Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (8): 1642-1656.doi: 10.3864/j.issn.0578-1752.2022.08.014

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C

XIE YiTong(),ZHANG Fei,SHI Jie,FENG Li,JIANG Li()   

  1. College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095
  • Received:2021-07-09 Accepted:2021-10-09 Online:2022-04-16 Published:2022-05-11
  • Contact: Li JIANG E-mail:2019108022@njau.edu.cn;jiangli@njau.edu.cn

Abstract:

【Background】The physiological metabolism of G. bicolor is active after harvest, and it is sensitive to low temperature. After harvest, it is often stored in a dark environment with slightly lower than room temperature. However, the long-term dark storage of G. bicolor will lead to sugar starvation, which affects the quality of G. bicolor. The dark storage also inhibits the photosynthetic process, resulting in reduced photosynthetic assimilation products and aggravated postharvest sugar starvation, and sucrose is the main form of photosynthetic product transport in plants. 【Objective】The effects of exogenous sucrose treatment on postharvest quality, sucrose metabolism and chloroplast of G. bicolor were studied to explore the related mechanism of sucrose treatment on delaying postharvest senescence in this study.【Method】On the basis of screening out the optimal concentration, the contents of starch, soluble sugar, reducing sugar, soluble protein and chlorophyll in G. bicolor during storage were detected to study the effect of sucrose treatment on postharvest quality of G. bicolor. The contents of sucrose, fructose, glucose, and sucrose metabolism related enzyme activities, such as Amylase, SPS, AI, SS-s, and SS-c, were detected during storage, and then the effects of sucrose treatments on sucrose metabolism of G. bicolor was studied. The changes of chloroplast ultrastructure during storage were observed by TEM. The activity of LOX, the content of MDA, and the Fv/Fm and QY of chloroplast during storage were detected, then the effects of sucrose treatment on the physiology and function of chloroplast were studied. The effects of postharvest sucrose treatment on G. bicolor were studied at biochemical and subcellular levels.【Result】The screening of sucrose concentration in the earlier study showed that 12% sucrose had the best preservation effect. Especially in the late storage period, compared with the control (distilled water treatment), the respiratory intensity, weightlessness rate, and decay rate of 12% sucrose treatment decreased by 39%, 7.8%, and 15.87%, respectively. Further study found that in the late storage, compared with the control, the treated sucrose content ratio was 1.82, starch content ratio was 1.10, soluble sugar content ratio was 1.11, soluble protein content ratio was 2.20, and chlorophyll content ratio was 1.23, indicating sucrose treatment significantly delayed the degradation of carbohydrates and nitrogenous substances. Sucrose treatment significantly inhibited the activities of SPS, AI and Amylase, indicating that sucrose treatment inhibited sucrose metabolism, thereby reducing the decomposition of sucrose and starch. In the later study on the physiological functions of chloroplasts of G. bicolor, it was found that at the end of storage, compared with the control, the treated G. bicolor effectively maintained the structural integrity of chloroplasts, reduced the activity of chloroplast LOX by 53.13%, and reduced the content of MDA by 33.33%. The Fv/Fm and QY were 1.35 and 1.97 times that of the control, respectively, indicating that sucrose treatment significantly delayed the senescence of chloroplasts. Further analysis showed that chloroplast function was positively correlated with starch and soluble sugar content, indicating that carbon source deficiency caused by sugar starvation could affect chloroplast function.【Conclusion】Sucrose treatment inhibited postharvest quality deterioration and chloroplast senescence of G. bicolor by reducing respiratory intensity, weightlessness rate and decay rate, regulating sucrose metabolism, reducing the degree of chloroplast membrane lipid oxidation, and maintaining the integrity of chloroplast structure, thereby delaying the senescence of G. bicolor.

Key words: sucrose metabolism, chloroplast, sugar starvation, Gynura bicolor D.C, preservation

Fig. 1

Effects of sucrose treatment at different concentrations on respiration rate (A), weight loss (B), conductivity (C) and decay rate (D) of G. bicolor Different lowercase letters indicate significant difference (P<0.05). The same as below"

Fig. 2

Effects of sucrose treatment on the content of starch (A), soluble sugar (B), reducing sugar(C) and soluble protein (D) of G. bicolor during storage"

Fig. 3

Effects of sucrose treatment on sucrose synthesis of G. bicolor"

Fig. 4

Effects of sucrose treatment on sucrose decomposition of G. bicolor"

Fig. 5

Changes of MDA (A) content and LOX (B) activity in chloroplasts of G. bicolor during storage"

Fig. 6

Effect of sucrose treatment on chloroplast ultrastructure of G. bicolor A: -1 day chloroplast ultrastructure; B, D, F: 3, 5, and 7 day chloroplast ultrastructure of the control, respectively; C, E, G: 3, 5, and 7 day chloroplast ultrastructure of the treatment, respectively. CP: chloroplast; CM: cell membrane; W: cell wall; S: starch granule; O: osmiophagic granule; GL: grana lamellae; VS: vesiculation of matrix slice layer"

Fig. 7

The effects of sucrose treatment on the maximum photochemical efficiency (A), QY (B), the change of NPQ (C) and Chlorophyll content (D) of G. bicolor during storage"

Table 1

Correlation between QY, LOX and carbohydrates, soluble protein and chlorophyll contents of G. bicolor"

指标
Index
蔗糖
Sucrose
淀粉
Starch
还原糖
Reducing sugar
可溶性蛋白
Soluble protein
可溶性糖
Soluble sugar
叶绿素
Chlorophyll
实际光化学效率
QY
相关系数r 0.358 0.709* 0.780** 0.791** 0.857** 0.911**
PP value 0.310 0.022 0.0081 0.006 0.002 0.001
脂氧合酶
LOX
相关系数r -0.700* 0.302 0.209 0.175 0.066 0.111
PP value 0.024 0.397 0.562 0.630 0.857 0.760

Fig. 8

Mechanism of sucrose treatment delaying Postharvest Senescence of G. bicolor Red/green indicates that the enzyme activity or substance content of the 12% sucrose treatment group is significantly higher than/lower than that of the control group, while white indicates that there is no significant difference between the treatment group and the control group (P<0.05);The dotted line indicates that the specific regulation method or the form of participation is still unknown"

[1] QIU X L, GUO Y X, ZHANG Q F. Chemical profile and antioxidant activity of Gynura bicolor DC. ethanolic extract. International Journal of Food Properties, 2018, 21(1): 407-415. doi: 10.1080/10942912.2018.1424199.
doi: 10.1080/10942912.2018.1424199
[2] BUCKNER B, JANICK-BUCKNER D, GRAY J, JOHAL G S. Cell-death mechanisms in maize. Trends in Plant Science, 1998, 3(6): 218-223. doi: 10.1016/S1360-1385(98)01254-0.
doi: 10.1016/S1360-1385(98)01254-0
[3] BLEECKER A B, PATTERSON S E. Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant Cell, 1997, 9(7): 1169-1179. doi: 10.1105/tpc.9.7.1169.
doi: 10.1105/tpc.9.7.1169
[4] 施衡乐, 吴伟杰, 郜海燕, 韩延超, 陈杭君, 刘瑞玲. 短波紫外线处理对紫背天葵采后贮藏品质的影响. 核农学报, 2018, 32(7): 1377-1383.
SHI H L, WU W J, GAO H Y, HAN Y C, CHEN H J, LIU R L. Effect of UV-C treatment on post-harvest storage quality of Gynura bicolor. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1377-1383. (in Chinese)
[5] 张飞, 石洁, 谢意通, 姜丽. 1-甲基环丙烯处理对采后紫背天葵抗氧化系统的影响. 食品科学, 2022, 43(1): 164-170. doi: 10.7506/spkx1002-6630-20201219-222.
doi: 10.7506/spkx1002-6630-20201219-222
ZHANG F, SHI J, XIE Y T, JIANG L.Effect of 1-methylcyclopropene treatment on the antioxidant system of Gynura bicolor DC. Food Science, 2022, 43(1): 164-170. doi: 10.7506/spkx1002-6630-20201219-222. (in Chinese)
doi: 10.7506/spkx1002-6630-20201219-222
[6] 许昕. 紫背天葵铜/锌超氧化物歧化酶基因克隆和采后处理对其表达的影响[D]. 南京: 南京农业大学, 2017: 65.
XU X. Copper/zinc supperoxide dismutase gene cloning of Gynura bicolor D.C and its expression after various postharvest treatments[D]. Nanjing: Nanjing Agricultural University, 2017: 65. (in Chinese)
[7] JIANG L, FENG L, HOU T Y, YU Z F. Establishment of a mathematical model for treatment of Gynura bicolor DC. by nano-packaging in combination with controlled atmosphere. Food Science, 2014, 35(16): 238-243. (in Chinese)
[8] VICKY B W, TANIA P, ELIZABETH H, EMILY B, OK L P, GIL N H, LIN J F, SHU-HSING W, JODI S, KIMITSUNE I, LEAVER C J. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2005, 42(4): 567-585.
doi: 10.1111/j.1365-313X.2005.02399.x
[9] BAENA-GONZÁLEZ E, ROLLAND F, THEVELEIN J M, SHEEN J. A central integrator of transcription networks in plant stress and energy signalling. Nature, 2007, 448(7156): 938-942. doi: 10.1038/nature06069.
doi: 10.1038/nature06069
[10] YU S M. Cellular and genetic responses of plants to sugar Starvation1. Plant Physiology, 1999, 121(3): 687-693. doi: 10.1104/pp.121.3.687.
doi: 10.1104/pp.121.3.687
[11] BAENA-GONZÁLEZ E, SHEEN J. Convergent energy and stress signaling. Trends in Plant Science, 2008, 13(9): 474-482. doi: 10.1016/j.tplants.2008.06.006.
doi: 10.1016/j.tplants.2008.06.006
[12] MCDOWELL N, POCKMAN W T, ALLEN C D, BRESHEARS D D, COBB N, KOLB T, PLAUT J, SPERRY J, WEST A, WILLIAMS D G, YEPEZ E A. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? The New Phytologist, 2008, 178(4): 719-739. doi: 10.1111/j.1469- 8137.2008.02436.x.
doi: 10.1111/j.1469- 8137.2008.02436.x.
[13] IZUMI M, NAKAMURA S, LI N. Autophagic turnover of chloroplasts: Its roles and regulatory mechanisms in response to sugar starvation. Frontiers in Plant Science, 2019, 10: 280. doi: 10.3389/fpls.2019.00280.
doi: 10.3389/fpls.2019.00280
[14] IZUMI M, WADA S, MAKINO A, ISHIDA H. The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis. Plant Physiology, 2010, 154(3): 1196-1209. doi: 10.1104/pp.110.158519.
doi: 10.1104/pp.110.158519
[15] IZUMI M, HIDEMA J, WADA S, KONDO E, KURUSU T, KUCHITSU K, MAKINO A, ISHIDA H. Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiology, 2015, 167(4): 1307-1320. doi: 10.1104/pp.114.254078.
doi: 10.1104/pp.114.254078
[16] 姚迪. 光照和可溶性糖处理对青花菜保鲜效果及其机理研究[D]. 南京: 南京农业大学, 2013: 53.
YAO D. Effects of light and soluble sugar treatments on quality maintenance and mechanism in postharvest broccoli florets[D]. Nanjing: Nanjing Agricultural University, 2013: 53. (in Chinese)
[17] 任亚梅. 猕猴桃果实叶绿素代谢及生理特性研究[D]. 杨凌: 西北农林科技大学, 2009.
REN Y M. Study on chlorophyll metabolism and physiology characteristics of kiwifruit[D]. Yangling: Northwest A & F University, 2009. (in Chinese)
[18] SITBON F, HENNION S, LITTLE C H A, SUNDBERG B. Enhanced ethylene production and peroxidase activity in IAA-overproducing transgenic tobacco plants is associated with increased lignin content and altered lignin composition. Plant Science, 1999, 141(2): 165-173. doi: 10.1016/S0168-9452(98)00236-2.
doi: 10.1016/S0168-9452(98)00236-2
[19] 吕恩利, 陆华忠, 杨松夏, 赵俊宏, 田庆立. 气调运输包装方式对荔枝保鲜品质的影响. 现代食品科技, 2016, 32(4): 156-160, 93. doi: 10.13982/j.mfst.1673-9078.2016.4.025.
doi: 10.13982/j.mfst.1673-9078.2016.4.025
LÜ E L, LU H Z, YANG S X, ZHAO J H, TIAN Q L. Effects of packaging methods on fresh-keeping quality of Litchi during controlled atmosphere transport. Modern Food Science and Technology, 2016, 32(4): 156-160, 93. doi: 10.13982/j.mfst.1673-9078.2016.4.025. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2016.4.025
[20] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2017: 56-78.
CAO J K, JIANG W W, ZHAO Y M. Guidance on postharvest physiological and biochemical experiments of fruits and vegetables. Beijing: China Light Industry Press, 2017: 56-78. (in Chinese)
[21] 潘俨, 孟新涛, 车凤斌, 薛素琳, 张婷, 赵世荣, 廖康. 库尔勒香梨果实发育成熟的糖代谢和呼吸代谢响应特征. 中国农业科学, 2016, 49(17): 3391-3412.
PAN Y, MENG X T, CHE F B, XUE S L, ZHANG T, ZHAO S R, LIAO K. Metabolic profiles of sugar metabolism and respiratory metabolism of Korla pear (Pyrus sinkiangensis Yu) throughout fruit development and ripening. Scientia Agricultura Sinica, 2016, 49(17): 3391-3412. (in Chinese)
[22] WU Z F, TU M M, YANG X P, XU J H, YU Z F. Effect of cutting and storage temperature on sucrose and organic acids metabolism in postharvest melon fruit. Postharvest Biology and Technology, 2020, 161(C): 111081. doi: 10.1016/j.postharvbio.2019.111081.
doi: 10.1016/j.postharvbio.2019.111081
[23] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 188-191.
GAO J F. Experimental guidance of plant physiology. Beijing: Higher Education Press, 2006: 188-191. (in Chinese)
[24] AUSTIN J, WEBBER A N. Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number. Photosynthesis Research, 2005, 85(3): 373-384. doi: 10.1007/s11120-005-7708-x.
doi: 10.1007/s11120-005-7708-x
[25] SONG L L, YI R X, LUO H B, JIANG L, GU S M, YU Z F.Postharvest 1-methylcyclopropene application delays leaf yellowing of pak choi (Brassica rapa subsp. chinensis) by improving chloroplast antioxidant capacity and maintaining chloroplast structural integrity during storage at 20℃. Scientia Horticulturae, 2020, 270: 109466. doi: 10.1016/j.scienta.2020.109466.
doi: 10.1016/j.scienta.2020.109466
[26] 吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊, 于天一. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响. 植物生态学报, 2014, 38(7): 740-748.
doi: 10.3724/SP.J.1258.2014.00069
WU Z F, SUN X W, WANG C B, ZHENG Y P, WAN S B, LIU J H, ZHENG Y M, WU J X, FENG H, YU T Y. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Chinese Journal of Plant Ecology, 2014, 38(7): 740-748. (in Chinese)
doi: 10.3724/SP.J.1258.2014.00069
[27] 田雨, 王旭文, 韩焕勇, 罗宏海, 王方永. 施氮量对等行距密植棉花气体交换和叶绿素荧光特性的影响. 新疆农业科学, 2020, 57(11): 1987-1997.
doi: 10.6048/j.issn.1001-4330.2020.11.004
TIAN Y, WANG X W, HAN H Y, LUO H H, WANG F Y. Effects of nitrogen application rates on gas exchange and chlorophyll fluorescence parameters of cotton under wide-row spacing with high density. Xinjiang Agricultural Sciences, 2020, 57(11): 1987-1997. (in Chinese)
doi: 10.6048/j.issn.1001-4330.2020.11.004
[28] BÜCHERT A M, CIVELLO P M, MARTÍNEZ G A. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. Journal of Plant Physiology, 2011, 168(4): 337-343. doi: 10.1016/j.jplph.2010.07.011.
doi: 10.1016/j.jplph.2010.07.011
[29] LESHEM Y Y. Plant senescence processes and free radicals. Free Radical Biology & Medicine, 1988, 5(1): 39-49. doi: 10.1016/0891-5849(88)90060-3.
doi: 10.1016/0891-5849(88)90060-3
[30] DAIE J. Cytosolic fructose-1, 6-bisphosphatase: a key enzyme in the sucrose biosynthetic pathway. Photosynthesis Research, 1993, 38(1): 5-14. doi: 10.1007/BF00015056.
doi: 10.1007/BF00015056
[31] KOCH K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 2004, 7(3): 235-246. doi: 10.1016/j.pbi.2004.03.014.
doi: 10.1016/j.pbi.2004.03.014
[32] CAMPOS P S, QUARTIN V, RAMALHO J C, NUNES M A. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp plants. Journal of Plant Physiology, 2003, 160(3): 283-292. doi: 10.1078/0176-1617-00833.
doi: 10.1078/0176-1617-00833
[33] 姜丽, 冯莉, 侯田莹, 郁志芳. 植酸处理对冷藏期间紫背天葵品质的影响. 食品工业科技, 2015, 36(7): 336-341. doi: 10.13386/j.issn1002-0306.2015.07.062.
doi: 10.13386/j.issn1002-0306.2015.07.062
JIANG L, FENG L, HOU T Y, YU Z F. Effect of phytic acid on Gynura bicolor D. C quality during cold storage. Science and Technology of Food Industry, 2015, 36(7): 336-341. doi: 10.13386/j.issn1002-0306.2015.07.062. (in Chinese)
doi: 10.13386/j.issn1002-0306.2015.07.062
[34] ARAUJO W L, TOHGE T, ISHIZAKI K, LEAVER C J, FERNIE A R. Protein degradation - an alternative respiratory substrate for stressed plants. Trends in Plant Science, 2011, 16(9): 489-498.
[35] ONO Y, WADA S, IZUMI M, MAKINO A, ISHIDA H. Evidence for contribution of autophagy to rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant, Cell & Environment, 2013, 36(6): 1147-1159. doi: 10.1111/pce.12049.
doi: 10.1111/pce.12049
[36] HIROYUKI I, KOHKI Y, MASANORI I, DANIEL R, YUICHI Y, AMANE M, YOSHINORI O, HANSON M R, TADAHIKO M. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiology, 2008, 148(1): 142-55. doi: 10.1104/pp.108.122770.
doi: 10.1104/pp.108.122770
[37] NAKAMURA S, IZUMI M. Regulation of chlorophagy during photoinhibition and senescence: Lessons from mitophagy. Plant and Cell Physiology, 2018, 59(6): 1135-1143. doi: 10.1093/pcp/pcy096.
doi: 10.1093/pcp/pcy096
[38] 田梦瑶, 周宏胜, 唐婷婷, 张映曈, 凌军, 罗淑芬, 李鹏霞. 外源蔗糖处理对采后桃果皮色泽形成的影响. 食品科学, 2022, 43(1): 177-183. doi: 10.7506/spkx1002-6630-20201112-135.
doi: 10.7506/spkx1002-6630-20201112-135
TIAN M Y, ZHOU H S, TANG T T, ZHANG Y T, LING J, LUO S F, LI P X. Effect of exogenous sucrose treatment on the peel coloration in postharvest peaches. Food Science, 2022, 43(1): 177-183. doi: 10.7506/spkx1002-6630-20201112-135. (in Chinese)
doi: 10.7506/spkx1002-6630-20201112-135
[39] BALIBREA LARA M E, GONZALEZ GARCIA M C, FATIMA T, EHNESS R, LEE T K, PROELS R, TANNER W, ROITSCH T. Extracellular invertase is an essential component of cytokinin- mediated delay of senescence. The Plant Cell, 2004, 16(5): 1276-1287. doi: 10.1105/tpc.018929.
doi: 10.1105/tpc.018929
[40] BISWAL B, PANDEY J K. Loss of photosynthesis signals a metabolic reprogramming to sustain sugar homeostasis during senescence of green leaves: role of cell wall hydrolases. Photosynthetica, 2018, 56(1): 404-410. doi: 10.1007/s11099-018-0784-x.
doi: 10.1007/s11099-018-0784-x
[41] FELLER U, ANDERS I, MAE T. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 2007, 59(7): 1615-1624. doi: 10.1093/jxb/erm242.
doi: 10.1093/jxb/erm242
[42] TERCÉ-LAFORGUE T, MÄCK G, HIREL B. New insights towards the function of glutamate dehydrogenase revealed during source-sink transition of tobacco (Nicotiana tabacum) plants grown under different nitrogen regimes. Physiologia Plantarum, 2004, 120(2): 220-228. doi: 10.1111/j.0031-9317.2004.0241.x.
doi: 10.1111/j.0031-9317.2004.0241.x.
[43] WITTENBACH V A, LIN W, HEBERT R R. Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiology, 1982, 69(1): 98-102. doi: 10.1104/pp.69.1.98.
doi: 10.1104/pp.69.1.98
[44] CHIBA A, ISHIDA H, NISHIZAWA N K, MAKINO A, MAE T. Exclusion of ribulose-1, 5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant and Cell Physiology, 2003, 44(9): 914-921. doi: 10.1093/pcp/ pcg118.
doi: 10.1093/pcp/ pcg118
[45] KRUPINSKA K. HOOBER J K. Fate and activities of plastids during leaf senescence//WISE R R, Structure and Function of Plastids. Aa Dordrecht, Netherlands: Springer, 2006: 433.
[46] 赵晓帼, 朱毅, 罗云波. 外源蔗糖对萝卜幼苗品质及代谢酶活性的影响. 食品科学, 2015, 36(9): 7-11. doi: 10.7506/spkx1002-6630-201509002.
doi: 10.7506/spkx1002-6630-201509002
ZHAO X G, ZHU Y, LUO Y B. Effect of exogenous sucrose on quality and metabolic enzyme activities of radish sprouts. Food Science, 2015, 36(9): 7-11. doi: 10.7506/spkx1002-6630-201509002. (in Chinese)
doi: 10.7506/spkx1002-6630-201509002
[47] 胡月, 王鸿飞, 董栓泉, 程佑声, 许凤, 邵兴锋, 李和生. 蔗糖处理对费菜黄酮含量及其抗氧化性的影响. 现代食品科技, 2016, 32(1): 250-255. doi: 10.13982/j.mfst.1673-9078.2016.1.039.
doi: 10.13982/j.mfst.1673-9078.2016.1.039
HU Y, WANG H F, DONG S Q, CHENG Y S, XU F, SHAO X F, LI H S. Effect of sucrose treatment on flavonoid content and antioxidant activity of Sedum aizoon leaves. Modern Food Science and Technology, 2016, 32(1): 250-255. doi: 10.13982/j.mfst.1673-9078.2016.1.039. (in Chinese)
doi: 10.13982/j.mfst.1673-9078.2016.1.039
[48] IZUMI M, ISHIDA H, NAKAMURA S, HIDEMA J. Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. The Plant Cell, 2017, 29(2): 377-394. doi: 10.1105/tpc.16.00637.
doi: 10.1105/tpc.16.00637
[1] WANG WanRu, CAO YueFen, SHENG Kuang, CHEN JinHong, ZHAO TianLun, ZHU ShuiJin. The Creation and Characteristics of Cotton Germplasm Lines Transgenic 1174AALdico-2+CTP Gene with Excellent Glyphosate Tolerance [J]. Scientia Agricultura Sinica, 2023, 56(17): 3261-3276.
[2] WANG Chao,FANG DongLu,ZHANG PanRong,JIANG Wen,PEI Fei,HU QiuHui,MA Ning. Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics [J]. Scientia Agricultura Sinica, 2022, 55(23): 4728-4742.
[3] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[4] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[5] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[6] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[7] XU ZiYi,CHENG Xing,SHEN Qi,ZHAO YaNan,TANG JiaYu,LIU Xi. Identification and Gene Functional Analysis of Yellow Green Leaf Mutant ygl3 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(15): 3149-3157.
[8] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[9] ZHU ZhiFeng,LIU Ping,XU RangWei,CHEN ChuanWu,DENG ChongLing,NIU Ying,ZHU Yi,WANG PengWei,DENG XiuXin,CHENG YunJiang. Influence of Plastic Film Covering of Tree Canopy on Fruit Postharvest Storage Performance in Shatangju Tangerine [J]. Scientia Agricultura Sinica, 2021, 54(12): 2630-2643.
[10] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[11] Ting WANG,Yu ZHANG,Hong LIU,TianTian HE,Yang BI,JianMin YUN. Effects of Ozone Fumigation Combined with PE Packaging on Postharvest Storage Quality and Antioxidant Capacity of Flammulina velutipes [J]. Scientia Agricultura Sinica, 2020, 53(4): 823-835.
[12] GAO Yuan,WANG DaJiang,WANG Kun,CONG PeiHua,ZHANG CaiXia,LI LianWen,PIAO JiCheng. Genetic Diversity and Phylogenetics of Malus baccata (L.) Borkh Revealed by Chloroplast DNA Variation [J]. Scientia Agricultura Sinica, 2020, 53(3): 600-611.
[13] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[14] WANG HuiJuan, ZHAO Jing, SHI ZuoKun, QIU LingYu, WANG Su, ZHANG Fan, WANG ShiGui, TANG Bin. Sequence Analysis and Induced Expression of Three Novel Small Heat Shock Proteins Mediating Cold-Hardiness in Harmonia axyridis [J]. Scientia Agricultura Sinica, 2017, 50(16): 3145-3154.
[15] LIU YunPeng, LIANG XiaoGui, SHEN Si, ZHOU LiLi, GAO Zhen, ZHOU ShunLi. Diurnal Variation and Directivity of Photosynthetic Carbon Metabolism in Maize Hybrids Under Gradient Drought Stress [J]. Scientia Agricultura Sinica, 2017, 50(11): 2083-2092.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!