted for 36.97% of the total soluble sugar. The accumulation of glucose and fructose in the rapid expansion period was the largest, but only accounted for 10.50% and 18.18% of the maximum accumulation of total soluble sugar at fruit maturity stage, respectively. Rosa roxburghii fruit was sucrose accumulation type. The total flavonoids in fruits were rapidly accumulated from young fruit stage to rapid fruit expansion stage, and then the accumulation of total flavonoids did not increase significantly. During the development of Rosa roxburghii fruit, the accumulation of sugar and total flavonoids under different light intensities was significantly different, while the decrease of light intensity was not conducive to the accumulation of sugar and total flavonoids in fruits. Sucrose synthase (SS), sucrose phosphate synthase (SPS), invertase (IVR) were the key enzymes affecting the metabolism of sugar in fruit. Alanine ammonia lyase (PAL), cinnamic acid-4-hydroxylase (C4H), 4-coumaric acid coenzyme A ligase (4CL) and chalcone synthase (CHS) were the key enzymes affecting the metabolism of flavonoids in fruit. The changes of light intensity were closely related to the accumulation of sugar, total flavonoids and the activities of related anabolic enzymes in fruits, while the activities of SS, SPS, IVR, PAL, C4H, 4CL and CHS were significantly inhibited by the decrease of light intensity. SS and SPS were sensitive to the decrease of light intensity during the whole fruit development of Rosa roxburghii. There was a significant positive correlation between sugar and total flavonoids accumulation in fruits, while the accumulation of sugar and total flavonoids and the activities of SS, SPS, IVR, PAL, C4H, 4CL and CHS were significantly or extremely significantly positively correlated with the changes of light intensity. 【Conclusion】Rosa roxburghii fruit were sucrose accumulation type, and the sugar in fruits began to accumulate rapidly after the slow growth stage, while the total flavonoids in fruits were rapidly accumulated from young fruit stage to rapid fruit expansion stage. The decrease of light intensity was not conducive to the accumulation of sugar and flavonoids in fruits. The contents of sugar and flavonoids in fruits could be increased by improving light conditions in production, which was conducive to improving the quality of Rosa roxburghii fruit.

Key words: Rosa roxburghii, fruit, light intensity, sugar, total flavonoids

Table 1

Light intensity of natural light and different shading treatments during different developmental stages of Rose roxburghii fruit"

处理
Treatment
光照强度Light intensity (μmol·m-2·s-1)
幼果期
Young fruit stage (S1)
缓慢生长期
Slow growing stage (S2)
快速膨大期
Rapid expansion stage (S3)
成熟期
Maturity stage (S4)
R0 (CK) 1498 1527 1782 1664
R20 1190 1251 1458 1322
R40 879 905 1092 971
R60 581 622 722 659

Fig. 1

The total soluble sugar accumulation in fruit of Rosa roxburghii in different development stages and under natural light intensity S1, S2, S3 and S4 represent the young fruit stage, slow growth stage, rapid expansion stage and maturity stage, respectively. Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 2

The total flavonoids accumulation in fruit of Rosa roxburghii during different development stages and under natural light intensity"

Fig. 3

Effect of light intensity reduce on soluble sugar accumulation in fruit of Rosa roxburghii during different development stages CK, R20, R40 and R60 represent natural light intensity (CK), light intensity reduced by 20%, 40% and 60%, respectively. Different small letters indicate significant difference at 0.05 level in different treatments of the same development stage, and different small letters in bracket indicate significant difference at 0.05 level in different development stages of the same treatment. The same as below"

Fig. 4

Effect of light intensity reduce on total flavonoids accumulation in fruit of Rosa roxburghii during different development stages"

Table 2

Relationship between different light intensities and total soluble sugar, sucrose, glucose, fructose and flavonoids accumulation of Rosa roxburghii fruit during different development stages"

不同光照强度
Different light intensity
积累量 Accumulation
蔗糖
Sucrose
葡萄糖
Glucose
果糖
Fructose
可溶性总糖
Total soluble sugar
总黄酮
Flavonoids
幼果期
Young fruit stage
y=0.015x-5.43
r=0.98**
y=0.0119x-1.54
r=0.97**
y=0.0139x-1.59
r=0.95**
y=0.065x-12.21
r=0.96**
y=0.0171x-0.78
r=0.93**
缓慢生长期
Slow growing stage
y=0.032x-8.04
r=0.98**
y=0.0273x-0.65
r=0.96**
y=0.0287x+3.15
r=0.97**
y=0.1255x+7.78
r=0.96**
y=0.0287x+2.83
r=0.93**
快速膨大期
Rapid expansion stage
y=0.1003x-24.17
r=0.97**
y=0.0969x+9.73
r=0.90**
y=0.1162x+32.46
r=0.87**
y=0.3828x+33.67
r=0.93**
y=0.0396x-3.38
r=0.95**
成熟期
Maturity stage
y=0.1774x+132.59
r=0.95**
y=0.0476x+48.196
r=0.95**
y=0.0592x+120.54
r=0.88**
y=0.449x+441.30
r=0.94**
y=0.0284x+15.95
r=0.98**

Table 3

Relationship between total flavonoids and soluble sugar accumulation in fruit of Rosa roxburghii during different development stages under different light intensities"

总黄酮积累量
Flavonoids accumulation
可溶性糖积累量 Soluble sugar accumulation
蔗糖 Sucrose 葡萄糖 Glucose 果糖 Fructose 可溶性总糖 Total soluble sugar
幼果期
Young fruit stage
y=0.8093x-3.55
r=0.96**
y=0.6630x-0.45
r=0.98**
y=0.7646x-0.13
r=0.96**
y=3.5979x-5.72
r=0.97**
缓慢生长期
Slow growing stage
y=1.0254x-8.26
r=0.97**
y=0.8750x-0.84
r=0.95**
y=0.9003x+3.69
r=0.94**
y=4.0679x+5.55
r=0.96**
快速膨大期
Rapid expansion stage
y=2.4503x-11.88
r=0.98**
y=2.5359x+13.70
r=0.98**
y=3.1106x+33.97
r=0.97**
y=9.7344x+62.71
r=0.99**
成熟期
Maturity stage
y=6.0485x+42.49
r=0.95**
y=1.6529x+22.60
r=0.96**
y=2.0889x+86.99
r=0.91**
y=15.72x+193.18
r=0.96**

Table 4

Effects of different light intensity on activities of soluble sugar synthesis related metabolic enzymes in fruit of Rosa roxburghii during different development stages"

酶活性
Enzyme activity (μg·min-1·g-1 FW)
处理
Treatment
幼果期
Young fruit stage
缓慢生长期
Slow growing stage
快速膨大期
Rapid expansion stage
成熟期
Maturity stage
蔗糖合成酶
Sucrose synthetase (SS)
R0 (CK) 386.17±19.10aC 416.81±27.19aC 482.73±11.97aB 521.10±15.68aA
R20 344.73±17.40bC 385.93±26.83bB 414.16±17.29bB 472.89±25.25bA
R40 303.48±12.66cD 325.67±12.96cC 347.38±10.48cB 423.53±25.53cA
R60 263.84±7.85dD 292.78±3.56dC 342.83±12.67cB 408.85±14.22cA
蔗糖磷酸合成酶
Sucrose phosphate synthase (SPS)
R0 (CK) 297.65±15.33aD 365.38±10.21aC 488.21±18.40aB 649.26±24.66aA
R20 218.06±14.30bD 317.16±8.29bC 384.44±22.96bB 491.42±14.37bA
R40 137.18±9.71cD 225.58±15.59cC 299.49±22.89cB 349.49±19.76cA
R60 90.86±1.90dD 165.67±5.44dC 255.85±16.39dB 324.25±15.81cA
转化酶
Invertase (IVR)
R0 (CK) 622.56±17.71aA 486.62±18.46aB 233.21±15.44aC 189.83±11.80aD
R20 595.84±13.75aA 466.54±17.71aB 218.24±19.77aC 188.75±8.82aD
R40 472.32±21.65bA 384.51±19.25bB 195.16±18.55bC 157.49±10.79bC
R60 437.69±4.90cA 340.60±17.76cB 185.73±10.99bC 146.03±9.39bC

Table 5

Effects of different light intensities on activities of flavonoid related synthase in fruit of Rosa roxburghii during different development stages"

酶活性
Enzyme activity
处理
Treatment
幼果期
Young fruit stage
缓慢生长期
Slow growing stage
快速膨大期
Rapid expansion stage
成熟期
Maturity stage
苯丙氨酸解氨酶
PAL (U·g-1 FW)
R0 (CK) 0.20±0.02aC 0.20±0.01aC 0.22±0.02aB 0.28±0.02aA
R20 0.18±0.01bC 0.18±0.01bC 0.19±0.01bB 0.26±0.02bA
R40 0.16±0.01cB 0.16±0.01cB 0.17±0.01cB 0.24±0.01cA
R60 0.13±0.01dC 0.13±0.01dC 0.15±0.01dB 0.20±0.01dA
肉桂酸-4-羟化酶
C4H (U·g-1 FW)
R0 (CK) 0.26±0.00aB 0.28±0.01aA 0.28±0.01aA 0.27±0.01aAB
R20 0.21±0.01bD 0.26±0.01abA 0.23±0.01bC 0.24±0.02bB
R40 0.20±0.01cC 0.25±0.01bA 0.21±0.01cBC 0.22±0.01cB
R60 0.19±0.00cB 0.20±0.01cA 0.20±0.01cA 0.16±0.01dC
4-香豆酸辅酶A连接酶
4CL (U·g-1 FW)
R0 (CK) 5.83±0.04aB 6.38±0.07aA 5.47±0.17aC 5.02±0.16aD
R20 5.22±0.20bB 5.65±0.13bA 5.06±0.08bBC 4.90±0.20aC
R40 5.17±0.11bA 5.31±0.05cA 4.71±0.18cB 4.60±0.10bB
R60 4.79±0.10cAB 4.91±0.09dA 4.62±0.11cB 4.30±0.10cC
查尔酮合成酶
CHS (U·mg-1 FW)
R0 (CK) 16.95±0.36aA 13.68±0.11aC 13.38±0.10aB 12.02±0.35aC
R20 14.34±0.18bA 11.62±0.08bC 13.03±0.23aB 10.93±0.17bC
R40 13.32±0.27cA 11.52±0.08bBC 12.17±0.12bB 10.72±0.10bC
R60 13.07±0.30cA 10.17±0.06cB 10.08±0.11cB 9.05±0.04cC

Table 6

Relationship between changes of light intensity and sucrose synthetase, sucrose phosphate synthase and sucrase activity in fruit of Rosa roxburghii during different development stages"

不同光照强度
Different light intensity
酶活性Enzymes activity
蔗糖合成酶 SS 蔗糖磷酸合成酶 SPS 转化酶 IVR
幼果期 Young fruit stage y=0.1333x+186.35 r=0.99** y=0.2294x-52.00 r=0.99** y=0.2120x+304.70 r=0.91**
缓慢生长期 Slow growing stage y=0.1421x+202.35 r=0.95** y=0.2262x+24.99 r=0.99** y=0.1712x+235.35 r=0.90**
快速膨大期 Rapid expansion stage y=0.1357x+225.26 r=0.93** y=0.2196x+79.56 r=0.97** y=0.0463x+149.61 r=0.91**
成熟期 Maturity stage y=0.1154x+323.11 r=0.94** y=0.3328x+68.69 r=0.96** y=0.0155x+165.15 r=0.56*

Table 7

Relationship between changes of light intensity and PAL, C4H, 4CL and CHS activity in fruit of Rosa roxburghii during different development stages"

不同光照强度
Different light intensities
酶活性Enzymes activity
苯丙氨酸解氨酶 PAL 肉桂酸-4-羟化酶 C4H 4-香豆酸辅酶A连接酶 4CL 查尔酮合成酶 CHS
幼果期
Young fruit stage
y=3E-05x+0.14
r=0.90**
y=6E-05x+0.16
r=0.86**
y=0.0010x+4.18
r=0.92**
y=3.4906x+11050.00
r=0.86**
缓慢生长期
Slow growing stage
y=3E-05x+0.14
r=0.88**
y=7E-05x+0.17
r=0.87**
y=0.0015x+3.91
r=0.97**
y=1.8717x+9332.40
r=0.80**
快速膨大期
Rapid expansion stage
y=5E-05x+0.13
r=0.89**
y=6E-05x+0.15
r=0.91**
y=0.0008x+3.96
r=0.90**
y=1.3312x+11032.00
r=0.74**
成熟期
Maturity stage
y=4E-05x+0.20
r=0.89**
y=3E-05x+0.21
r=0.70**
y=0.0006x+4.11
r=0.86**
y=0.9818x+9658.50
r=0.71**
[1] 秦孟根, 舒伟. 刺梨总黄酮的含量测定. 中草药, 1999(2):106-107.
QIN M G, SHU W. Determination of total flavonoids in fruit of Rosa roxburghii Tratt. Chinese Traditional and Herbal Drugs, 1999(2):106-107. (in Chinese)
[2] 杜薇, 刘国文. 刺梨总黄酮的含量测定及资源利用. 食品科学, 2003(1):112-114.
DU W, LIU G W. Determination of content of total flavonoids in Cili and resources development prospect. Food Science, 2003(1):112-114. (in Chinese)
[3] 杜薇. 不同采收期刺梨黄酮含量的影响. 中国中药杂志, 2002, 27(5):379-380.
DU W. Effects on flavonoids content of Rosa roxburghii Tratt.at different harvesting stages. China Journal of Chinese Materia Medica, 2002, 27(5):379-380. (in Chinese)
[4] 王慧, 杜薇. 贵州不同产地刺梨总黄酮的含量分析. 微量元素与健康研究, 2007, 24(6):22-23.
WANG H, DU W. Content analysis of total flavonoids in fruit of Rosa roxburghii Tratt.from different producing areas in Guizhou. Studies of Trace Elements and Health, 2007, 24(6):22-23. (in Chinese)
[5] 程水源, 顾曼如, 束怀瑞. 银杏叶黄酮研究进展. 林业科学, 2000, 36(6):110-115.
CHENG S Y, GU M R, SHU H R. Advances in research on flavonoids in Ginkgo biloba leaf. Scientia Silvae Sinicae, 2000, 36(6):110-115. (in Chinese)
[6] 安翠香, 张玉鑫, 杨世梅, 陈年来. 遮阴对甜瓜果实蔗糖积累及其代谢酶活性的影响. 西北农林科技大学学报(自然科学版), 2011, 39(9):167-173.
AN C X, ZHANG Y X, YANG S M, CHEN L N. Effects of light intensity on sucrose accumulation and sucrose-metabolizing enzymea ctivities of melon fruit. Journal of Northwest A&F University (Natural Science Edition), 2011, 39(9):167-173. (in Chinese)
[7] 杨绍兰, 王玫, 张晓菲, 王成荣, 王然. 套袋对‘茌梨’果实蔗糖代谢及相关酶基因表达的影响. 园艺学报, 2013(10):1887-1896.
YANG S L, WANG M, ZHANG X F, WANG C R, WANG R. Effects of bagging treatment on sugar metabolism and related gene expression in‘Chili pear fruits. Acta Horticulturae Sinica, 2013(10):1887-1896. (in Chinese)
[8] 刘敏, 成正龙, 张晋升, 鞠延仑, 房玉林, 孟江飞, 张振文. 遮阳网对酿酒葡萄果实及葡萄酒品质的影响. 西北植物学报, 2017, 37(9):1764-1772.
LIU M, CHENG Z L, ZHANG J S, JU Y L, FANG Y L, MENG J F, ZHANG Z W. Influence of shading net on qualities of cabernet sauvignon and Syrah berries and wines. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9):1764-1772. (in Chinese)
[9] 闫静, 王德炉, 郝家孝, 谢双喜. 光照强度对贵州兔眼蓝莓果实品质的影响. 经济林研究, 2017, 35(4):118-123.
YAN J, WANG D L, HAO J X, XIE S X. Effects of light intensity on fruit quality of rabbiteye blueberry in Guizhou. Nonwood Forest Research, 2017, 35(4):118-123. (in Chinese)
[10] 徐友, 王欢利, 汪贵斌, 曹福亮. 温度和光照强度对银杏叶黄酮合成的影响. 中南林业科技大学学报, 2016, 36(4):30-34.
XU Y, WANG H L, WANG G B, CAO F L. Effects of temperature and light intensity on flavonoid biosynthesis of ginkgo (Ginkgo biloba L.) leaves. Journal of Central South University of Forestry & Technology, 2016, 36(4):30-34. (in Chinese)
[11] LU S B, CHEN J, ZHANG W E, PAN X J. Effect of shading on polyphenols, related enzyme activity and gene expression in green husk of Juglans sigillata. Plant Physiology Communications, 2020, 56(6):1231-1242. (in Chinese)
[12] SPAYD S E, TARARA J M, MEE D L, FERGUSON J C. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 2002, 53(3):171-182.
[13] 周君, 陈宗玲, 张琼, 王红清. 套袋对桃果实成熟过程中酚酸类和类黄酮类物质积累的影响. 园艺学报, 2009, 36(12):1717-1724.
ZHOU J, CHEN Z L, ZHANG Q, WANG H Q. Effects of bagging on accumulation of phenolic acids and flavonoids it peach pericarp during fruit maturity. Acta Horticulturae Sinica, 2009, 36(12):1717-1724. (in Chinese)
[14] 杨蓓芬, 李钧敏. 东魁杨梅叶片次生代谢产物对光照与水分胁迫的响应. 河南农业科学, 2011, 40(7):118-122.
YANG B F, LI J M. Responses of the secondary metabolites contents in the leaves of Myrica rubra cv.Dongkui to light and water stress. Journal of Henan Agricultural Sciences, 2011, 40(7):118-122. (in Chinese)
[15] WINKEL-Shirley B. Biosynthesis of flavonoids and effects of stress. Current Opinion Plant Biology, 2002, 5(3):218-223.
doi: 10.1016/S1369-5266(02)00256-X
[16] 潘俊倩, 佟曦然, 郭宝林. 光对植物黄酮类化合物的影响研究进展. 中国中药杂志, 2016, 41(21):3897-3903.
PAN J Q, TONG X R, GUO B L. Progress of effects of light on plant flavonoids. China Journal of Chinese Materia Medica, 2016, 41(21):3897-3903. (in Chinese)
[17] WHETTEN R, SEDEROFF R. Lignin biosynthesis. The Plant Cell, 1995, 7(7):1001-1013.
doi: 10.2307/3870053
[18] DUTHIE G, CROZIER A. Plant-derived phenolic antioxidants. Current Opinion in Lipidology, 2000, 3(6):447-450.
[19] WANG Y S, GAO L P, SHAN Y, LIU Y J, TIAN Y W, XIA T. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae, 2012, 141:7-16.
doi: 10.1016/j.scienta.2012.04.013
[20] 王峰, 王秀杰, 赵胜男, 闫家榕, 卜鑫, 张颖, 刘玉凤, 许涛, 齐明芳, 齐红岩, 李天来. 光对园艺植物花青素生物合成的调控作用. 中国农业科学, 2020(23):4904-4917.
WANG F, WANG X J, ZHAO S N, YAN J R, BU X, ZHANG Y, LIU Y F, XU T, QI M F, QI H Y, LI T L. Light regulation of anthocyanin biosynthesis in horticultural crops. Scientia Agricultura Sinica, 2020, 53(23):4904-4917. (in Chinese)
[21] FENG F J, LI M J, MA F W, CHENG L L. Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to Sun exposure. Plant Physiology and Biochemistry, 2013, 69:54-61.
doi: 10.1016/j.plaphy.2013.04.020
[22] 何春丽, 樊卫国. 遮光对刺梨果实和叶片中维生素C与糖含量以及相关酶活性的影响. 西北植物学报, 2020, 40(12):2081-2092.
[11] 陆胜波, 陈静, 张文娥, 潘学军. 遮光对铁核桃青皮多酚物质及相关酶活性和基因表达的影响. 植物生理学报, 2020, 56(6):1231-1242.
[22] HE C L, FAN W G. Effects of shading on vitamin C and sugar contents and related enzymes activities in fruits and leaves of Rosa roxburghii. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(12):2081-2092. (in Chinese)
[23] 王学奎. 植物生理生化实验原理和技术. 2版. 北京: 高等教育出版社, 2006.
WANG X K. Principles and Techniques of Plant Physiological and Biochemical Experiments. 2nd ed. Beijing: Higher Education Press, 2006. (in Chinese)
[24] 杜改改, 李泰山, 刁松锋, 张嘉嘉, 傅建敏, 李芳东, 杨绍彬. 6个杏李品种果实甜酸风味品质分析. 果树学报, 2017, 34(1):41-49.
DU G G, LI T S, DIAO S F, ZHANG J J, FU J M, LI F D, YANG S B. Evaluation of flavor quality in relation to sugars and acids of six Prunus domestica × Armeniaca cultivars. Journal of Fruit Science, 2017, 34(1):41-49. (in Chinese)
[25] 罗锋, 汪河滨, 杨玲, 周忠波. 超声-微波协同萃取法提取甘草黄酮的研究. 食品研究与开发, 2006, 27(8):127-128.
LUO F, WANG H B, YANG L, ZHOU Z B. Studying on ultrasonic-microwave synergistic extraction flavonoids of Glycyrrhiza. Food Research and Development, 2006, 27(8):127-128. (in Chinese)
[26] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
GAO J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. (in Chinese)
[27] BRÖDENFELDT R, MOHR H. Use of immunotitration to demonstrate phytochrome-mediated synthesis de novo of chalcone synthase and phenylalanine ammonia lyase in mustard seedling cotyledons. Zeitschrift fur Naturforschung, 1986, 41:61-68.
[28] 范存斐, 毕阳, 王云飞, 任亚琳, 杨志敏, 王毅. 水杨酸对厚皮甜瓜采后病害及苯丙烷代谢的影响. 中国农业科学, 2012, 45(3):584-589.
FAN C F, BI Y, WANG Y F, REN Y L, YANG Z M, WANG Y. Effect of salicylic acid dipping on postharvest diseases and phenylpropanoid pathway in muskmelon fruits. Scientia Agricultura Sinica, 2012, 45(3):584-589. (in Chinese)
[29] 吕英民, 张大鹏. 果实发育过程中糖的积累. 植物生理学通讯, 2000, 36(3):258-265.
LÜ Y M, ZHANG D P. Accumulation of sugars in developing fruits. Plant Physiology Communications, 2000, 36(3):258-265. (in Chinese)
[30] 罗霄, 郑国琦, 王俊. 果实糖代谢及其影响因素的研究进展. 农业科学研究, 2008, 29(2):69-74.
LUO X, ZHENG G Q, WANG J. Advances in research on sugar metabolism and its influencing factor in fruits. Journal of Agricultural Sciences, 2008, 29(2):69-74. (in Chinese)
[31] 闫梅玲, 王振平, 范永, 周明, 孙盼, 单守明, 代红军. 蔗糖代谢相关酶在赤霞珠葡萄果实糖积累中的作用. 果树学报, 2010, 27(5):703-707.
YAN M L, WANG Z P, FAN Y, ZHOU M, SUN P, SHAN S M, DAI H J. Roles of sucrose-metabolizing enzymes in accumulation of sugars in Cabernet Sauvignon grape fruit. Journal of Fruit Science, 2010, 27(5):703-707. (in Chinese)
[32] 陈俊伟, 张良诚, 张上隆. 果实中的糖分积累机理. 植物生理学通讯, 2000, 36(6):497-503.
CHEN J W, ZHANG L C, ZHANG S L. Sugar accumulation mechanism in fruits. Plant Physiology Communications, 2000, 36(6):497-503. (in Chinese)
[33] 秦巧平, 张上隆, 谢鸣, 陈俊伟. 果实糖含量及成分调控的分子生物学研究进展. 果树学报, 2005, 22(5):519-525.
QIN Q P, ZHANG S L, XIE M, CHEN J W. Progress on the research of the molecular regulation of sugar content and composition in fruit. Journal of Fruit Science, 2005, 22(5):519-525. (in Chinese)
[34] SHI L Y, CAO S F, SHAO J R, CHEN W, YANG Z F, ZHENG Y H. Chinese bayberry fruit treated with blue light after harvest exhibit enhanced sugar production and expression of cryptochrome genes. Postharvest Biology & Technology, 2016, 111:197-204.
[35] 任雷, 胡晓辉, 杨振超, 邹志荣, 李鹏飞. 光照强度对厚皮甜瓜糖分积累与蔗糖代谢相关酶的影响. 西北农林科技大学学报(自然科学版), 2010, 38(6):120-126.
REN L, HU X H, YANG Z C, ZOU Z R, LI P F. Effects of light intensity on sugar accumulation and sucrose-metabolizing enzymes in muskmelon. Journal of Northwest A & F University (Natural Science Edition), 2010, 38(6):120-126. (in Chinese)
[36] YANG L Y, CHEN J J, SUN X M, LI J X, CHEN N L. Inhibition of sucrose and galactosyl-sucrose oligosaccharide metabolism in leaves and fruits of melon (Cucumis melo L.) under low light stress. Scientia Horticulturae, 2019, 244:343-351.
doi: 10.1016/j.scienta.2018.09.001
[37] ROY CHOUDHURY S, ROY S, DAS R, SENGUPTA D N. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter. Planta, 2008, 229(1):207.
doi: 10.1007/s00425-008-0821-2
[38] KOYAMA K, IKEDA H, POUDEL P R, GOTO-YAMAMOTO N. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry, 2012, 78:54-64.
doi: 10.1016/j.phytochem.2012.02.026
[39] ZORATTI L, KARPPINEN K, LUENGO ESCOBAR A, HÄGGMAN H, JAAKOLA L. Light-controlled flavonoid biosynthesis in fruits. Frontiers in Plant Science, 2014, 5:534.
[40] TAKEUCHI A, MATSUMOTO S, HAYATSU M. Effects of shading treatment on the expression of the genes for chalcone synthase and phenylalanine ammonia-lyase in tea plant (Camellia sinensis). Bulletin of the National Research Institute of Vegetables Ornamental Plants & Tea, 1995, 8:1-9.
[41] MATUS J T, LOYOLA R, VEGA A, PEÑA-NEIRA A, BORDEU E, ARCE-JOHNSON P, ALCALDE J A. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of Experimental Botany, 2009, 60(3):853-867.
doi: 10.1093/jxb/ern336
[42] AZUMA A, YAKUSHIJI H, KOSHITA Y, KOBAYASHI S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 2012, 236(4):1067-1080.
doi: 10.1007/s00425-012-1650-x
[43] XU Y, WANG G B, CAO F L, ZHU C C, WANG G Y, EL-KASSABY Y A. Light intensity affects the growth and flavonol biosynthesis of Ginkgo (Ginkgo biloba L.). New Forests, 2014, 45(6):765-776.
doi: 10.1007/s11056-014-9435-7
[44] BAKHSHI D, ARAKAWA O. Induction of phenolic compounds biosynthesis with light irradiation in the flesh of red and yellow apples. Journal of Applied Horticulture, 2006, 8(2):101-104.
doi: 10.37855/jah.2006.v08i02.23
[45] WANG H Q, ARAKAWA O, MOTOMURA Y. Influence of maturity and bagging on the relationship between anthocyanin accumulation and phenylalanine ammonialyase (PAL) activity in ‘Jonathan’ apples. Postharvest Biology & Technology, 2000, 19(2):123-128.
[46] 王斌, 张楠, 闫冲冲, 金青, 林毅, 蔡永萍, 张金云. 套袋对砀山酥梨果实石细胞发育及木质素代谢的影响. 园艺学报, 2013, 40(3):531-539.
WANG B, ZHANG N, YAN C C, JIN Q, LIN Y, CAI Y P, ZHANG J Y. Bagging for the development of stone cell and metabolism of lignin in Pyrus bretschneideri‘Dangshan Suli’. Acta Horticulturae Sinica, 2013, 40(03):531-539. (in Chinese)
[1] LIU ZhenShan, TU HongXia, ZHOU JingTing, MA Yan, CHAI JiuFeng, WANG ZhiYi, YANG PengFei, YANG XiaoQin, Kumail Abbas, WANG Hao, WANG Yan, WANG XiaoRong. Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry [J]. Scientia Agricultura Sinica, 2023, 56(2): 345-356.
[2] XIE YiTong,ZHANG Fei,SHI Jie,FENG Li,JIANG Li. Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C [J]. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656.
[3] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[4] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[5] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[6] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[7] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[8] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[9] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[10] HAN DongMei,HUANG ShiLian,OUYANG SiYing,ZHANG Le,ZHUO Kan,WU ZhenXian,LI JianGuang,GUO DongLiang,WANG Jing. Optimizing Management Mode of Disease and Nutrient During the Entire Fruit Development for Improving Postharvest Storability of Longan Fruit [J]. Scientia Agricultura Sinica, 2022, 55(21): 4279-4293.
[11] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[12] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[13] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[14] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[15] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!