Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (18): 3818-3833.doi: 10.3864/j.issn.0578-1752.2021.18.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation and Screening of Nitrogen Efficiency of Wheat Germplasm Resources at Mature Stage

ZHAO Rui(),ZHANG XuHui,ZHANG ChengYang,GUO JingLei,WANG Yu,LI HongXia()   

  1. College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi
  • Received:2021-01-11 Accepted:2021-04-01 Online:2021-09-16 Published:2021-09-26
  • Contact: HongXia LI E-mail:ruizhaoray@outlook.com;lhxazw@126.com

Abstract:

【Objective】 In order to provide theoretical foundation for the study of physiological mechanism of nitrogen efficiency in wheat and material basis for the breeding of nitrogen efficiency varieties, the evaluation method for nitrogen efficiency of wheat at mature stage was established to explore and screen nitrogen efficiency germplasm resources. 【Method】 In the field experiment, 108 different genotype wheat varieties were used for the treatment of 4 nitrogen application(0, 180, 240, 360 kg·hm-2). Eleven indexes of major agronomic traits, including plant height, spike length, flag leaf length, flag leaf width, stem diameter, fertile spikelet number, grain number per spike, thousand kernel weight, grain length, grain width and grain weight per spike were measured for two consecutive years. The nitrogen tolerance and genotype difference of wheat varieties were assessed by the method of Fuzzy membership function, principal component analysis and cluster analysis. 【Result】 The results of two-year data show that plant height, spike length, flag leaf length, flag leaf width, stem diameter, fertile spikelet number, spike grain number and grain weight per spike under low nitrogen stress were all inhibited to varying degrees, among which flag leaf length was the most sensitive to nitrogen stress. Four principal components were extracted by principal component analysis, and the contribution rate was 39.766%, 16.661%, 9.361% and 9.275%, respectively. The cumulative contribution rate reached 75.064%. According to the comprehensive evaluation D value of low nitrogen tolerance, the tested wheat varieties were divided into 5 types: strong low nitrogen tolerance, low nitrogen tolerance, intermediate, low nitrogen light sensitive and low nitrogen sensitive. Five low-nitrogen tolerant wheats including Wenmai19, Xinong 529, Shi 4185, Longmai 212 and Fengkang 2 and two strong low-nitrogen tolerant wheats (Zhongmai 875 and Xinong 158) were selected. Different from low nitrogen stress, high nitrogen stress only inhibited 5 traits including stem diameter, thousand kernel weight, grain length, grain width and grain weight per spike, and 6 traits including plant height, spike length, flag leaf length, flag leaf width, fertile spikelet number and spike grain number increased with the increase of nitrogen application. Principal component analysis extracts 4 principal components, the contribution rates are 31.348%, 20.387%, 12.452% and 9.850%, respectively, and the cumulative contribution rate is 74.037%. Based on the D value of comprehensive evaluation of high nitrogen tolerance, the tested wheat varieties were divided into four categories: high nitrogen tolerance type, intermediate type, high nitrogen light sensitive type and high nitrogen sensitive type. Nine wheat varieties with high nitrogen tolerance were identified, including Lankao Aizao 8, Liangxing 99, Nongda 179, Yunnong 9901, Lankao 926 and Zhengnong 46. Based on the D value of comprehensive evaluation of nitrogen and grain yield, 108 wheat varieties were divided into four nitrogen efficiency types, dual-efficiency type (Xinong 158 and Longmai 212 et al.), low-nitrogen efficiency type (Xinong 585 and Shi 4185 et al.), high-nitrogen efficiency type (Changfeng 1 and Zhongsimai 10 et al.) and dual-inefficiency type (Jinfeng 7183 and Fanmai 5 et al.). 【Conclusion】 Nitrogen supply level has a significant influence on wheat yield-related traits and indexes. The nitrogen efficiency of wheat germplasm resources at maturity might be accurately evaluated combined with three evaluation methods, based on the difference of nitrogen absorption and utilization efficiency between wheat germplasm.

Key words: wheat, nitrogen efficiency, screening index, comprehensive evaluation

Table 1

Differences of nitrogen efficiency-related of wheat traits at mature stage under different nitrogen levels"

年份
Year
性状
Trait
N1 N2 N3 N4
平均值
Mean
标准差
SD
变异系数
CV (%)
平均值
Mean
标准差
SD
变异系数
CV (%)
平均值
Mean
标准差
SD
变异系数
CV (%)
平均值
Mean
标准差
SD
变异系数
CV (%)
2019 株高PH (cm) 74.56 11.70 15.69 79.16 13.33 16.84 80.04 12.46 15.57 79.64 12.86 16.15
穗长SL (cm) 8.48 1.11 13.10 8.93 1.18 13.21 9.30 1.16 12.51 9.39 1.29 13.70
旗叶长FLL(cm) 12.20 2.69 22.08 13.02 2.55 19.58 13.73 2.21 16.11 14.12 2.47 17.46
旗叶宽FLW (cm) 1.43 0.23 15.94 1.49 0.24 16.44 1.59 0.23 14.53 1.58 0.23 14.57
茎粗SD (cm) 3.62 0.40 10.93 3.60 0.40 11.04 3.86 0.35 9.12 3.68 0.33 9.04
可育小穗数FSN (cm) 17.96 2.13 11.85 18.02 1.83 10.16 18.32 1.68 9.19 18.32 1.76 9.60
穗粒数GNPS 43.70 7.98 18.26 44.08 7.23 16.41 46.96 7.74 16.48 45.07 7.96 17.65
千粒重TKW(g) 52.80 4.94 9.36 52.47 4.74 9.04 52.65 5.12 9.72 51.88 5.24 10.09
粒长GL (cm) 7.46 0.35 4.66 7.50 0.34 4.50 7.45 0.36 4.79 7.45 0.41 5.44
粒宽GW (cm) 3.94 0.16 4.09 3.91 0.16 3.97 3.90 0.16 4.21 3.87 0.15 3.86
单穗产量GWPS (g) 2.31 0.50 21.79 2.31 0.44 19.05 2.47 0.47 19.13 2.34 0.47 20.07
2020
株高PH (cm) 76.92 10.62 13.81 77.39 9.06 11.70 78.39 10.55 13.46 78.14 10.12 12.96
穗长SL (cm) 8.41 1.14 13.49 8.83 0.92 10.46 8.89 0.94 10.59 9.13 1.00 10.95
旗叶长FLL(cm) 12.80 2.94 22.99 13.96 2.10 15.07 13.76 2.29 16.68 14.38 2.13 14.79
旗叶宽FLW (cm) 1.19 0.22 18.88 1.16 0.24 20.43 1.24 0.26 21.12 1.27 0.18 14.06
茎粗SD (cm) 3.59 0.51 14.15 3.90 0.41 10.54 3.82 0.49 12.83 3.66 0.34 9.25
可育小穗数FSN (cm) 16.41 1.51 9.22 17.65 1.52 8.60 17.35 1.70 9.80 18.22 1.74 9.55
穗粒数GNPS 43.92 8.20 18.68 47.47 7.72 16.26 46.34 8.29 17.90 47.00 7.89 16.78
千粒重TKW (g) 45.72 4.39 9.59 47.12 5.02 10.66 44.20 6.32 14.29 45.71 5.03 11.00
粒长GL (cm) 6.65 0.35 5.28 6.68 0.34 5.12 6.68 0.34 5.08 6.69 0.36 5.35
粒宽GW (cm) 3.32 0.14 4.23 3.37 0.15 4.31 3.27 0.18 5.50 3.32 0.16 4.97
单穗产量GWPS (g) 2.01 0.43 21.42 2.24 0.43 19.03 2.04 0.45 21.98 2.15 0.44 20.62

Table 2

The interval distribution of nitrogen tolerance coefficient PI of each trait in wheat germplasm"

年份
Year
性状
Trait
低氮胁迫N1/N3 Low nitrogen stress N1/N3 (%) 高氮胁迫N2/N4 High nitrogen stress N2/N4 (%)
0≤PI1<0.5 0.5≤PI1<1 1≤PI1<1.5 0≤PI2<0.5 0.5≤PI2<1 1≤PI2<1.5
2019 株高PH 0.00 65.74 34.26 0.00 46.30 53.70
穗长SL 0.93 71.30 26.85 0.00 25.93 74.07
旗叶长FLL 0.93 73.15 25.00 0.00 28.70 68.52
旗叶宽FLW 0.00 77.78 22.22 0.00 28.70 69.44
茎粗SD 0.00 69.44 30.5 0.00 31.48 68.52
可育小穗数FSN 0.00 50.93 49.07 0.00 38.89 61.11
穗粒数GNPS 0.93 63.8 33.33 0.00 36.11 63.89
千粒重TKW 0.00 48.08 50.96 0.00 58.16 41.84
粒长GL 0.00 47.12 52.88 0.00 61.22 38.78
粒宽GW 0.00 47.12 52.88 0.00 62.24 37.76
单穗产量GWPS 0.96 67.31 30.77 0.00 47.96 50.00
2020
株高PH 0.00 61.90 38.10 0.00 46.15 53.85
穗长SL 0.00 78.10 20.95 0.00 32.69 67.31
旗叶长FLL 0.00 66.67 32.38 0.00 37.50 62.50
旗叶宽FLW 0.00 54.29 38.10 0.00 26.92 56.73
茎粗SD 0.00 70.48 29.52 0.00 70.19 29.81
可育小穗数FSN 0.00 71.43 28.57 0.00 41.35 58.65
穗粒数GNPS 0.00 63.81 35.24 0.00 58.65 39.42
千粒重TKW 0.00 42.86 55.24 0.00 61.54 28.85
粒长GL 0.00 58.10 41.90 0.00 47.12 52.88
粒宽GW 0.00 43.81 56.19 0.00 59.62 40.38
单穗产量GWPS 0.95 59.05 34.29 0.00 57.69 41.35

Fig. 1

Correlation analysis on low(A)and high(B)nitrogen tolerance coefficient of each trait in wheat germplasm PH: Plant height; SL: Spike length; FLL: Flag leaf length; FLW: Flag leaf width; SD: Stem diameter; FSN: Fertile spikelet number; GNPS: Grain number per spike; TKW: Thousand kernel weight; GL: Grain length; GW: Grain width; GWPS: Grain weight per spike. * and ** refer to the different significance at P<0.05 and P<0.01 levels, respectively. The size of the circle denotes the size of the correlation coefficient, blue represents positive correlation, red represents negative correlation. The same as below"

Table 3

Principal component analysis of nitrogen efficiency related wheat traits"

性状
Trait
耐低氮性(PI-L) Low nitrogen tolerance (PI-L) 耐高氮性(PI-G) High nitrogen tolerance (PI-G)
因子1
Factor1
因子2
Factor2
因子3
Factor2
因子4
Factor4
因子1
Factor1
因子2
Factor1
因子3
Factor1
因子4
Factor1
株高PH 0.645 -0.085 -0.425 0.465 -0.009 0.586 0.366 0.218
穗长SL 0.744 -0.338 0.036 0.209 0.301 0.464 -0.413 0.547
旗叶长FLL 0.694 -0.288 -0.134 0.449 0.251 0.742 0.065 0.330
旗叶宽FLW 0.303 0.223 0.712 0.411 0.557 0.152 -0.375 0.059
茎粗SD 0.670 -0.383 0.173 -0.249 0.573 -0.058 -0.639 -0.088
可育小穗数FSN 0.822 -0.264 -0.080 -0.311 0.678 0.373 -0.109 -0.548
穗粒数GNPS 0.475 -0.291 0.460 -0.181 0.352 0.580 0.506 -0.132
千粒重TKW 0.620 0.633 -0.071 -0.234 0.709 -0.490 0.356 0.258
粒长GL 0.242 0.635 0.196 0.140 0.554 -0.407 -0.015 0.310
粒宽GW 0.506 0.660 -0.163 0.065 0.679 -0.469 0.311 0.180
单穗产量GWPS 0.883 0.193 -0.074 -0.345 0.895 0.070 0.141 -0.321
特征值Eigenvalue 4.374 1.833 1.030 1.020 3.448 2.243 1.370 1.083
贡献率Contribution rate (%) 39.766 16.661 9.361 9.275 31.348 20.387 12.452 9.850
累计贡献率Accumulated contribution (%) 39.766 56.427 65.788 75.064 31.348 51.736 64.187 74.037

Fig. 2

Cluster analysis of comprehensive evaluation value D on low nitrogen tolerance of different wheat varieties The 108 species numbers in the figure are the same as those in Supplement 1. The same as below"

Fig. 3

Cluster analysis of comprehensive evaluation value D on high nitrogen tolerance of different wheat varieties"

Table 4

Grey relational analysis between nitrogen tolerance coefficient and comprehensive evaluation value D"

性状
Trait
耐低氮性
Low nitrogen tolerance
耐高氮性
High nitrogen tolerance
关联度
Correlation
degree
位次
Rank
关联度
Correlation
degree
位次
Rank
株高PH 0.781 5 0.708 7
穗长SL 0.794 2 0.707 8
旗叶长FLL 0.792 4 0.730 2
旗叶宽FLW 0.748 11 0.703 9
茎粗SD 0.755 9 0.717 5
可育小穗数FSN 0.772 7 0.663 11
穗粒数GNPS 0.752 10 0.712 6
千粒重TKW 0.794 3 0.726 3
粒长GL 0.765 8 0.701 10
粒宽GW 0.773 6 0.718 4
单穗产量GWPS 0.815 1 0.765 1

Fig. 4

GGE analysis between low (A) and high (B) nitrogen tolerance coefficient and comprehensive evaluation D value of each trait"

Fig. 5

Grain production per spikelet of wheat varieties under different nitrogen levels"

Fig. 6

Scatter map of N efficiency value of wheat varieties under low(A)and high(B)nitrogen tolerance"

[1] ZHU Z L, CHEN D L. Nitrogen fertilizer use in China contributions to food production, impacts on the environment and best management strategies. Nutrient Cycling in Agroecosystems, 2002, 63:117-127.
doi: 10.1023/A:1021107026067
[2] 巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795.
JU X T, GU B J. Current status, problems and trends of nitrogen fertilizer application in farmland in my country. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese)
[3] HOU X K, ZHAN X Y, ZHOU F, YAN X Y, GU B J, STEFAN R, WU Y L, LIU H B, PIAO S L, TANG Y H. Detection and attribution of nitrogen runoff trend in China's croplands. Environmental Pollution, 2018, 234:270-278.
doi: 10.1016/j.envpol.2017.11.052
[4] ZHANG Y F, WU H, YAO M Y, ZHOU J, WU K B, HU M P, SHEN H, CHEN D J. Estimation of nitrogen runoff loss from croplands in the Yangtze River Basin: A meta-analysis. Environmental Pollution, 2021, 272:116001.
doi: 10.1016/j.envpol.2020.116001
[5] 黄国勤, 王兴祥, 钱海燕, 张桃林, 赵其国. 施用化肥对农业生态环境的负面影响及对策. 生态环境, 2004, 13(4): 656-660.
HUANG G Q, WANG X X, QIAN H Y, ZHANG T L, ZHAO Q G. The negative effects of applying chemical fertilizers on the agricultural ecological environment and countermeasures. Ecological Environment, 2004, 13(4): 656-660. (in Chinese)
[6] 钟思荣, 龚丝雨, 张世川, 陈仁霄, 刘齐元, 翟小清. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报, 2018, 32(8): 1656-1663.
ZHONG S R, GONG S Y, ZHANG S C, CHEN R X, LIU Q Y, ZHAI X Q. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants. Journal of Nuclear Agricultural Sciences, 2018, 32(8): 1656-1663. (in Chinese)
[7] 董鲁明. 不同类型玉米品种氮高效生理特性研究[D]. 扬州: 扬州大学, 2009.
DONG L M. Study on physiological characteristics of different types of maize varieties with nitrogen efficiency[D]. Yangzhou: Yangzhou University, 2009. (in Chinese)
[8] 杨睿, 伍晓明, 安蓉, 李亚军, 张玉莹, 陈碧云, 高亚军. 不同基因型油菜氮素利用效率的差异及其与农艺性状和氮营养性状的关系. 植物营养与肥料学报, 2013, 19(3): 586-596.
YANG R, WU X M, AN R, LI Y J, ZHANG Y Y, CHEN B Y, GAO Y J. Differences of nitrogen use efficiency of rapeseed (Brassica napus L.) genotypes and their relations to agronomic and nitrogen characteristics. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 586-596. (in Chinese)
[9] 韩璐, 张薇. 棉花苗期氮营养高效品种筛选. 中国农学通报, 2011, 27(1): 84-88.
HAN L, ZHANG W. Screening of cotton varieties with high nitrogen efficiency at seedling stage. Chinese Agricultural Science Bulletin, 2011, 27(1): 84-88. (in Chinese)
[10] 贵会平, 董强, 张恒恒, 王香茹, 庞念厂, 王准, 刘记, 郑苍松, 付小琼, 张西岭, 宋美珍. 棉花苗期耐低氮基因型初步筛选. 棉花学报, 2018, 30(4): 326-337.
GUI H P, DONG Q, ZHANG H H, WANG X R, PANG N C, WANG Z, LIU J, ZHENG C S, FU X Q, ZHANG X L, SONG M Z. Preliminary screening of low nitrogen tolerant cotton genotypes at seedling stage. Cotton Science, 2018, 30(4): 326-337. (in Chinese)
[11] 王准. 棉花氮高效种质筛选及评价指标的研究[D]. 北京: 中国农业科学院, 2019.
WANG Z. Screening and evaluation index of cotton nitrogen efficient germplasm[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[12] 王改丽. 新型甘蓝型油菜氮高效种质的筛选及其氮高效机制的研究[D]. 武汉: 华中农业大学, 2014.
WANG G L. Screening of high nitrogen efficient germplasms and its mechanism in new-type Brassica napus[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[13] 陈志伟, 邹磊, 陆瑞菊, 王亦菲, 何婷, 杜志钊, 张艳敏, 黄剑华. 不同基因型大麦苗期耐低氮性状与产量性状的相关性. 麦类作物学报, 2010, 30(1): 158-162.
CHEN Z W, ZOU L, LU R J, WANG Y F, HE T, DU Z Z, ZHANG Y M, HUANG J H. Study on the relationship between the traits for low-nitrogen tolerance of different barley genotypes at seedling stage and grain yield. Journal of Triticeae Crops, 2010, 30(1): 158-162. (in Chinese)
[14] 强欣. 大麦不同氮利用效率品种筛选及GS基因的生物信息学分析[D]. 兰州: 甘肃农业大学, 2015.
QIANG X. The varieties screening of nitrogen use efficiency in Hordeum vulgare and bioinformatics analysis of GS gene[D]. Lanzhou: Gansu Agricultural University, 2015. (in Chinese)
[15] 全晓艳. 西藏野生大麦低氮耐性机制研究[D]. 杭州: 浙江大学, 2016.
QUAN X Y. Study on the low nitrogen tolerance mechanism of Tibetan wild barley[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
[16] 姜琪, 陈志伟, 刘成洪, 何婷, 郭桂梅, 高润红, 徐红卫, 李颖波, 陆瑞菊, 黄剑华. 大麦地方品种苗期耐低氮筛选和鉴定指标的研究. 华北农学报, 2019, 34(1): 148-155.
JIANG Q, CHEN Z W, LIU C H, HE T, GUO G M, GUO R H, XU H W, LI Y B, LU R J, HUANG J H. Screening and identification indices of low-nitrogen tolerance for barley land-races at seedling stage. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 148-155. (in Chinese)
[17] 时丽冉, 郝洪波, 李明哲. 不同基因型谷子幼苗期对低氮胁迫的响应. 作物杂志, 2014(4): 75-79.
SHI L R, HAO H B, LI M Z. Biological response of in seedling stage different foxtail millet genotypes to low nitrogen stress. Crops, 2014(4): 75-79. (in Chinese)
[18] 陈二影, 杨延兵, 秦岭, 张华文, 刘宾, 王海莲, 陈桂玲, 于淑婷, 管延安. 谷子苗期氮高效品种筛选及相关特性分析. 中国农业科学, 2016, 49(17): 3287-3297.
CHEN E Y, YANG Y B, QIN L, ZHANG H W, LIU B, WANG H L, CHEN G L, YU S T, GUAN Y A. Evaluation of nitrogen efficient cultivars of foxtail millet and analysis of the related characters at seedling stage. Scientia Agricultura Sinica, 2016, 49(17): 3287-3297. (in Chinese)
[19] 梁兴萍, 冯唯欣, 秦鹏飞, 刘元飞, 张瑞杰. 谷子耐低氮品种的筛选. 山西农业科学, 2016, 44(12): 1747-1750.
LIANG X P, FENG W X, QIN P F, LIU Y F, ZHANG R J. Screening of resistance to low nitrogen varieties of millet. Journal of Shanxi Agricultural Sciences, 2016, 44(12): 1747-1750. (in Chinese)
[20] 黄兴东. 谷子耐低氮胁迫品种资源的筛选与鉴定[D]. 晋中: 山西农业大学, 2017.
HUANG X D. Screening and identification of resistance to low nitrogen varieties of foxtail millet[D]. Jinzhong: Shanxi Agricultural University, 2017. (in Chinese)
[21] 连盈, 卢娟, 胡成梅, 牛胤全, 史雨刚, 杨进文, 王曙光, 张文俊, 孙黛珍. 低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选. 中国生态农业学报, 2020, 28(4): 523-534.
LIAN Y, LU J, HU C M, NIU Y Q, SHI Y G, YANG J W, WANG S G, ZHANG W J, SUN D Z. Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties. Chinese Journal of Eco-Agriculture, 2020, 28(4): 523-534. (in Chinese)
[22] LIU C J, GONG X W, WANG H L, DANG K, DENG X P, FENG B L. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling. Plant Physiology and Biochemistry, 2020, 151:233-242.
doi: 10.1016/j.plaphy.2020.03.027
[23] 陈晨, 龚海青, 张敬智, 徐寓军, 郜红建. 不同基因型水稻苗期氮营养特性差异及综合评价. 中国生态农业学报, 2016, 24(10): 1347-1355.
CHEN C, GONG H Q, ZHANG J Z, XU Y J, GAO H J. Evaluation of nitrogen nutrition characteristics of different rice cultivars at seedling stage. Chinese Journal of Eco-Agriculture, 2016, 24(10): 1347-1355. (in Chinese)
[24] 李强, 罗延宏, 谭杰, 孔凡磊, 杨世民, 袁继超. 玉米杂交种苗期耐低氮指标的筛选与综合评价. 中国生态农业学报, 2014, 22(10): 1190-1199.
LI Q, LUO Y H, TAN J, KONG F L, YANG S M, YUAN J C. Indexes screening and comprehensive evaluation of low nitrogen tolerance of hybrid maize cultivars at seedling stage. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1190-1199. (in Chinese)
[25] 裴雪霞, 王姣爱, 党建友, 张定一. 耐低氮小麦基因型筛选指标的研究. 植物养与肥料学报, 2007, 13(2): 93-98.
PEI X X, WANG J A, DANG J Y, ZHANG D Y. An approach to the screening index for low nitrogen tolerant wheat genotype. Journal of Plant Nutrition and Fertilizer, 2007, 13(2): 93-98. (in Chinese)
[26] 李丹丹, 田梦雨, 崔昊, 戴廷波, 姜东, 荆奇, 曹卫星. 小麦苗期耐低氮胁迫的基因型差异. 麦类作物学报, 2009, 29(2): 222-227.
LI D D, TIAN M Y, CUI H, DAI T B, JIANG D, JING Q, CAO W X. Genotypic differences of low nitrogen tolerance at wheat early stage. Journal of Triticeae Crops, 2009, 29(2): 222-227. (in Chinese)
[27] 赵化田, 王瑞芳, 许云峰, 安调过. 小麦苗期耐低氮基因型的筛选与评价. 中国生态农业学报, 2011, 19(5): 1199-1204.
doi: 10.3724/SP.J.1011.2011.01199
ZHAO H T, WANG R F, XU Y F, AN D G. Screening and evaluating low nitrogen tolerant wheat genotype at seedling stage. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1199-1204. (in Chinese)
doi: 10.3724/SP.J.1011.2011.01199
[28] 杜保见, 郜红建, 常江, 章力干. 小麦苗期氮素吸收利用效率差异及聚类分析. 植物营养与肥料学报, 2014, 20(6): 1349-1357.
DU B J, GAO H J, CHANG J, ZHANG L G. Screening and cluster analysis of nitrogen use efficiency of different wheat cultivars at the seedling stage. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1349-1357. (in Chinese)
[29] 董振杰, 马超, 田修斌, 李欢欢, 刘文轩. 国内外小麦品种苗期耐氮胁迫能力综合评价. 贵州农业科学, 2019, 47(3): 16-20.
DONG Z J, MA C, TIAN X B, LI H H, LIU W X. Compressive evaluation on tolerance to nitrogen stress of domestic and abroad wheat varieties at seedling stage. Guizhou Agricultural Sciences, 2019, 47(3): 16-20. (in Chinese)
[30] LIU X X, WANG S W, DENG X P, ZHANG Z Y, YIN L N. Comprehensive evaluation of physiological traits under nitrogen stress and participation of linolenic acid in nitrogen-deficiency response in wheat seedlings. BMC Plant Biology, 2020, 20(1): 501.
doi: 10.1186/s12870-020-02717-5
[31] 李立会, 李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 81-83.
LI L H, LI X Q. Descriptors and Data Standard for Wheat (Triticum aestivum L.). Beijing: China Agriculture Press, 2006: 81-83. (in Chinese)
[32] 钟思荣, 陈仁霄, 陶瑶, 龚丝雨, 何宽信, 张启明, 张世川, 刘齐元. 耐低氮烟草基因型的筛选及其氮效率类型. 作物学报, 2017, 43(7): 993-1002.
ZHONG S R, CHEN R X, TAO Y, GONG S Y, HE K X, ZHANG Q M, ZHANG S C, LIU Q Y. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types. Acta Agronmica Sinica, 2017, 43(7): 993-1002. (in Chinese)
[33] 刘鹏, 武爱莲, 王劲松, 南江宽, 董二伟, 焦晓燕, 平俊爱, 白文斌. 不同基因型高粱的氮效率及对低氮胁迫的生理响应. 中国农业科学, 2018, 51(1): 3074-3083.
LIU P, WU A L, WANG J S, NAN J K, DONG E W, JIAO X Y, PING J A, BAI W B. Nitrogen use efficiency and physiological responses of different sorghum genotypes influenced by nitrogen deficiency. Scientia Agricultura Sinica, 2018, 51(1): 3074-3083. (in Chinese)
[34] 陈凌, 王君杰, 王海岗, 曹晓宁, 刘思辰, 田翔, 秦慧彬, 乔治军. 耐低氮糜子品种的筛选及农艺性状的综合评价. 中国农业科学, 2020, 53(16): 3214-3224.
CHEN L, WANG J J, WANG H G, CAO X N, LIU S C, TIAN X, QIN H B, QIAO Z J. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits. Scientia Agricultura Sinica, 2020, 53(16): 3214-3224. (in Chinese)
[35] 冯洋, 陈海飞, 胡孝明, 周卫, 徐芳森, 蔡红梅. 我国南方主推水稻品种氮效率筛选及评价. 植物营养与肥料学报, 2014, 20(5): 1051-1062.
FENG Y, CHEN H F, HU X M, ZHOU W, XU F S, CAI H M. Screening and evaluation of nitrogen efficiency of main rice varieties in southern my country. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1051-1062. (in Chinese)
[36] 崔文芳, 高聚林, 于晓芳, 王志刚, 孙继颖, 胡树平, 苏治军, 谢珉. 高产氮高效玉米品种的筛选及其指标研究. 作物杂志, 2016(6): 38-43.
CUI W F, GAO J L, YU X F, WANG Z G, SUN J Y, HU S P, SU Z J, XIE M. Screening on indexes of nitrogen efficient maize varieties. Crops, 2016(6): 38-43. (in Chinese)
[37] 张旭. 小麦氮素高效利用的基因型差异及形态生理特性[D]. 南京: 南京农业大学, 2016.
ZHANG X. Genotypic differences in high nitrogen utilization in wheat and their morphological and physiological characteristics[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
[38] 黄永兰, 黎毛毛, 芦明, 万建林, 龙起樟, 王会民, 唐秀英, 范志洁. 氮高效水稻种质资源筛选及相关特性分析. 植物遗传资源学报, 2015, 16(1): 87-93.
HUANG Y L, LI M M, LU M, WAN J L, LONG Q Z, WANG H M, TANG X Y, FAN Z J. Selection of rice germplasm with high nitrogen utilization efficiency and its analysis of the related characters. Journal of Plant Genetic Resources, 2015, 16(1): 87-93. (in Chinese)
[39] 崔文芳, 高聚林, 屈佳伟, 于晓芳, 胡树平, 苏治军, 王志刚, 孙继颖, 谢岷. 氮高效玉米杂交种的筛选及氮效率相关特性分析. 玉米科学, 2016, 24(4): 72-82.
CUI W F, GAO J L, QU J W, YU X F, HU S P, SU Z J, WANG Z G, SUN J Y, XIE M. Analysis of nitrogen efficient maize hybrid screening and nitrogen efficiency related characteristics. Journal of Maize Sciences, 2016, 24(4): 72-82. (in Chinese)
[40] 顾炽明, 韩配配, 胡琼, 李银水, 廖祥生, 张志华, 谢立华, 胡小加, 秦璐, 廖星. 甘蓝型油菜苗期氮效率评价. 中国油料作物学报, 2018, 40(6): 119-128.
GU C M, HAN P P, HU Q, LI Y S, LIAO X S, ZHANG Z H, XIE L H, HU X J, QIN L, LIAO X. Nitrogen efficiency evaluation in rapeseed (Brassica napus L.) at seedling stage. Chinese Journal of Oil Crop Sciences, 2018, 40(6): 119-128. (in Chinese)
[1] PENG HaiXia, KA DeYan, ZHANG TianXing, ZHOU MengDie, WU LinNan, XIN ZhuanXia, ZHAO HuiXian, MA Meng. Overexpression of Wheat TaCYP78A5 Increases Flower Organ Size [J]. Scientia Agricultura Sinica, 2023, 56(9): 1633-1645.
[2] WEI YongKang, YANG TianCong, ZANG ShaoLong, HE Li, DUAN JianZhao, XIE YingXin, WANG ChenYang, FENG Wei. Monitoring Wheat Lodging Based on UAV Multi-Spectral Image Feature Fusion [J]. Scientia Agricultura Sinica, 2023, 56(9): 1670-1685.
[3] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[4] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[5] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[6] CHANG ChunYi, CAO Yuan, GHULAM Mustafa, LIU HongYan, ZHANG Yu, TANG Liang, LIU Bing, ZHU Yan, YAO Xia, CAO WeiXing, LIU LeiLei. Effects of Powdery Mildew on Photosynthetic Characteristics and Quantitative Simulation of Disease Severity in Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1061-1073.
[7] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[8] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[9] FAN ZhiLong, HU FaLong, YIN Wen, FAN Hong, ZHAO Cai, YU AiZhong, CHAI Qiang. Response of Water Use Characteristics of Spring Wheat to Co- Incorporation of Green Manure and Wheat Straw in Arid Irrigation Region [J]. Scientia Agricultura Sinica, 2023, 56(5): 838-849.
[10] GUO Yan, JING YuHang, WANG LaiGang, HUANG JingYi, HE Jia, FENG Wei, ZHENG GuoQing. UAV Multispectral Image-Based Nitrogen Content Prediction and the Transferability Analysis of the Models in Winter Wheat Plant [J]. Scientia Agricultura Sinica, 2023, 56(5): 850-865.
[11] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[12] YAO YiJun, JU XingRong, WANG LiFeng. Lipid-Lowering Effects and Its Regulation Mechanism of Buckwheat Polyphenols in High-Fat Diet-Induced Obese Mice [J]. Scientia Agricultura Sinica, 2023, 56(5): 981-994.
[13] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[14] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[15] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!