Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4143-4154.doi: 10.3864/j.issn.0578-1752.2021.19.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Difference in Nitrogen Responses and Nitrogen Efficiency of Different Paddy Soils in Southern and Northern China Under the Same Climatic Condition

HUANG QiuHong1(),LIU ZhiLei1(),LI PengFei1,CHE JunJie1,YU CaiLian2(),PENG XianLong1   

  1. 1College of Resources and Environment, Northeast Agricultural University, Harbin 150030
    2College of Chemical and Environment Engineering, Harbin University of Science and Technology, Harbin 150040
  • Received:2020-11-14 Accepted:2021-02-03 Online:2021-10-01 Published:2021-10-12
  • Contact: ZhiLei LIU,CaiLian YU E-mail:hqh951022@163.com;hlliuzhilei@126.com;lgyucailian@163.com

Abstract:

【Objective】Soil is one of the factors affecting crop yield and nitrogen fertilizer uptake or utilization. In order to provide suggestions for high yield and high quality of rice producing, we clarify the effect of paddy soil in northern and southern China on rice growth and nitrogen efficiency.【Method】In 2018 and 2019, the pot experiments were conducted in Harbin, Heilongjiang Province. The experimental soils were black paddy soil from Heilongjiang and gleyed paddy soil from Jiangsu. Three nitrogen fertilization levels were set for each soil, including no nitrogen application (N0), 0.87 g N/pot (N1, equivalent to 150 kg N·hm-2), and 1.74 g N/pot (N2, equivalent to 300 kg N·hm-2). Tiller numbers, SPAD value, yields and earing rates of rice, as well as nitrogen mineralization amount and nitrogen utilization efficiency of two soils, were determined. 【Result】Rice tiller numbers on black paddy soil increased with the increase of nitrogen fertilizer application at early growth stage, however, which on gleyed paddy soil was responded to nitrogen application after the elongation stage. Soil type has a significant effect on rice tiller number. In 2018, rice tiller numbers on gleyed paddy soil was 4.41%-43.04% higher than that on black paddy soil without nitrogen application, while tiller numbers was 8.25%-12.98% lower than that on the black paddy soil after nitrogen application. In 2019, the most of tiller numbers on black paddy soil was 4.41%-46.53% higher than that on gleyed paddy soil. In 2018, the leaf SPAD value and the earbearing tiller percentage of rice showed significant differences between two soil types. The leaf SPAD value on gleyed paddy soil was 19.28%-21.19% higher than that on black paddy soil, and also, earbearing tiller percentage of rice on gleyed paddy soil was 23.89%-40.53% higher than that on black paddy soil, but no significant difference between two soil types was observed in leaf SPAD value and earbearing tiller rate in 2019. Water-logged incubation over 28 days showed that two types of soils had the same inorganic nitrogen content. Initial nitrogen mineralization rates in gleyed paddy soil was higher than that in black paddy soil, while nitrogen mineralization rate in gleyed paddy soil at later stage was lower than that in black paddy soil. A higher nitrogen mineralization potential was observed in black paddy soil, indicating the greater mineralization capacity. The nitrogen agronomic efficiency (AEN) of black paddy soil was higher in comparison with gleyed paddy soil, while the partial factor Productivity of applied N (PFPN ) showed the opposite trend. A higher Y0/Nr (Y0 is the yield of rice field without nitrogen fertilizer application, and Nr is the amount of nitrogen fertilizer application) was found in gleyed paddy soil, suggesting a better coordination between soil nitrogen supply and application. The nitrogen recovery efficiency (REN) and nitrogen physiological efficiency (PEN) of black paddy soil was remarkably higher in comparison with gleyed paddy soil in 2018, but the two soil types had no significant difference in the REN and PEN in 2019.【Conclusion】Soil difference was not the decisive factor of nitrogen efficiency difference which was observed between southern and northern paddy fields in China, but rather the results of the combined effects of factors such as climate, crop variety, soil type, etc. Compared with black paddy soil, the gleyed paddy soil should decrease base and tiller nitrogen fertilizer, and increase the panicle nitrogen fertilizer to maintain sufficient nitrogen supply in the later stages and obtain high rice yield.

Key words: soil types, rice, nitrogen response, nitrogen efficiency, tillering, nitrogen mineralization

Fig. 1

Temperature of experiment site during rice growth stage in 2018 and 2019"

Table 1

Average values for selected soil chemical properties of pot experiment"

地点
Location
土壤类型
Soil type
有机质
Organic
(g·kg-1)
全氮
Total N
(g·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
pH
黑龙江 Heilongjiang 黑土型水稻土 Black paddy soil 35.8 1.74 16.0 136 5.26
江苏 Jiangsu 乌栅土型水稻土 Gleyed paddy soil 37.9 1.85 4.79 136 7.02

Fig. 2

Response of rice tiller number to nitrogen in different soils 3W: 3 weeks after translating; 5W: 5 weeks after translating; TS: Tilling stage; ES: Elongation stage; MS: Maturity stage. N: Nitrogen rate; S: Soil type; N×S: Interaction of nitrogen and soil; *, **: Significance at 5% and 1% levels, respectively; ns: Non-significance. During the same period, different lowercase letters indicate the significant difference between different nitrogen level in the black paddy soil (P<0.05), different capital letters indicate the significant difference between different nitrogen level in the gleyed paddy soil (P<0.05). The same as below"

Fig. 3

Response of percentage of earbearing tiller to nitrogen in different soils"

Fig. 4

Response of rice leaf SPAD to nitrogen in different soils"

Fig. 5

The changes of cumulative soil mineralized nitrogen and inorganic nitrogen content"

Table 2

Coefficient of the cumulative soil mineralized nitrogen model"

土壤类型
Soil type
有效积温方程
Effective accumulated temperature model, EATM
一级动力学模型
One-pool model
K n R2 P N0 k0 R2 P
黑土型水稻土 Black paddy soil 1.17 0.621 0.936 0.007 45.39 0.063 0.960 0.004
乌栅土型水稻土 Gleyed paddy soil 10.63 0.181 0.999 <0.001 28.56 0.221 0.993 <0.001

Table 3

Rice dry weight, yield and nitrogen efficiency in 2018 and 2019"

年份
Year
土壤类型
Soil type
处理Treatment 地上部干重
Dry weight (g/pot)
产量
Yield (g/pot)
AEN
(kg·kg-1)
PFPN
(kg·kg-1)
Y0/Nr
(kg·kg-1)
REN
(%)
PEN
(kg·kg-1)
2018 黑土型水稻土
Black paddy soil
N0 84.69c 29.73c
N1 135.79b 44.61b 17.39a 52.13a 34.75a 41.08a 41.74a
N2 178.80a 67.04a 21.69a 38.97b 17.28b 49.09a 44.22a
乌栅土型水稻土
Gleyed paddy soil
N0 108.39c 38.84c
N1 139.44b 50.09b 13.08a 58.23a 45.15a 34.89a 37.56a
N2 160.99a 61.43a 13.13a 35.71b 22.57b 39.42a 33.29a
N ** ** ns ** ** ns ns
S * * ** ns ** * *
N×S ** * ns ** ns ** ns
2019 黑土型水稻土
Black paddy soil
N0 78.51c 41.18b
N1 144.33b 80.41a 45.85a 93.98a 48.13a 59.30a 79.10a
N2 168.83a 83.52a 24.61b 48.55b 23.94b 54.10a 45.81b
乌栅土型水稻土
Gleyed paddy soil
N0 85.62c 48.12c
N1 149.84b 83.17b 40.75a 96.69a 55.94a 58.86a 70.46a
N2 179.37a 94.11a 26.73b 54.70b 27.97b 50.65a 52.82b
N ** ** ** ** ** ns **
S * ns ns * ** ns ns
N×S ns ns ns ns ns ns ns
[1] 赵彦茜, 肖登攀, 唐建昭, 柏会子. 气候变化对我国主要粮食作物产量的影响及适应措施. 水土保持研究, 2019, 26(6):317-326. doi: 10.13869/j.cnki.rswc.2019.06.042.
doi: 10.13869/j.cnki.rswc.2019.06.042
ZHAO Y X, XIAO D P, TANG J Z, BAI H Z. Effects of climate change on the yield of major grain crops and its adaptation measures in China. Research of Soil and Water Conservation, 2019, 26(6):317-326. doi: 10.13869/j.cnki.rswc.2019.06.042. (in Chinese)
doi: 10.13869/j.cnki.rswc.2019.06.042
[2] 殷春渊, 张洪程, 张庆, 魏海燕, 戴其根, 霍中洋, 许轲, 马群, 李敏, 李国业. 水稻不同生育期类型品种精确定量施氮参数的初步研究. 作物学报, 2010, 36(8):1342-1354.
YIN C Y, ZHANG H C, ZHANG Q, WEI H Y, DAI Q G, HUO Z Y, XU K, MA Q, LI M, LI G Y. Preliminary study on parameters of precise and quantitative nitrogen application in rice varieties with different growth period durations. Acta Agronomica Sinica, 2010, 36(8):1342-1354.(in Chinese)
[3] 朱坚, 石丽红, 田发祥, 霍莲杰, 纪雄辉. 湖南典型双季稻田氨挥发对施氮量的响应研究. 植物营养与肥料学报, 2013, 19(5):1129-1138. doi: 10.11674/zwyf.2013.0512
doi: 10.11674/zwyf.2013.0512
ZHU J, SHI L H, TIAN F X, HUO L J, JI X H. Responses of ammonia volatilization to nitrogen application amount in typical double cropping paddy fields in Hunan Province. Journal of Plant Nutrition and Fertilizers, 2013, 19(5):1129-1138. doi: 10.11674/zwyf.2013.0512. (in Chinese)
doi: 10.11674/zwyf.2013.0512
[4] 何文天. 基于作物—土壤模型的作物产量与农田氮素平衡模拟研究[D]. 北京: 中国农业科学院, 2017.
HE W T. Modelling crop yield and nitrogen balance based on crop-soil models[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[5] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000: 42-209.
LING W Q H. Crop Population Quality. Shanghai: Shanghai Scientific & Technical Pblishers, 2000: 42-209. (in Chinese)
[6] 彭显龙, 王伟, 周娜, 刘海洋, 李鹏飞, 刘智蕾, 于彩莲. 基于农户施肥和土壤肥力的黑龙江水稻减肥潜力分析. 中国农业科学, 2019, 52(12):2092-2100.
PENG X L, WANG W, ZHOU N, LIU H Y, LI P F, LIU Z L, YU C L. Analysis of fertilizer application and its reduction potential in paddy fields of Heilongjiang Province. Scientia Agricultura Sinica, 2019, 52(12):2092-2100. (in Chinese)
[7] 彭显龙, 刘洋, 于彩莲, 王迪. 寒地稻田土壤氮素矿化特征的研究. 中国农业科学, 2014, 47(4):702-709. doi: 10.3864/j.issn.0578-1752.2014.04.010.
doi: 10.3864/j.issn.0578-1752.2014.04.010
PENG X L, LIU Y, YU C L, WANG D. Study on the nitrogen mineralization characters of paddy soil in cold area. Scientia Agricultura Sinica, 2014, 47(4):702-709. doi: 10.3864/j.issn.0578-1752.2014.04.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.04.010
[8] 李文军, 曾细妹, 彭保发, 杨基峰, 赵迪. 洞庭湖区水稻土有机氮矿化的模型模拟. 生态学杂志, 2019, 38(5):1392-1401. doi: 10.13292/j.1000-4890.201905.008.
doi: 10.13292/j.1000-4890.201905.008
LI W J, ZENG X M, PENG B F, YANG J F, ZHAO D. Modeling of organic nitrogen mineralization in paddy soils in Dongting Lake region of China. Chinese Journal of Ecology, 2019, 38(5):1392-1401. doi: 10.13292/j.1000-4890.201905.008. (in Chinese)
doi: 10.13292/j.1000-4890.201905.008
[9] WARING S A, BREMNER J M. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature, 964, 201(4922):951-952. DOI: 10.1038/201951a0.
doi: 10.1038/201951a0
[10] 范立春, 彭显龙, 刘元英, 宋添星. 寒地水稻实地氮肥管理的研究与应用. 中国农业科学, 2005, 38(9):1761-1766.
FAN L C, PENG X L, LIU Y Y, SONG T X. Study on the site-specific nitrogen management of rice in cold area of northeastern China. Scientia Agricultura Sinica, 2005, 38(9):1761-1766. (in Chinese)
[11] CASSMAN K G, GINES G C, DIZON M A, SAMSON M I, ALCANTARA J M. Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen. Field Crops Research, 1996, 47(1):1-12. doi: 10.1016/0378-4290(95)00101-8.
doi: 10.1016/0378-4290(95)00101-8
[12] LIU Y, GU D D, DING YF, WANG Q S, LI G H, WANG S H. The relationship between nitrogen, auxin and cytokinin in the growth regulation of rice (Oryza sativa L.) tiller buds. Australian Journal of Crop Science, 2011, 5(8):1019-1026.
[13] 丁艳锋. 氮素营养调控水稻群体质量指标的研究[D]. 南京: 南京农业大学, 1997.
DING Y F. Regulations of rice population quality by nitrogen nutrition[D]. Nanjing: Nanjing Agricultural University, 1997. (in Chinese)
[14] 王绍华, 曹卫星, 王强盛, 丁艳锋, 黄丕生, 凌启鸿. 水稻叶色分布特点与氮素营养诊断. 中国农业科学, 2002, 35(12):1461-1466.
WANG S H, CAO W X, WANG Q S, DING Y F, HUANG P S, LING Q H. Positional distribution of leaf color and diagnosis of nitrogen nutrition in rice plant. Scientia Agricultura Sinica, 2002, 35(12):1461-1466. (in Chinese)
[15] 张秀芝, 易琼, 朱平, 何萍, 杨利, 范先鹏, 熊桂云. 氮肥运筹对水稻农学效应和氮素利用的影响. 植物营养与肥料学报, 2011, 17(4):782-788.
ZHANG X Z, YI Q, ZHU P, HE P, YANG L, FAN X P, XIONG G Y. Agronomic responses to nitrogen application and nitrogen utilization in rice fields. Plant Nutrition and Fertilizer Science, 2011, 17(4):782-788. (in Chinese)
[16] 田广丽, 周毅, 孙博, 张瑞卿, 周新国, 郭世伟. 氮素及栽培密度影响水稻分蘖动态的机制. 植物营养与肥料学报, 2018, 24(4):896-904.
TIAN G L, ZHOU Y, SUN B, ZHANG R Q, ZHOU X G, GUO S W. Effects of nitrogen and transplanting density on the mechanisms of tillering dynamic of rice. Journal of Plant Nutrition and Fertilizers, 2018, 24(4):896-904. (in Chinese)
[17] 莫兰婧. 施氮量对日本晴与扬稻6号分蘖发生的影响及其分子机理[D]. 扬州: 扬州大学, 2019.
MO L J. Effect of nitrogen rate on tillering of Nipponbare and Yangdao 6 and its molecular mechanism[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[18] LIU B Y, LEI C Y, LIU W Q. Nitrogen addition exacerbates the negative effects of low temperature stress on carbon and nitrogen metabolism in moss. Frontiers in Plant Science, 2017, 8:1328. doi: 10.3389/fpls.2017.01328.
doi: 10.3389/fpls.2017.01328
[19] 王力冬, 赵宏伟, 蔡宏亮, 贾琰, 刘化龙. 分蘖期冷水胁迫下施氮量对寒地粳稻分蘖消长和产量形成的影响. 中国土壤与肥料, 2016(6):86-92. doi: 10.11838/sfsc.20160614.
doi: 10.11838/sfsc.20160614
WANG L D, ZHAO H W, CAI H L, JIA Y, LIU H L. Effects of nitrogen application on tillering and yield of Japonica rice under cold water stress at tillering stage. Soil and Fertilizer Sciences in China, 2016(6):86-92. doi: 10.11838/sfsc.20160614. (in Chinese)
doi: 10.11838/sfsc.20160614
[20] GUNAWARDENA T A, FUKAI S, BLAMEY F P C. Low temperature induced spikelet sterility in rice. I. Nitrogen fertilisation and sensitive reproductive period. Australian Journal of Agricultural Research, 2003, 54(10):937. doi: 10.1071/ar03075.
doi: 10.1071/ar03075
[21] LIU Z L, TAO L Y, LIU T T, ZHANG X H, WANG W, SONG J M, YU C L, PENG X L. Nitrogen application after low-temperature exposure alleviates tiller decrease in rice. Environmental and Experimental Botany, 2019, 158:205-214. doi: 10.1016/j.envexpbot.2018.11.001.
doi: 10.1016/j.envexpbot.2018.11.001
[22] 卞景阳. 低温胁迫对黑龙江省水稻芽期抗冷性的影响. 黑龙江农业科学, 2010(9):109-110. doi: 10.3969/j.issn.1002-2767.2010.09.037.
doi: 10.3969/j.issn.1002-2767.2010.09.037
BIAN J Y. Low temperature stress on cold resistance at rice germination stage in Heilongjiang Province. Heilongjiang Agricultural Sciences, 2010(9):109-110. doi: 10.3969/j.issn.1002-2767.2010.09.037. (in Chinese)
doi: 10.3969/j.issn.1002-2767.2010.09.037
[23] WANG F, CHENG F M, ZHANG G P. Difference in grain yield and quality among tillers in rice genotypes differing in tillering capacity. Rice Science, 2007, 14(2):135-140. doi: 10.1016/S1672-6308(07)60019-5.
doi: 10.1016/S1672-6308(07)60019-5
[24] NURUZZAMAN M, YAMAMOTO Y, NITTA Y, YOSHIDA T, MIYAZAKI A. Varietal differences in tillering ability of fourteen Japonica and indica rice varieties. Soil Science and Plant Nutrition, 2000, 46(2):381-391. doi: 10.1080/00380768.2000.10408792.
doi: 10.1080/00380768.2000.10408792
[25] 陶龙兴, 王熹, 谈惠娟, 张夫道. 水稻分蘖功能叶激素水平变化及其与成穗率的关系. 杂交水稻, 2006, 21(1):68-71. doi: 10.16267/j.cnki.1005-3956.2006.01.029.
doi: 10.16267/j.cnki.1005-3956.2006.01.029
TAO L X, WANG X, TAN H J, ZHANG F D. Hormone levels in functional leaves of tillers and their correlation to panicle setting in rice. Hybrid Rice, 2006, 21(1):68-71. doi: 10.16267/j.cnki.1005-3956.2006.01.029. (in Chinese)
doi: 10.16267/j.cnki.1005-3956.2006.01.029
[26] SONG Z. The N-supply characteristics of paddy soil in cold area and the relationships between N supply rates and rice yield[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese)
[27] 李楠, 杨洋, 申逸男, 张秀双, 王紫, 郝鹏. 氮肥用量对优质粳稻产量、品质及氮肥利用率的影响. 中国稻米, 2019, 25(5):66-68.
LI N, YANG Y, SHEN Y N, ZHANG X S, WANG Z, HAO P. Effects of nitrogen application rate on yield, quality and nitrogen use efficiency of high quality Japonica rice. China Rice, 2019, 25(5):66-68. (in Chinese)
[28] 晏娟, 尹斌, 张绍林, 沈其荣, 朱兆良. 太湖地区稻麦轮作系统中氮肥效应的研究. 南京农业大学学报, 2009, 32(1):61-66.
YAN J, YIN B, ZHANG S L, SHEN Q R, ZHU Z L. Studies on the nitrogen fertilizer application of rice-wheat rotation system in Taihu Lake Region. Journal of Nanjing Agricultural University, 2009, 32(1):61-66. (in Chinese)
[29] CU R M. Effect of sheath blight on yield in tropical, intensive rice production system. Plant Disease, 1996, 80(10):1103. doi: 10.1094/pd-80-1103.
doi: 10.1094/pd-80-1103
[30] 肖荣英, 王开斌, 刘秋员, 雷振山, 金明慧. 施氮量对水稻产量、氮素吸收及土壤氮素平衡的影响. 河南农业大学学报, 2019, 53(4):495-502. doi: 10.16445/j.cnki.1000-2340.2019.04.001.
doi: 10.16445/j.cnki.1000-2340.2019.04.001
XIAO R Y, WANG K B, LIU Q Y, LEI Z S, JIN M H. Effects of N application rate on the yield, nitrogen absorption and the balance of soil nitrogen. Journal of Henan Agricultural University, 2019, 53(4):495-502. doi: 10.16445/j.cnki.1000-2340.2019.04.001. (in Chinese)
doi: 10.16445/j.cnki.1000-2340.2019.04.001
[31] 闫平, 周劲松, 张书利, 于艳敏, 牟凤臣, 武洪涛, 甄报祥. 施氮量对超级稻‘松粳9号’产量及氮肥利用率的影响. 中国农学通报, 2014, 30(30):127-132.
YAN P, ZHOU J S, ZHANG S L, YU Y M, MU F C, WU H T, ZHEN B X. Effects of nitrogen rate on yield and nitrogen use efficiency of super rice ‘Songjing 9’. Chinese Agricultural Science Bulletin, 2014, 30(30):127-132. (in Chinese)
[32] 鲁伟林, 段仁周, 余新春, 严德远, 郭桂英, 全瑞兰, 刘祥臣. 氮肥施用量对杂交粳稻氮素吸收和利用的影响. 中国农学通报, 2016, 32(30):1-6.
LU W L, DUAN R Z, YU X C, YAN D Y, GUO G Y, QUAN R L, LIU X C. Effects of nitrogen fertilizer on nitrogen absorption and utilization of Japonica hybrid rice. Chinese Agricultural Science Bulletin, 2016, 32(30):1-6. (in Chinese)
[33] 魏海燕, 王亚江, 孟天瑶, 葛梦婕, 张洪程, 戴其根, 霍中洋, 许轲. 机插超级粳稻产量、品质及氮肥利用率对氮肥的响应. 应用生态学报, 2014, 25(2):488-496. doi: 10.13287/j.1001-9332.2014.0053.
doi: 10.13287/j.1001-9332.2014.0053
WEI H Y, WANG Y J, MENG T Y, GE M J, ZHANG H C, DAI Q G, HUO Z Y, XU K. Response of yield, quality and nitrogen use efficiency to nitrogen fertilizer from mechanical transplanting super Japonica rice. Chinese Journal of Applied Ecology, 2014, 25(2):488-496. doi: 10.13287/j.1001-9332.2014.0053. (in Chinese)
doi: 10.13287/j.1001-9332.2014.0053
[34] 李伟波, 吴留松, 廖海秋. 太湖地区高产稻田氮肥施用与作物吸收利用的研究. 土壤学报, 1997, 34(1):67-73.
LI W B, WU L S, LIAO H Q. Application and crop recovery of n-fertilizer in high-yielding paddy fields of Taihu region. Acta Pedologica Sinica, 1997, 34(1):67-73. (in Chinese)
[35] 徐茂, 吴昊, 王绍华, 李刚华, 杨文祥, 王强盛, 丁艳锋, 沈其荣. 江苏省不同类型土壤基础供氮能力对水稻产量的影响. 南京农业大学学报, 2006, 29(4):1-5.
XU M, WU H, WANG S H, LI G H, YANG W X, WANG Q S, DING Y F, SHEN Q R. Effects of basic nitrogen supply capacity of different texture soils on rice yield in Jiangsu Province. Journal of Nanjing Agricultural University, 2006, 29(4):1-5. (in Chinese)
[36] 郭俊杰, 柴以潇, 李玲, 高丽敏, 谢凯柳, 凌宁, 郭世伟. 江苏省水稻减肥增产的潜力与机制分析. 中国农业科学, 2019, 52(5):849-859. doi: 10.3864/j.issn.0578-1752.2019.05.007.
doi: 10.3864/j.issn.0578-1752.2019.05.007
GUO J J, CHAI Y X, LI L, GAO L M, XIE K L, LING N, GUO S W. The potential and related mechanisms of increasing rice yield by reducing chemical nitrogen application in Jiangsu Province. Scientia Agricultura Sinica, 2019, 52(5):849-859. doi: 10.3864/j.issn.0578-1752.2019.05.007. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.05.007
[37] 彭显龙, 刘元英, 罗盛国, 范立春, 盛大海. 寒地稻田施氮状况与氮素调控对水稻投入和产出的影响. 东北农业大学学报, 2007, 38(4):467-472. doi: 10.19720/j.cnki.issn.1005-9369.2007.04.009.
doi: 10.19720/j.cnki.issn.1005-9369.2007.04.009
PENG X L, LIU Y Y, LUO S G, FAN L C, SHENG D H. Nitrogen application situation and effects of nitrogen management on cost and output of paddy field in cold area of northeast China. Journal of Northeast Agricultural University, 2007, 38(4):467-472. doi: 10.19720/j.cnki.issn.1005-9369.2007.04.009. (in Chinese)
doi: 10.19720/j.cnki.issn.1005-9369.2007.04.009
[38] 刘立军. 水稻氮肥利用效率及其调控途径[D]. 扬州: 扬州大学, 2005.
LIU L J. Fertilizer-N use efficiency and its regulation approaches in rice[D]. Yangzhou: Yangzhou University, 2005. (in Chinese)
[39] 彭显龙, 刘元英, 罗盛国, 范立春, 宋添星, 郭艳文. 实地氮肥管理对寒地水稻干物质积累和产量的影响. 中国农业科学, 2006, 39(11):2286-2293.
PENG X L, LIU Y Y, LUO S G, FAN L C, SONG T X, GUO Y W. Effects of the site-specific nitrogen management on yield and dry matter accumulation of rice in cold areas of northeastern China. Scientia Agricultura Sinica, 2006, 39(11):2286-2293. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[8] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[9] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[10] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[11] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[12] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[13] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[14] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[15] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!