Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4132-4142.doi: 10.3864/j.issn.0578-1752.2021.19.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Evolution Characteristics and Influencing Factors on Inherent Soil Productivity Across Dryland

LI GuanMo1(),ZHANG WenJu1(),QU XiaoLin2,QIAO Lei1,HUANG YaPing1,XU Hu1,XU MingGang1   

  1. 1Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving of Arable Land, Beijing 100081
    2Farmland Quality Monitoring and Protection Center of the Ministry of Agriculture and Rural Affairs, Beijing 100125
  • Received:2020-10-28 Accepted:2021-04-20 Online:2021-10-01 Published:2021-10-12
  • Contact: WenJu ZHANG E-mail:82101186082@caas.cn;zhangwenju01@caas.cn

Abstract:

【Objective】Inherent soil productivity of cropland is an important index of its productivity potential. The main objective of this study was to explore the evolution patterns and to identify the main influencing factors on the contribution of inherent soil productivity (CISP), which could provide the guidance for sustainable utilization of cultivated land to improve of CISP. 【Method】Based on the national long-term field monitoring network in China, the monitoring dataset were grouped according to regional distributions, monitoring years, soil types, and soil physical and chemical properties to explore the spatial-temporal evolution patterns and importance factors on the CISP for wheat/maize season.【Result】The median values of CISP for wheat and maize were 48.9% and 53.4% across main producing regions. The CISP for maize in Northeast and Northwest China were 60.8% and 57.0%. In southwest China, the CISP for the wheat and maize were both the lowest, with the median values of 35.8% and 21.3%. During the past 30 years, the CISP of China’s cropland showed an increasing trend. The CISP in the 2010s significantly were increased by 15 percentage points compared with the value in the 1980s. The results of random forest model showed that soil type and soil pH were the main factors influencing the CISP at national scale. As for wheat on regional scale, soil organic matter (SOM) was the most important factor in the North China, and available phosphorus (AP) was the most important factor in the Southwest China and the middle and lower reaches of Yangtze River. However, as for maize, regardless of soil type and area, available potassium (AK) and soil pH were mainly important influencing factors in the North China and the lower reaches of Yangtze River. Soil organic matter (SOM) was the most important factor in the Northeast and Southwest China. 【Conclusion】The CISP in China is increasing on the whole with obvious differences among regions. On the national scale, soil type and pH were main factors casing variation of CISP. The soil type, SOM, AP and pH were mainly important factors casing variation of CISP on regional scale.

Key words: farmland soil, inherent soil productivity, the evolution characteristics, wheat, maize

Table 1

Overview of the regional distributions and typical soil types involved in the study"

区域
Region
监测点个数
The number of sites
各时间阶段监测点个数
Number of sites in each time period
主要土壤类型
Typical soil type
1980s 1990s 2000s 2010s
东北 Northeast China 23 0 8 10 5 黑土、草甸土、棕壤 Black soil, Meadow soil, Brown soil
华北
North China Plain
65 6 24 25 10 潮土、褐土、砂姜黑土
Fluvo-aquic soil, Cinnamon soil, Shajiang black soil
长江中下游
The middle and lower reaches of the Yangtze River
46 2 17 23 4 水稻土、潮土、砂姜黑土
Paddy soil, Fluvo-aquic soil, Shajiang black soil
西南 Southwest China 13 4 4 4 1 水稻土、紫色土、红壤 Paddy soil, Purple soil, Red soil
西北
Northwest China
25 3 9 9 4 灌漠土、灌淤土、栗钙土
Irrigated desert soil, Irrigated-silting soil, Chestnut soil
总计 Total 172

Table 2

Grouping standard of soil nutrient factors and pH"

土壤性状等级
Soil property level
有机质
Soil organic matter (g·kg-1)
全氮
Total nitrogen (g·kg-1)
有效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
pH
>25 >1.5 >40 >200 >8.5
20-25 1.25-1.5 30-40 150-200 7.5-8.5
15-20 1-1.25 20-30 100-150 6.5-7.5
10-15 0.75-1 10-20 50-100 5.5-6.5
≤10 ≤0.75 ≤10 ≤50 ≤5.5

Fig. 1

The contribution percentage of inherent soil productivity after each monitoring sites for different region and periods The lower and upper boundaries,bars,and dots in or outside the boxes indicate 25% and 75%, 5% and 95%, the minimum and maximum besides the vertical outliers of the data. The solid and dashed lines represent the median and mean value. Different letters indicate significant differences (P<0.05) in median mean value. Numbers of observations are shown in parenthesis. The same as below"

Fig. 2

The contribution percentage of inherent soil productivity in the different soil chemical properties SOM: Soil organic matter; TN: Soil total nitrogen; AP: Soil available phosphorus; AK: Soil available potassium. The same as below"

Fig. 3

The contribution percentage of inherent soil productivity in different soil types and texture"

Fig. 4

Impact factors importance of the contribution percentage of inherent soil productivity in wheat growing season"

Fig. 5

Impact factors importance of the contribution percentage of inherent soil productivity in maize growing season"

Fig. 6

Impact factors importance of the contribution percentage of inherent soil productivity for the different periods for wheat and maize season"

Table 3

Var explained (%) in random forest model"

作物类型
Crop type
全国
The whole China
区域 Region 时间 Time period
东北
Northeast China
华北
North China Plain
长江中下游
The middle and lower
reaches of Yangtze River
西北
Northwest China
西南
Southwest China
1980s 1990s 2000s 2010s
小麦Wheat 32.15 - 3.41 20.79 49.54 20.53 5.28 28.6 35.97 33.96
玉米Maize 50.34 40.38 3.19 47.63 68.03 46.07 19.33 42.34 66.54 49.97
[1] 周健民. 浅谈我国土壤质量变化与耕地资源可持续利用. 中国科学院院刊, 2015, 30(4):459-467.
ZHOU J M. Evolution of soil quality and sustainable use of soil resources in China. Bulletin of Chinese academy of Science, 2015, 30(4):459-467. (in Chinese)
[2] 徐明岗, 卢昌艾, 张文菊, 李玲, 段英华. 我国耕地质量状况与提升对策. 中国农业资源与区划, 2016, 37(7):8-14.
XU M G, LU C A, ZHANG W J, LI L, DUAN Y H. Situation of the quality of arable land in China and improvement strategy. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(7):8-14. (in Chinese)
[3] 沈仁芳, 王超, 孙波. “藏粮于地、藏粮于技”战略实施中的土壤科学与技术问题. 中国科学院院刊, 2018, 33(2):135-144.
SHEN R F, WANG C, SUN B. Soil related scientific and technological problems in implementing strategy of “Storing Grain in Land and Technology”. Bulletin of Chinese Academy of Science, 2018, 33(2):135-144. (in Chinese)
[4] 张俊伶, 张江周, 申建波, 田静, 金可默, 张福锁. 土壤健康与农业绿色发展: 机遇与对策. 土壤学报, 2020, 57(4):783-796.
ZHANG J L, ZHANG J Z, SHEN J B, TIAN J, JIN K M, ZHANG F S. Soil health and agriculture green development: Opportunities and challenges. Acta Pedologica Sinica, 2020, 57(4):783-796. (in Chinese)
[5] FAN M S, LAL R, CAO J, QIAO L, SU Y S, JIANG R F, ZHANG F S. Plant-based assessment of inherent soil productivity and contributions to China’s cereal crop yield increase since 1980. PLoS ONE, 2013, 8(9):e74617.
doi: 10.1371/journal.pone.0074617
[6] WANG S C, WANG J Z, ZHAO Y W, REN Y, XU M G, ZHANG S X, LU C A. Assessment of the contribution percentage of inherent soil productivity of cultivated land in China. Journal of Integrative Agriculture, 2019, 18(11):2619-2627.
doi: 10.1016/S2095-3119(18)62152-5
[7] ZHA Y, WU X P, HE X H, ZHANG H M, GONG F F, CAI D X, ZHU P, GAO H J. Basic soil productivity of spring maize in black soil under long-term fertilization based on DSSAT model. Journal of Integrative Agriculture, 2014, 13(3):577-587.
doi: 10.1016/S2095-3119(13)60715-7
[8] QIN X L, ZHANG F X, LIU C, YU H, CAO B G, TIAN S Q, LIAO Y C, SIDDIQUE K H M. Wheat yield improvements in China: Past trends and future directions. Field Crops Research, 2015, 177:117-124.
doi: 10.1016/j.fcr.2015.03.013
[9] 查燕, 武雪萍, 贡付飞, 张会民, 徐明岗. 潮土区常规施肥下冬小麦农田基础地力演变规律. 中国土壤与肥料, 2018(2):35-41.
ZHA Y, WU X P, GONG F F, ZHANG H M, XU M G. The changes of basic soil productivity of winter wheat farmland under conventional fertilization in fluvo-aquic soil area. Soil and Fertilizer Sciences in China, 2018(2):35-41. (in Chinese)
[10] 汤勇华, 黄耀. 中国大陆主要粮食作物地力贡献率和基础产量的空间分布特征. 农业环境科学学报, 2009, 28(5):1070-1078.
TANG Y H, HUANG Y. Spatial distribution characteristics of the percentage of soil fertility contribution and its associated basic crop yield in mainland China. Journal of Agro-Environment Science, 2009, 28(5):1070-1078. (in Chinese)
[11] 李建军, 徐明岗, 辛景树, 段建军, 任意, 李冬初, 黄晶, 申华平, 张会民. 中国稻田土壤基础地力的时空演变特征. 中国农业科学, 2016, 49(8):1510-1519.
LI J J, XU M G, XIN J S, DUAN J J, REN Y, LI D C, HUANG J, SHEN H P, ZHANG H M. Spatial and temporal characteristics of basic soil productivity in China. Scientia Agricultura Sinica, 2016, 49(8):1510-1519. (in Chinese)
[12] 贡付飞, 查燕, 武雪萍, 黄绍敏, 徐明岗, 张会民, 刘海龙, 姜志伟, 王小彬, 蔡典雄. 长期不同施肥措施下潮土冬小麦农田基础地力演变分析. 农业工程学报, 2013, 29(12):120-129.
GONG F F, ZHA Y, WU X P, HUANG S M, XU M G, ZHANG H M, LIU H L, JIANG Z W, WANG X B, CAI D X. Analysis on basic soil productivity change of winter wheat in fluvo-aquic soil under long-term fertilization. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(12):120-129. (in Chinese)
[13] BREIMAN L. Statistical modeling: The two cultures. Statistical Science, 2001, 16:199-215.
doi: 10.1214/ss/1009213725
[14] 李建更, 高志坤. 随机森林针对小样本数据类权重设置. 计算机工程与应用, 2009, 45(26):131-134.
LI J G, GAO Z K. Setting of class weights in random forest for small-sample data. Computer Engineering and Applications, 2009, 45(26):131-134.
[15] NIU X K, XIE R Z, LIU X, ZHANG F L, LI S K, GAO S J. Maize yield gains in Northeast China in the last six decades. Journal of Integrative Agriculture, 2013, 4:630-637.
[16] SATTARI S Z, VAN ITTERSUM M K, BOUWMAN A F, SMIT A L, JANSSEN B H. Crop yield response to soil fertility and N, P, K inputs in different environments: Testing and improving the QUEFTS model. Field Crops Research, 2014, 157:35-46.
doi: 10.1016/j.fcr.2013.12.005
[17] 何中虎, 林作楫, 王龙俊, 肖志敏, 万富世, 庄巧生. 中国小麦品质区划的研究. 中国农业科学, 2002, 35(4):359-364.
HE Z H, LIN Z Y, WANG L J, XIAO Z M, WAN F S, ZHUANG Q S. Classification on Chinese wheat regions based on quality. Scientia Agricultura Sinica, 2002, 35(4):359-364. (in Chinese)
[18] 万克江, 薛绪掌, 王志敏, 高志远, 马智宏. 土壤水分状况对小麦苗期生长及生理特性的影响. 干旱区资源与环境, 2005, 19(5):169-173.
WAN K J, XUE X Z, WANG Z M, GAO Z Y, MA Z H. The influence of soil water conditions on the growth and physiological characteristics of wheat seedling. Journal of Arid Land Resources and Environment, 2005, 19(5):169-173. (in Chinese)
[19] 黄超, 刘战东, 赵犇, 张凯, 宁东峰, 秦安振, 李森. 不同产量水平下冬小麦生长发育和耗水特性研究. 灌溉排水学报, 2019, 38(10):10-16.
HUANG C, LIU Z D, ZHAO B, ZHANG K, NING D F, QIN A Z, LI S. Study on growth, development and water consumption characteristics of winter wheat under different yield levels. Journal of Irrigation and Drainage, 2019, 38(10):10-16. (in Chinese)
[20] 刘月娥. 玉米对区域光、温、水资源变化的响应研究[D]. 北京: 中国农业科学院, 2013.
LIU Y E. The research on maize’s responses to the regional resources change of light, temperature and water[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[21] 汤勇华, 黄耀. 中国大陆主要粮食作物地力贡献率及其影响因素的统计分析. 农业环境科学学报, 2008, 27(4):1283-1289.
TANG Y H, HUANG Y. Statistical analysis of the percentage of soil fertility contribution to grain crop yield and driving factors in mainland China. Journal of Agro-Environment Science, 2008, 27(4):1283-1289. (in Chinese)
[22] 林葆, 李家康, 林继雄, 吴祖坤. 全国化肥试验网协作研究三十二年. 土壤肥料, 1989(5):7-11.
LIN B, LI J K, LIN J X, WU Z K. Thirty-two years of national chemical fertilizer trial net co-operation. Soils and Fertilizers, 1989(5):7-11. (in Chinese)
[23] 王乐, 张淑香, 马常宝, 李春花. 潮土区29年来土壤肥力和作物产量演变特征. 植物营养与肥料学报, 2018, 24(6):1435-1444.
WANG L, ZHANG S X, MA C B, LI C H. Characteristics of soil fertility and crop yield evolution in fluvo-aquic soil area in the past 29 years. Journal of Plant Nutrition and Fertilizers, 2018, 24(6):1435-1444. (in Chinese)
[24] 张淑香, 张文菊, 沈仁芳, 徐明岗. 我国典型农田长期施肥土壤肥力变化与研究展望. 植物营养与肥料学报, 2015, 21(6):1389-1393.
ZHANG S X, ZHANG W J, SHEN R F, XU M G. Variation of soil quality in typical farmlands in China under long-term fertilization and research expedition. Journal of Plant Nutrition and Fertilizers, 2015, 21(6):1389-1393. (in Chinese)
[25] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53(1):81-93.
HUANG N, WANG Z H, WANG L, MA Q X, ZHANG Y Y, ZHANG X X, WANG R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Scientia Agricultura Sinica, 2020, 53(1):81-93. (in Chinese)
[26] 吕硕, 杨晓光, 赵锦, 刘志娟, 李克南, 慕臣英, 陈晓超, 陈范骏, 米国华. 气候变化和品种更替对东北地区春玉米产量潜力的影响. 农业工程学报, 2013, 29(18):179-190.
LÜ S, YANG X G, ZHAO J, LIU Z J, LI K N, MU C Y, CHEN X C, CHEN F J, MI G H. Effects of climate change and variety alternative on potential yield of spring maize in Northeast China. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18):179-190. (in Chinese)
[27] 孙琦, 张世煌, 李新海, 孟昭东, 慈晓科, 张德贵, 郝转芳, 翁建峰, 白丽, 李明顺. 中国不同年代主推玉米品种品质性状的变化趋势. 中国农业科学, 2014, 47(14):2723-2730.
SUN Q, ZHANG S H, LI X H, MENG Z D, CI X K, ZHANG D G, HAO Z F, WENG J F, BAI L, LI M S. The trend of quality traits of maize varieties released extensively in different eras in China. Scientia Agricultura Sinica, 2014, 47(14):2723-2730. (in Chinese)
[28] 赵秀娟, 任意, 张淑香. 长期试验条件下褐土地力贡献率的演变特征及其影响因素分析. 中国土壤与肥料, 2017(5):67-72.
ZHAO X J, REN Y, ZHANG S X. Basic soil productivity change and influence factors analysis in cinnamon soil under long-term fertilization. Soil and Fertilizer Sciences in China, 2017(5):67-72. (in Chinese)
[29] 武红亮, 王士超, 闫志浩, 槐圣昌, 马常宝, 薛彦东, 徐明岗, 卢昌艾. 近30年我国典型水稻土肥力演变特征. 植物营养与肥料学报, 2018, 24(6):1416-1424.
WU H L, WANG S C, YAN Z H, HUAI S C, MA C B, XUE Y D, XU M G, LU C A. Evolution characteristics of fertility of typical paddy soil in China in recent 30 years. Journal of Plant Nutrition and Fertilizers, 2018, 24(6):1416-1424. (in Chinese)
[30] 谷丰. 典型砂姜黑土区农田土壤水分养分动态变化特征及模拟[D]. 北京: 中国农业大学, 2018.
GU F. Characteristics and modeling of soil water and nutrition dynamics in a typical calcic vertisol[D]. Beijing: China Agricultural University, 2018. (in Chinese)
[31] 查燕. 长期不同施肥条件下黑土区春玉米农田基础地力演变特征[D]. 北京: 中国农业科学院, 2015.
ZHA Y. Basic soil productivity of spring maize in black soil under long-term fertilizations[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[32] GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968):1008-1010.
doi: 10.1126/science.1182570
[33] 李建军, 辛景树, 张会民, 段建军, 任意, 孙楠, 徐明岗. 长江中下游粮食主产区25年来稻田土壤养分演变特征. 植物营养与肥料学报, 2015, 21(1):92-103.
LI J J, XIN J S, ZHANG H M, DUAN J J, REN Y, SUN N, XU M G. Evolution characteristics of soil nutrients in the main rice production regions, the middle-lower reach of Yangtze River of China. Journal of Plant Nutrition and Fertilizers, 2015, 21(1):92-103. (in Chinese)
[34] 张晗, 赵小敏, 朱美青, 欧阳真程, 郭熙, 匡丽花, 叶英聪, 黄聪, 汪晓燕, 李伟峰. 近30年南方丘陵山区耕地土壤养分时空演变特征——以江西省为例. 水土保持研究, 2018, 25(2):58-65, 71.
ZHANG H, ZHAO X M, ZHU M Q, OUYANG Z C, GUO X, KUANG L H, YE Y C, HUANG C, WANG X Y, LI W F. Characteristics of spatiotemporal variability of cultivated soil nutrients in the southern hilly area of China in the past 30 years-A case study of Jiangxi province. Research of Soil and Water Conservation, 2018, 25(2):58-65, 71. (in Chinese)
[35] 王齐齐, 徐虎, 马常宝, 薛彦东, 王传杰, 徐明岗, 张文菊. 西部地区紫色土近30年来土壤肥力与生产力演变趋势分析. 植物营养与肥料学报, 2018, 24(6):1492-1499.
WANG Q Q, XU H, MA C B, XUE Y D, WANG C J, XU M G, ZHANG W J. Change of soil fertility and productivity of purple soil in Western China in recent 30 years. Journal of Plant Nutrition and Fertilizers, 2018, 24(6):1492-1499. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[7] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[8] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[9] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[12] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[15] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!