Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 4984-4995.doi: 10.3864/j.issn.0578-1752.2021.23.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China

ZONG YuZheng(),ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu()   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2021-02-18 Accepted:2021-07-05 Online:2021-12-01 Published:2021-12-06
  • Contact: XingYu HAO E-mail:zongyuzheng@163.com;haoxingyu1976@126.com

Abstract:

【Objective】This study was conducted to clarify the response and acclimation process of winter wheat under elevated carbon dioxide (CO2) concentration and rising temperature in North China, so as to provide the theory basis for wheat production under future climate change condition.【Method】Winter wheat (Triticum aestivum ‘Zhongke2011’) plants were subjected to elevated CO2 concentration (ambient concentration +200 μmol·mol-1) and rising temperature (ambient temperature +2℃) at open top climate chambers. The photosynthetic traits, carbon and nitrogen metabolism, biomass accumulation and yield formation of winter wheat in response to elevated CO2 concentration and rising temperature were investigated. 【Result】The rising temperature shorten the whole growth period and the time from florescence to harvest of this wheat cultivar. The net photosynthesis rate (Pn) was enhanced at booting stage by 24.7%, but was not obviously changed in elongation and filling stages. However, the leaf fiber content, soluble protein content and nitrate reductase activity in filling stage, and kernels per spike, thousand seed weight, biomass, and yield in harvest stage decreased by 23.0%. Elevated CO2 concentration increased Pn in the elongation and booting stage by 32.8% and 40.7%, respectively. Elevated CO2 concentration also increased leaf carbohydrate content in the filling stage and spike number per unit area, and improved yield by 26.1%, although which induced photosynthesis acclimation at the late growth stage. Moreover, elevated CO2 concentration increased the time from florescence to harvest of wheat plants for 2 days, and improved Pn by 25.54%, leaf soluble sugar content, fiber content, and starch content under rising temperature conditions. 【Conclusion】Elevated CO2 concentration could offset the negative impacts of rising temperature on biomass accumulation and yield of wheat plants by increasing the time from florescence to harvest, net photosynthesis rate and carbon metabolism.

Key words: elevated CO2 concentration, rising temperature, winter wheat, photosynthesis performance, yield, growth period

Table 1

The air temperature of wheat growing season in 2017-2018 and 2019-2020"

年份
Year
处理
Treatment
生长季平均温度
Mean temperature of growing season (℃)
最高温度及出现日期
Maximum temperature and its date
最低气温及出现日期
Minimum temperature and its date
最高温度
Maximum
temperature (℃)
日平均温度
Mean daily temperature (℃)
日期
Date
(M-D)
最低温度
Minimum temperature (℃)
日平均温度
Mean daily temperature (℃)
日期
Date
(M-D)
2017-2018 CK 11.4 38.3 28.7 06-07 -11.9 0.2 02-04
EC 11.6 38.6 28.9 06-07 -11.3 -0.1 02-04
ET 13.5 40.5 30.9 06-07 -11.9 0.3 02-04
ECT 13.6 40.8 30.9 06-07 -11.8 0.2 02-04
2019-2020 CK 12.4 40.3 28.7 06-04 -10.9 -0.2 12-31
EC 12.4 40.5 28.9 06-04 -10.3 0.1 12-31
ET 14.1 42.4 30.9 06-04 -10.9 0.3 12-31
ECT 14 42.5 31.0 06-04 -9.9 0.3 12-31

Table 2

Effects of elevated CO2 and increased temperature on growth of wheat in two growing years"

年份
Year
处理
Treatment
播种期
Sowing date (M-D)
出苗时间
Emergence (d)
开花时间
Flowering date (d)
成熟期
Mature date (d)
开花到成熟时间
The days from flowering to ripening (d)
2017-2018 CK 10-25 9 180 219 39
EC 10-25 9 176 216 40
ET 10-25 8 174 209 35
ECT 10-25 8 171 208 37
2019-2020 CK 10-27 9 185 225 40
EC 10-27 9 183 223 40
ET 10-27 8 177 213 36
ECT 10-27 8 174 212 38

Fig. 1

Effects of elevated CO2 and increased temperature on net photosynthetic rate (Pn) and stomatal conductance (Gs) of wheat CK: Ambient CO2 concentration, ambient temperature; EC: Ambient concentration +200 μmol·mol-1; ET: Ambient temperature +2℃; ECT: Ambient concentration +200 μmol·mol-1, ambient temperature +2℃. P<0.05, significant difference; P<0.01, extremely significant difference. The same as below"

Table 3

Effects of elevated CO2 and increased temperature on leaf response parameters under different illumination levels of wheat at filling stage"

处理
Treatment
光饱和点
Light saturation point
(LSP) (μmol·m-2·s-1)
光补偿点
Light compensation point (LCP) (μmol·m-2·s-1)
最大净光合速率
Maximum net photosynthetic rate (Pnmax) (μmol·m-2·s-1)
暗呼吸速率
Dark respiration rate (Rd)
(μmol·m-2·s-1)
CK 2235.92±508.20ab 12.83±0.07ab 18.28±1.35b 1.01±0.14a
EC 2554.62±146.51a 10.47±5.17ab 22.07±0.58a 0.88±0.41a
ET 1475.33±118.13b 4.19±0.52b 19.99±0.28ab 0.42±0.05a
ECT 1481±150.09b 15.76±0.97a 22.59±0.61a 1.14±0.11a
P-value PT 0.01 0.54 0.21 0.49
PCO2 0.58 0.01 0.00 0.23
PT×CO2 0.59 0.03 0.48 0.09

Table 4

Effects of elevated CO2 and increased temperature on A-Ci curves of wheat at filling stage"

处理
Treatment
饱和胞间CO2浓度
Saturated intercellular CO2 concentration (Cisat) (μmol·mol-1)
CO2补偿点
CO2 compensation point (Γ)
(μmol·mol-1)
最大光合能力
Photosynthetic capacity (Amax) (μmol·m-2·s-1)
光呼吸速率
Photorespiration rate (Rp)
(μmol·m-2·s-1)
CK 772.78±70.01a 62.15±2.32a 42.64±3.2a 14.79±1.35a
EC 717.73±12.78b 65.41±3.44a 35.45±4.00ab 14.33±1.43a
ET 821.97±10.71a 68.47±4.28a 36.49±2.31ab 13.19±0.63a
ECT 842.16±14.57a 59.12±11.37a 30.64±1.92b 10.75±1.64a
P-value PT 0.00 0.99 0.10 0.08
PCO2 0.13 0.64 0.05 0.30
PT×CO2 0.01 0.35 0.82 0.47

Table 5

Effects of elevated CO2 and increased temperature on Vc.max and Jmax of wheat at filling stage"

处理
Treatment
最大羧化速率
Maximum carboxylation rate (Vc.max) (μmol·m-2·s-1)
最大电子传递速率
Maximum electron transport rate (Jmax) (μmol·m-2·s -1)
Jmax/Vc.max
CK 102.50±6.05a 103.78±9.45a 0.99±0.04b
EC 102.63±8.49a 104.00±5.60a 0.98±0.03b
ET 71.47±6.15b 60.43±6.58b 1.19±0.03a
ECT 52.52±4.70b 44.83±3.67b 1.17±0.03a
P-value PT 0.00 0.00 0.00
PCO2 0.18 0.28 0.65
PT×CO2 0.18 0.26 0.90

Table 6

Effects of elevated CO2 and increased temperature on the cytochrome at wheat at filling stage"

处理
Treatment
叶绿素a
Chl a (mg·g-1 FW)
叶绿素b
Chl b (mg·g-1 FW)
叶绿素a+b
Chl a and Chl b (mg·g-1 FW)
类胡萝卜素
Chl xc (mg·g-1 FW)
CK 2.44±0.14b 0.27±0.04b 2.71±0.18b 8.94±1.46a
EC 2.51±0.27bc 0.34±0.11b 2.85±0.38b 7.43±1.42a
ET 3.01±0.11a 0.63±0.00a 3.63±0.06a 4.78±2.75b
ECT 2.20±0.03c 0.32±0.04b 2.42±0.21c 7.89±0.71a
P-value PT 0.28 0.00 0.08 0.02
PCO2 0.01 0.02 0.01 0.17
PT×CO2 0.00 0.00 0.00 0.05

Table 7

Effects of elevated CO2 and increased temperature on the carbon and nitrogen metabolites of wheat at filling stage"

处理
Treatment
可溶性总糖含量
Soluble sugar
content (mg·g-1 FW)
淀粉含量
Starch content
(mg·g-1 FW)
纤维素含量
Cellulose content
(mg·g-1 FW)
可溶性蛋白
Soluble protein
(mg·g-1 FW)
硝酸还原酶活性
Nitrate reductase activity (μg NO2-·g-1 FW·h-1)
CK 2.38±0.40d 0.13±0.02b 4.39±1.23a 15.47±2.83b 4.14±0.74a
EC 7.01±0.59a 0.23±0.09a 4.91±0.90a 21.15±1.18a 1.70±0.02b
ET 4.36±0.30c 0.13±0.01b 2.79±0.13b 10.80±1.63c 1.84±0.24b
ECT 5.99±0.72b 0.28±0.03a 3.16±0.99b 8.25±1.15d 1.98±0.34b
P-value PT 0.15 0.47 0.02 0.00 0.00
PCO2 0.00 0.00 0.51 0.22 0.00
PT×CO2 0.00 0.41 0.91 0.01 0.00

Table 8

Effects of elevated CO2 and increased temperature on the morphological index of wheat"

年份
Year
处理
Treatment
株高
Plant height (cm)
穗长
Spike length (cm)
茎粗
Stem-diameter (mm)
节数
Internode number
2017-2018 CK 63.34±0.90ab 7.21±0.16a 3.419±0.072a 4.8±0.1a
EC 65.76±2.30a 7.64±0.26a 3.458±0.066a 4.9±0.0a
ET 60.41±0.29b 7.3±0.09a 3.418±0.059a 4.8±0.1a
ECT 62.83±1.55ab 7.52±0.13a 3.574±0.026a 4.7±0.1a
2019-2020 CK 66.19±2.32bc 9.81±0.20a 3.468±0.166a 5.9±0.1a
EC 71.26±1.16a 9.08±0.24b 3.520±0.102a 5.9±0.1a
ET 65.03±0.91c 8.49±0.20bc 3.096±0.114b 5.1±0.1b
ECT 70.53±1.02ab 8.25±0.18c 3.058±0.077b 5.1±0.1b
P-value Pyear 0.00 0.00 0.01 0.001
PT 0.07 0.00 0.01 0.01
PCO2 0.00 0.55 0.42 0.00
PT×CO2 0.91 0.61 0.91 0.01

Fig. 2

Effects of elevated CO2 and increased temperature on the biomass, yield and harvest index of wheat"

Table 9

Effects of elevated CO2 and increased temperature on the yield components of wheat"

年份 Year 处理 Treatment 单穗粒数 Grain number per spike 单位面积穗数 Spikes number (No./m2) 千粒重 1000-seed weight (g)
2017-2018 CK 22.7±1.7ab 327.1±9.8ab 45.44±1.84a
EC 25.3±1.2a 349.0±23.2a 44.45±0.66a
ET 21.1±1.0b 292.7±16.4b 43.68±0.74a
ECT 23.9±0.3ab 344.8±7.3a 44.55±0.66a
2019-2020 CK 45.0±1.4a 230.0±21.9c 43.53±1.12a
EC 46.3±6.7a 371.5±23.4a 38.39±4.00a
ET 37.2±4.4a 254.8±11.6bc 37.00±1.55a
ECT 39.8±2.1a 297.2±12.9b 36.32±0.64a
P-value Pyear 0.00 0.00 0.00
PT 0.03 0.08 0.05
PCO2 0.21 0.00 0.23
PT×CO2 0.83 0.16 0.21
[1] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018(4):1-7.
ZHAO G C, CHANG X H, WANG D M, TAO Z Q, WANG Y J, YANG Y S, ZHU Y J. general situation and development of wheat production. Crops, 2018(4):1-7. (in Chinese)
[2] IPCC. Summary for policymakers//STOCKER T F, QIN D H, PLATTNER G K. eds. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA, 2013.
[3] IPCC. Summary for policymakers//MASSON-DELMOTTE V, ZHAI P, PÖRTNER H O, ROBERTS D, SKEA J, SHUKLA P R. eds. Global Warming of 1.5°C. Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization,Switzerland, 2018.
[4] AINSWORTH E A, LONG S P. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 2020, 1:1-23.
doi: 10.1111/gcb.1995.1.issue-1
[5] SOBA D, SHU T, RUNION G B, PRIOR S A, FRITSCHI F B, ARANJUELO I, SANZ-SAEZ A. Effects of elevated [CO2] on photosynthesis and seed yield parameters in two soybean genotypes with contrasting water use efficiency. Environmental and Experimental Botany, 2020, 178:104154.
doi: 10.1016/j.envexpbot.2020.104154
[6] RUIZ-VERA U M, DE S A P, AMENT M R, GLEADOW R M, ORT D R. High sink strength prevents photosynthetic down-regulation in cassava grown at elevated CO2 concentration. Journal of Experimental Botany, 2020: eraa459.
[7] ZONG Y Z, SHANGGUAN Z P. Increased sink capacity enhances C and N assimilation under drought and elevated CO2 conditions in maize. Journal of Integrative Agriculture, 2016, 15(12):2775-2785.
doi: 10.1016/S2095-3119(16)61428-4
[8] 韩雪, 郝兴宇, 王贺然, 林而达. FACE条件下冬小麦生长特征及产量构成的影响. 中国农学通报, 2012, 28(36):154-159.
HAN X, HAO X Y, WANG H R, LIN E D. Effect of free air CO2 enrichment (FACE) on the growth and grain yield of winter wheat. Chinese Agricultural Science Bulletin, 2012, 28(36):154-159. (in Chinese)
[9] 韩雪, 郝兴宇, 王贺然, 李迎春, 林而达. 高浓度CO2对冬小麦旗叶和穗部氮吸收的影响. 中国农业气象, 2012, 33(2):197-201.
HAN X, HAO X Y, WANG H R, LI Y C, LIN E D. Effect of free air CO2 enrichment on nitrogen absorption in leaf and head of winter wheat. Chinese Journal of Agrometeorology, 2012, 33(2):197-201. (in Chinese)
[10] HAN X, LAM KEE S, WANG H, LIN E, WHEELER T. Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: A 3-year free-air CO2 enrichment experiment. Agriculture, Ecosystems & Environment, 2015, 209:132-137.
doi: 10.1016/j.agee.2015.04.007
[11] TAN K Y, FANG S B, ZHOU G S, REN S X, GUO J P. Responses of irrigated winter wheat yield in north China to increased temperature and elevated CO2 concentration. Journal of Meteorological Research, 2015(4):691-702.
[12] ASSENG S, EWERT F, MARTRE P, RÖTTER R P, LOBELL D B, CAMMARANO D, KIMBALL B A, OTTMAN M J, WALL G W, WHITE J W, et al. Rising temperatures reduce global wheat production. Nature Climate Change, 2015, 5(2):143-147.
doi: 10.1038/nclimate2470
[13] BARNABÁS B, JÄGER K, FEHÉR A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell & Environment, 2010, 31(1):11-38.
[14] ASSENG S, FOSTER I, TURNER N C. The impact of temperature variability on wheat yields. Global Change Biology, 2011, 17(2):997-1012.
doi: 10.1111/gcb.2010.17.issue-2
[15] LOBELL D B, BNZIGER M, MAGOROKOSHO C, VIVEK B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 2011, 1(1):42-45.
[16] HERRING S C, NIKOLAOS C, ANDREW H, KOSSIN J P, SCHRECK C J, STOTT P A. Explaining extreme events of 2016 from a climate perspective. Bulletin of the American Meteorological Society, 2017, 99(1):S1-S157.
[17] XIE W, XIONG W, PAN J, ALI T, CUI Q, GUAN D, MENG J, MUELLER N D, LIN E, DAVIS S J. Decreases in global beer supply due to extreme drought and heat. Nature plants, 2018, 4(11):964-973.
doi: 10.1038/s41477-018-0263-1
[18] CAI C, YIN X, HE S, JIANG W, SI C, STRUIK P C, LUO W, LI G, XIE Y, XIONG Y, PAN G. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 2016, 22(2):856-874.
doi: 10.1111/gcb.13065
[19] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 61-63, 140-142.
GAO J F. Experimental guidance for Plant Physiology. Beijing: China Higher Education Press, 2006: 61-63, 140-142.(in Chinese)
[20] 叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010, 34(6):727-740.
doi: 10.3773/j.issn.1005-264x.2010.06.012
YE Z P. A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 2010, 34(6):727-740. (in Chinese)
doi: 10.3773/j.issn.1005-264x.2010.06.012
[21] FARQUHAR G D, VON CAEMMERER S, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149(1):78-90.
doi: 10.1007/BF00386231
[22] STRECK N A. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield. Ciência Rural, 2005, 35(3):730-740.
doi: 10.1590/S0103-84782005000300041
[23] DUTTA S, MOHANTY S, TRIPATHY B C. Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiology, 2009, 150(2):1050-1061.
doi: 10.1104/pp.109.137265
[24] LONG S P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant, Cell & Environment, 1991, 78(8):236-246.
[25] 杨松涛, 李彦舫, 胡玉熹, 林金星, 邹啸环. CO2倍增对3种禾本科植物叶绿体超微结构的影响. 西北植物学报, 1998, 18(3):330-334.
YANG S T, LI Y F, HU Y X, LIN J X, ZHOU X H. The effects of elevated CO2 on the ultrastructure of chloroplast of three graminoid plants. Acta Botanica Boreali-Occidentalia Sinica, 1998, 18(3):330-334. (in Chinese)
[26] 李佳帅, 杨再强, 王明田, 韦婷婷, 赵和丽, 江梦圆, 孙擎, 黄琴琴. 水氮耦合对苗期葡萄叶片氮素代谢酶活性的影响. 中国农业气象, 2019, 40(6):368-379.
LI J S, YANG Z Q, WANG M T, WEI T T, ZHAO H L, JIANG M Y, SUN Q, HUANG Q Q. Effect of water and nitrogen coupling on nitrogen metabolism enzyme activities in grapevine seedling leaves. Chinese Journal of Agrometeorology, 2019, 40(6):368-379. (in Chinese)
[27] QIAO Y, MIAO S, LI Q, JIN J, LUO X, TANG C. Elevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region. Science of the total Environment, 2019, 666:405-413.
doi: 10.1016/j.scitotenv.2019.02.149
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!