Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3834-3846.doi: 10.3864/j.issn.0578-1752.2021.18.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Combined Effects of Shade and Waterlogging on Yield and Photosynthetic Characteristics of Summer Maize

YU WeiZhen1(),ZHANG XiaoChi2(),HU Juan1,SHAO JingYi1,LIU Peng1,ZHAO Bin1,REN BaiZhao1()   

  1. 1College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, Shandong
    2College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong
  • Received:2020-09-16 Accepted:2020-12-18 Online:2021-09-16 Published:2021-09-26
  • Contact: BaiZhao REN E-mail:1274452129@qq.com;1598715310@qq.com;renbaizhao@sina.com

Abstract:

【Objective】 The purpose of this study was to investigate the physiological mechanism of shade and waterlogging combined treatment on photosynthetic characteristics of summer maize during different growth stages. 【Method】 DH605 was selected as the test variety. Shading treatment, waterlogging treatment and shading + waterlogging treatment were set in different growth periods under field conditions, including waterlogging at the third leaf stage (V3-W), the sixth leaf stage (V6-W), and flowering stage (VT-W); shading at V3 (V3-S), V6 (V6-S), and VT (VT-S); waterlogging and shading combined treatment at V3 (V3-S-W), V6 (V6-S-W), and VT stage (VT-S-W). The effects of shading and waterlogging compound treatment on yield, photosynthetic characteristics and dry matter accumulation and distribution of summer maize were studied, and the differences of photosynthetic characteristics and yield between single treatment and compound treatment were compared. 【Result】 After shading and waterlogging, the LAI, relative chlorophyll content, net photosynthetic rate (Pn), Transpiration rate (Tr), and stomatal conductance (Gs) of summer maize were significantly decreased. Compared with CK, the Pn under V3-S-W, V6-S-W and VT-S-W was significantly decreased by 43.7%, 41.1% and 35.1%, respectively. Moreover, the net photosynthetic rate of the combined treatment of shading and waterlogging was decreased more than that of shading or waterlogging treatment. The combined treatment of shading and waterlogging resulted in the decrease of photosynthetic performance of summer maize, leading to the decrease of dry matter accumulation ability and grain distribution ratio of summer maize, and thus resulting in a significant decrease of maize yield. Compared with CK, the yield under V3-S-W, V6-S-W and VT-S-W were reduced by 32.5%, 28.3% and 24.7%, respectively. Compared with single shading or flooding treatment, the yield under V3-S-W was 26.3% and 13.1% lower than that under V3-S and V3-W, respectively. Compared with V6-S and V6-W, the grain yield under V6-S-W was decreased by 14.9% and 6.2%, respectively. Compared with VT-S and VT-W, the yield of VT-S-W was reduced by 2.9% and 15.0%, respectively. 【Conclusion】 Combined treatment with shading and waterlogging resulted in significantly reduced LAI, decreased relative chlorophyll content and inhibited photosynthetic performance of summer maize, which led to hindered accumulation and distribution of photosynthetic compounds in summer maize, and thus resulting in the decrease of maize yield. Combined treatment with shading and waterlogging at V3 stage had the greatest effect on photosynthetic characteristics and yield of summer maize, followed by V6 and VT stage. At the same time, the photosynthetic characteristics and yield decreased by combined treatment with shading and waterlogging were higher than either single treatment.

Key words: summer maize, shade, waterlogging, combined stress of shade and waterlogging, yield, photosynthetic characteristics

Fig. 1

Climatic conditions during maize growth period from 2018 to 2019"

Fig. 2

Field microclimate during stress time CK represents control, W represents waterlogging treatment, S represents shade treatment, S+W represents waterlogging and shading combined treatment. The same as below"

Table 1

Effects of shading, waterlogging and their combined treatment on summer maize yield and its components"

年份处理
Treatment
2018 2019
千粒重
1000-grain weight (g)
穗粒数
kernels per spike
公顷穗数
Ear number (ear)
产量
Yield
(kg·hm-2)
千粒重
1000-grain weight (g)
穗粒数
kernels per spike
公顷穗数
Ear number (ear)
产量
Yield
(kg·hm-2)
CK 375ab 544a 67496 13770a 348a 496a 67496 13563a
V3-W 377a 477e 65962 11897cd 308de 364g 62304 8114f
V3-S 373abc 544a 65962 13386a 330b 480b 65850 12130b
V3-S-W 381a 450f 64561 11094e 304e 325h 64122 7378g
V6-W 365c 487d 64823 11528de 314d 375ef 62304 8538e
V6-S 378a 528b 63063 12590b 326bc 474c 64121 11542c
V6-S-W 373abc 464e 64741 11225e 314d 369fg 62292 8409ef
VT-W 366bc 518c 64684 12267bc 321c 462d 65850 11397c
VT-S 364c 518c 67496 12754b 326bc 372ef 64121 9051d
VT-S-W 373abc 480de 64624 11587de 321c 376e 64121 9025d
显著性
Significant
S ns ** - ** ** ** - **
W ns ** - ** ** ** - **
G ** ** - * ** ** - **
S×W ns ** - ns ** * - **
S×G ns ** - ns ns ** - **
W×G ns ** - * ** ** - **
S×W×G ns ** - ns ns ** - **

Table 2

Effects of shading, waterlogging and their combined treatment on photosynthetic rate and gas exchange parameters of maize (2019)"

处理
Treatment
净光合速率
Pn (μmol·m-2·s-1)
蒸腾速率
Tr (μmol·m-2·s-1)
气孔导度
Gs ((μmol·m-2·s-1)
胞间二氧化碳浓度
Ci (μmol·m-2·s-1)
CK 37.7a 6.75a 357a 172c
V3-W 21.5e 4.63d 190e 248a
V3-S 35.9ab 5.76b 330bc 185bc
V3-S-W 21.2e 4.11d 181e 260a
V6-W 22.7de 4.71cd 197de 238a
V6-S 35.9ab 5.69b 346ab 201b
V6-S-W 22.2e 3.99e 189e 239a
VT-W 35.3b 5.66b 316c 189bc
VT-S 25.4c 5.30bc 212d 182bc
VT-S-W 24.5cd 5.30bc 194de 179bc
显著性
Significant
S ** ** ** **
W ** ** ** *
G ** ** ns **
S×W ** * * ns
S×G ** ns ns **
W×G ** ** ns **
S×W×G ns ns ns ns

Fig. 3

Effects of shading, waterlogging and their combined treatment on the relative content of chlorophyll * means significantly different at 0.05 probability level between different treatment. A, B, and C represent V3, V6, and VT, respectively, for shading, waterlogging and their combined treatment. The same as below"

Fig. 4

Effects of shading, waterlogging and their combined treatment on LAI A, B, and C represent V3, V6, and VT, respectively, for shading, waterlogging and their combined treatment"

Fig. 5

Effects of shading, waterlogging and their combined treatment on dry matter accumulation A, B, and C represent V3, V6, and VT, respectively, for shading, waterlogging and their combined treatment"

Table 3

Effects of shading, waterlogging and their combined treatment on dry matter distribution"

年份
Year
处理
Treatment
茎 Stem 叶 Leaf 粒 Grain 轴 Spike axis 单株
Total dry matter
(g/plant)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
干重
Dry matter (g/plant)
比例
Proportion (%)
2018
CK 71.0ab 21.8% 37.0bc 11.4% 199.0a 61.1% 18.0b 5.5% 325.5a
V3-W 73.0ab 26.7% 44.7ab 16.4% 135.0d 49.3% 21.0ab 7.7% 273.7d
V3-S 68.0b 21.9% 39.6bc 12.7% 186.0ab 59.8% 17.5b 5.6% 311.1a
V3-S-W 75.0a 27.5% 42.2b 15.5% 132.0d 48.5% 23.0a 8.4% 272.2d
V6-W 66.8b 23.8% 45.4ab 16.5% 150.4c 53.0% 19.0b 6.7% 283.6cd
V6-S 65.0b 21.3% 41.6bc 13.7% 180.3b 59.2% 17.7b 5.8% 304.6bc
V6-S-W 66.2b 23.7% 52.7a 18.9% 141.0d 50.5% 19.5b 7.0% 279.3d
VT-W 70.5b 23.6% 32.2c 10.8% 175.0b 58.7% 20.5ab 6.9% 298.2c
VT-S 69.5b 24.0% 39.4bc 13.6% 161.0c 55.6% 19.8b 6.8% 289.7c
VT-S-W 69.9b 24.4% 36.6bc 12.8% 159.0c 55.5% 20.8ab 7.3% 286.3cd
2019 CK 76.7a 21.4% 36.9a 10.3% 202.4a 59.8% 22.6a 6.7% 338.6a
V3-W 46.5f 24.9% 25.3de 13.6% 97.5de 52.3% 17.6c 9.4% 186.5f
V3-S 62.0c 21.2% 32.9ab 11.2% 174.8b 59.8% 22.7a 7.8% 292.5c
V3-S-W 54.2e 30.9% 21.6e 12.3% 96.2e 49.1% 13.5d 7.7% 185.4g
V6-W 64.2c 29.9% 28.1cd 13.1% 105.7d 49.2% 16.7bc 9.6% 214.7e
V6-S 71.2b 24.5% 31.8bc 10.9% 167.7b 57.7% 20.1bc 6.9% 290.8c
V6-S-W 58.2d 27.5% 27.4cd 13.0% 105.9d 50.9% 10.2d 7.2% 211.4e
VT-W 72.2b 23.9% 37.9a 12.5% 167.9b 55.5% 24.7a 8.2% 302.7b
VT-S 76.5a 28.5% 37.0a 13.8% 132.8c 49.5% 22.1ab 8.2% 268.4d
VT-S-W 74.1ab 28.0% 37.4a 14.1% 132.4c 50.1% 20.5bc 7.8% 264.4d
[1] MENG Q F, LIU B H, YANG H S, CHEN X P. Solar dimming decreased maize yield potential on the North China Plain. Food and Energy Security, 2020, 9(4): 125-137.
[2] 任佰朝, 张吉旺, 董树亭, 赵斌, 刘鹏. 生育前期淹水对夏玉米冠层结构和光合特性的影响. 中国农业科学, 2017, 50(11): 2093-2103.
REN B Z, ZHANG J W, DONG S T, ZHAO B, LIU P. Effect of waterlogging at early period on structure and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2017, 50(11): 2093-2103. (in Chinese)
[3] 高文华, 李开封, 靳豪豪. 1960-2014年河南极端降水特征分析. 河南大学学报(自然科学版), 2020, 50(3): 253-261.
GAO W H, LI K F, JIN H H. Characteristics of extreme precipitation in Henan province during 1960-2014. Journal of Henan University (Natural Science), 2020, 50(3): 253-261. (in Chinese)
[4] 邱美娟, 刘布春, 刘园, 张玥滢, 王珂依, 庞静漪. 中国北方苹果主产省降水分布特征分析. 中国农业气象, 2020, 41(5): 263-274.
QIU M J, LIU B C, LIU Y, ZHANG Y Y, WANG K Y, PANG J Y. Analysis on distribution characteristics of precipitation in major production provinces of apple in Northern China. Chinese Journal of Agrometeorology, 2020, 41(5): 263-274. (in Chinese)
[5] 王群, 赵向阳, 陈启, 李鸿萍, 董朋飞, 李潮海. 夏玉米阴雨寡照致灾机理及减灾稳产技术研究. 中国作物学会, 2019: 82.
WANG Q, ZHAO X Y, LI H P, DONG P F, LI C H. Study on disaster mechanism and disaster reduction and stable production technology of summer maize with poor rain and light. The Crop Science Society of China, 2019: 82. (in Chinese)
[6] REN B Z, ZHANG J W, DONG S T, LIU P, ZHAO B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS One, 2016, 11(9): e0161424.
doi: 10.1371/journal.pone.0161424
[7] GAO J, LIU Z, ZHAO B, DONG S, LIU P, ZHANG J W. Shade stress decreased maize grain yield, dry matter, and nitrogen accumulation. Agronomy Journal, 2020, 112(4): 2768-2776.
doi: 10.1002/agj2.v112.4
[8] 余卫东, 冯利平, 刘荣花. 玉米涝渍灾害研究进展与展望. 玉米科学, 2013, 21(4): 143-147.
YU W D, FENG L P, LIU R H. Research progress and prospect of waterlogging disaster in maize. Journal of Maize Sciences, 2013, 21(4): 143-147. (in Chinese)
[9] 僧珊珊, 王群, 李潮海, 刘天学, 赵龙飞, 刘怀攀. 淹水胁迫下不同玉米品种根结构及呼吸代谢差异. 中国农业科学, 2012, 45(20): 4141-4148.
SENG S S, WANG Q, LI C H, LIU T X, ZHAO L F, LIU H P. Difference in root structure and respiration metabolism between two maize cultivars under waterlogging stress. Scientia Agricultura Sinica, 2012, 45(20): 4141-4148. (in Chinese)
[10] 李从锋, 贾春兰, 陶志强, 杨今胜, 柳京国, 赵明. 拔节期淹水对不同株高夏玉米产量、形态特征及物质生产的影响. 玉米科学, 2019, 27(6): 62-67.
LI C F, JIA C L, TAO Z Q, YANG J S, LIU J G, ZHAO M. Effects of waterlogging at jointing stage on grain yield, plant morphology and dry matter production in different plant height of summer maize. Journal of Maize Sciences, 2019, 27(6): 62-67. (in Chinese)
[11] 崔海岩, 靳立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺. 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013, 39(3): 478-485.
doi: 10.3724/SP.J.1006.2013.00478
CUI H Y, JIN L B, LI B, ZHAO B, DONG S T, LIU P, ZHANG J W. Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agronomica Sinica, 2013, 39(3): 478-485. (in Chinese)
doi: 10.3724/SP.J.1006.2013.00478
[12] 任佰朝, 张吉旺, 李霞, 范霞, 董树亭, 刘鹏, 赵斌. 大田淹水对夏玉米养分吸收与转运的影响. 植物营养与肥料学报, 2014, 20(2): 298-308.
REN B Z, ZHANG J W, LI X, FAN X, DONG S T, LIU P, ZHAO B. Effect of waterlogging on nutrient uptake and transport of summer maize. Journal of Plant Nutrition and Fertilizers, 2014, 20(2): 298-308. (in Chinese)
[13] 胡旭光, 杨兵兵, 石磊, 盛绍学, 李文阳. 小麦拔节期淹水对叶片光合特性的影响. 生态科学, 2018, 37(5): 72-76.
HU X G, YANG B B, SHI L, SHENG S X, LI W Y. Effects of waterlogging at jointing stage on photosynthetic characteristics of wheat leaves. Ecological Science, 2018, 37(5): 72-76. (in Chinese)
[14] 任佰朝, 张吉旺, 李霞, 范霞, 董树亭, 赵斌, 刘鹏. 大田淹水对夏玉米叶片衰老特性的影响. 应用生态学报, 2014, 25(4): 1022-1028.
REN B Z, ZHANG J W, LI X, FAN X, DONG S T, ZHAO B, LIU P. Effect of waterlogging on leaf senescence characteristics of summer maize in the field. Chinese Journal of Applied Ecology, 2014, 25(4): 1022-1028. (in Chinese)
[15] 任佰朝, 朱玉玲, 李霞, 范霞, 董树亭, 赵斌, 刘鹏, 张吉旺. 大田淹水对夏玉米光合特性的影响. 作物学报, 2015, 41(2): 329-338.
doi: 10.3724/SP.J.1006.2015.00329
REN B Z, ZHU Y L, LI X, FAN X, DONG S T, ZHAO B, LIU P, ZHANG J W. Effects of waterlogging on photosynthetic characteristics of summer maize under field conditions. Acta Agronomica Sinica, 2015, 41(2): 329-338. (in Chinese)
doi: 10.3724/SP.J.1006.2015.00329
[16] 张昆, 万勇善, 刘凤珍. 苗期弱光对花生光合特性的影响. 中国农业科学, 2010, 43(1): 65-67.
ZHANG K, WAN Y S, LIU F Z. Effects of weak light on photosynthetic characteristics of peanut seedlings. Scientia Agricultura Sinica, 2010, 43(1): 65-67. (in Chinese)
[17] 高佳, 崔海岩, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响. 应用生态学报, 2018, 29(3): 883-890.
GAO J, CUI H Y, SHI J G, DONG S T, LIU P, ZHAO B, ZHANG J W. Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L.). Chinese Journal of Applied Ecology, 2018, 29(3): 883-890. (in Chinese)
[18] 贾士芳, 董树亭, 王空军, 张吉旺, 刘鹏. 弱光胁迫对玉米产量及光合特性的影响. 应用生态学报, 2007, 18(11): 2456-2461.
JIA S F, DONG S T, WANG K J, ZHANG J W, LIU P. Effects of weak light stress on grain yield and photosynthetic traits of maize. Chinese Journal of Applied Ecology, 2007, 18(11): 2456-2461. (in Chinese)
[19] 黄鑫慧, 高佳, 任佰朝, 赵斌, 刘鹏, 张吉旺. 植酶Q9对大田弱光夏玉米产量形成的影响. 中国农业科学, 2019, 52(19): 3309-3322.
HUANG X H, GAO J, REN B Z, ZHAO B, LIU P, ZHANG J W. Effects of phytase Q9 on yield formation of summer maize shading in the field. Scientia Agricultura Sinica, 2019, 52(19): 3309-3322. (in Chinese)
[20] LI H, CAI J, JIANG D, LIU F, DAIL T, CAO W. Carbohydrates accumulation and remobilization in wheat plants as influenced by combined waterlogging and shading stress during grain filling. Journal of Agronomy and Crop Science, 2013, 199(1): 38-48.
doi: 10.1111/jac.2013.199.issue-1
[21] 郑仁娜, 阚正荣, 苏盛楠, 江孟孟, 丁锦峰, 李春燕, 朱新开, 郭文善. 遮光和渍水对小麦幼苗形态和生长的影响. 麦类作物学报, 2017, 37(2): 238-245.
ZHENG R N, KAN Z R, SU S N, JIANG M M, DING J F, LI C Y, ZHU X K, GUO W S. Effects of shading and waterlogging on morphology and growth on wheat seeding. Journal of Triticeae Crops, 2017, 37(2): 238-245. (in Chinese)
[22] NAJEEB U, BANGE M P, ATWELL B J, TAN D K Y. Low incident light combined with partial waterlogging impairs photosynthesis and imposes a yield penalty in cotton. Journal of Agronomy and Crop Science, 2016, 202(4): 331-341.
doi: 10.1111/jac.12164
[23] 张银杰, 王磊, 白由路, 卢艳丽, 张静静, 李格. 玉米不同层位叶片生理生化指标与SPAD值的关系. 植物营养与肥料学报, 2020, 26(7): 1-13.
ZHANG Y J, WANG L, BAI Y L, LU Y L, ZHANG J J, LI G. Relationship of physiological and biochemical indicators with SPAD values in maize leaves at different layers. Journal of Plant Nutrition and Fertilizers, 2020, 26(7): 1-13. (in Chinese)
[24] 吕晋慧, 李艳锋, 王玄, 任磊, 冯雁梦, 赵夏陆, 张春来. 遮阴处理对金莲花生长发育和生理响应的影响. 中国农业科学, 2013, 46(9): 1772-1780.
LÜ J H, LI Y F, WANG X, REN L, FENG Y M, ZHAO X L, ZHANG C L. Impact of shading on growth, development and physiological characteristics of trollius chinensis bunge. Scientia Agricultura Sinica, 2013, 46(9): 1772-1780. (in Chinese)
[25] 贾士芳, 李从锋, 董树亭, 张吉旺. 花后不同时期遮光对玉米粒重及品质影响的细胞学研究. 中国农业科学, 2010, 43(5): 911-921.
JIA S F, LI C F, DONG S T, ZHANG J W. Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level. Scientia Agricultura Sinica, 2010, 43(5): 911-921. (in Chinese)
[26] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007, 33(2): 216-222.
ZHANG J W, DONG S T, WANG K J, HU C H, LIU P. Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agronomica Sinica, 2007, 33(2): 216-222. (in Chinese)
[27] 王群, 赵向阳, 刘东尧, 闫振华, 李鸿萍, 董朋飞, 李潮海. 淹水弱光复合胁迫对夏玉米根形态结构、生理特性和产量的影响. 中国农业科学, 2020, 53(17): 3479-3495.
WANG Q, ZHAO X Y, LIU D Y, YAN Z H, LI H P, DONG P F, LI C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Scientia Agricultura Sinica, 2020, 53(17): 3479-3495. (in Chinese)
[28] 周卫霞, 董朋飞, 王秀萍, 李潮海. 弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响. 作物学报, 2013, 39(10): 1826-1834.
doi: 10.3724/SP.J.1006.2013.01826
ZHOU W X, DONG P F, WANG X P, LI C H. Effects of low-light stress on kernel setting and metabolism of carbon and nitrogen in different maize (Zea mays L.) genotypes. Acta Agronomica Sinica, 2013, 39(10): 1826-1834. (in Chinese)
doi: 10.3724/SP.J.1006.2013.01826
[29] LENSSEN J P M, MENTING F B J, VANDER PUTTEN W H. Plant responses to simultaneous stress of waterlogging and shade: Amplified or hierarchical effects. New Phytologist, 2003, 157(2): 281-290.
doi: 10.1046/j.1469-8137.2003.00666.x
[30] 牟会荣, 姜东, 戴廷波, 张传辉, 荆奇, 曹卫星. 遮光对小麦籽粒淀粉品质和花前贮存非结构碳水化合物转运的影响. 应用生态学报, 2009, 20(4): 805-810.
MU H R, JIANG D, DAI T B, ZHANG C H, JING Q, CAO W X. Effects of shading on wheat grain starch quality and redistribution of pre-anthesis stored nonstructural carbohydrates. Chinese Journal of Applied Ecology, 2009, 20(4): 805-810. (in Chinese)
[31] 顾蕴倩, 刘雪, 张巍, 亓春杰, 汤开磊, 赵杨, 张岩, 李刚, 王斌, 赵春江, 罗卫红. 灌浆期弱光逆境对小麦生长和产量影响的模拟模型. 中国农业科学, 2013, 46(5): 898-908.
GU Y Q, LIU X, ZHANG W, QI C J, TANG K L, ZHAO Y, ZHANG Y, LI G, WANG B, ZHAO C J, LUO W H. The simulation model of the effects of low level of radiation at milk filling stage on wheat growth and yield. Scientia Agricultura Sinica, 2013, 46(5): 898-908. (in Chinese)
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[8] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[9] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[10] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[11] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[12] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[13] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[14] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[15] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!