Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (16): 3473-3487.doi: 10.3864/j.issn.0578-1752.2021.16.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang

WEN Ming1,2(),LI MingHua1,2,JIANG JiaLe1,MA XueHua1,LI RongWang1,ZHAO WenQing3,CUI Jing1,2,LIU Yang1,2(),MA FuYu1,2()   

  1. 1School of Agriculture, Shihezi University/The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang
    2National & Local Joint Engineering Research Center of Information Management and Application Technology for Modern Agricultural Production ( XPCC), Shihezi 832003, Xinjiang
    3College of Agronomy, Nanjing Agricultural University, Nanjing 210095
  • Received:2020-09-25 Accepted:2020-11-25 Online:2021-08-16 Published:2021-08-24
  • Contact: Yang LIU,FuYu MA E-mail:wmalaer@qq.com;ly.0318@163.com;1469633844@qq.com

Abstract:

【Objective】The aim of this study was to clarify the response of reduced nitrogen (N) application with different phosphorus (P) and potassium (K) managements (PK-M) on drip-irrigated cotton growth, dry matter accumulation and yield formation in Northern Xinjiang, so as to provide a theroe base for reduced N application with cost saving. 【Method】Field experiments were conducted by using Lumianyan 24 under four N application rates (506, 402.5, 299 and 195.5 kg·hm-2 designated as N1, N2, N3 and N4, respectively), and four different PK-Ms during squaring stage and bloom-bolling stage (100%+0, 25%+75%, 50%+50% and 75%+25% designated as PK-M1, PK-M2, PK-M3 and PK-M4, respectively). The leaf area index (LAI), dry matter accumulation and distribution, reproductive organs dynamic changes and yield were assayed during experiment period. 【Result】Under the same PK-M treatment, the K’ value of LAI’s Logistic model showed a trend of first increasing and then decreasing with the decrease of nitrogen application rate; the K’ value under N3 was 5.1%-16.5% higher than that under N2, and which in the fast accumulation period in initiated (t1) and terminated (t2) days were the latest under N3; which in the duration of fast accumulation period (T) was the longest, and N3 was 2-12 days longer than N2. The growth characteristic value (GT) under N3 was the highest, followed by N2, and N3 was 5.2%-16.7% higher than that under N2. The dry matter accumulation in the early growth period was N1>N2>N3>N4 treatment, and in the late period was N2>N1>N3>N4 treatment. The number of reproductive organs was N2>N3>N1>N4 treatment during the growth period. The relative yield value under N2 was the highest, followed by N3 treatment, which under N2 was 3.6%-6.5% higher than that under N3. Under the same N application rate, the K’ value of LAI logistic model under PK-M3 was the highest and PK-M1 was the lowest, and PK-M3 was 20.5%-27.4% higher than PK-M1; the fast accumulation period in initiated (t1) (except in 2019) and terminated (t2) days were both the latest under PK-M3. The growth characteristic value (GT) under PK-M3 was the highest, followed by PK-M2, and PK-M3 was 13.0-24.5% higher than PK-M2. The dry matter accumulation in the growth period was PK-M2>PK-M3>PK-M4>PK-M1 treatment, and it was PK-M3>PK-M2>PK-M4>PK-M1 treatment in the late growth period; the number of squares and bolls in the early growth period was PK-M4>PK-M3>PK-M1>PK-M2 treatment, while it was PK-M3>PK-M2>PK-M4>PK-M1 treatment in the late growth period; the relative yield value was the highest in PK-M3, which was 5.2%-18.2% higher than PK-Ms. Among all the treatments, the K’ value and GT value of the LAI Logistic model under N3PK-M3 was the largest, and T was the longest. The plant dry matter, relative yield value and the number of squares and bolls in the late period were second only to N2PK-M3, and the reproductive organs dry distribution ratio was higher than other treatments. Correlation analysis showed that LAI had a significant positive correlation with reproductive organ dry matter, plant dry matter and relative yield value at the late growth period, however, the number of reproductive organs, plant dry matter and reproductive organs were significant positive correlation with relative yield throughout the growth period. Among all treatments, the yield under N2PK-M3was the highest, followed by N3PK-M3, and the relative yield value in N3PK-M3 treatment was 1.5% lower than N2PK-M3 without significant difference. 【Conclusion】The N3PK-M3 could obtain higher yield by reducing 25% N application compared with the conventional N application rate of farmers, which might due to delaying the peak of LAI at the later growth period, delaying the decline rate of LAI, increasing the dry matter production capacity of cotton population, improving cotton production capacity of dry matter, promoting assimilates transfer to reproductive organs, and reducing the shedding of squares and bolls, which provided the material basis for the formation of cotton yield.

Key words: cotton, reduced application of nitrogen, operation of phosphorus and potassium, yield, leaf area index (LAI), drip-irrigation, Northern Xinjiang

Table 1

Application of NPK rates and irrigation scheme"

时间
Time
次序
Order
N1 N2 N3 N4 PK-M1 PK-M2 PK-M3 PK-M4
P K P K P K P K
2018 6月20日 1 12.50 12.50 12.50 12.50 50.00 50.00 12.50 12.50 25.00 25.00 37.50 37.50
7月3日 2 12.50 12.50 12.50 12.50 50.00 50.00 12.50 12.50 25.00 25.00 37.50 37.50
7月13日 3 12.50 12.50 12.50 12.50 - - 12.50 12.50 8.33 8.33 4.17 4.17
7月20日 4 12.50 12.50 12.50 12.50 - - 12.50 12.50 8.33 8.33 4.17 4.17
7月30日 5 12.50 12.50 12.50 12.50 - - 12.50 12.50 8.33 8.33 4.17 4.17
8月8日 6 12.50 12.50 12.50 12.50 - - 12.50 12.50 8.33 8.33 4.17 4.17
8月17日 7 12.50 12.50 12.50 12.50 - - 12.50 12.50 8.33 8.33 4.17 4.17
8月24日 8 12.50 12.50 12.50 12.50 - - 12.50 12.50 8.33 8.33 4.17 4.17
合计 Total 100 100 100 100 100 100 100 100 100 100 100 100
2019 6月14日 1 11.11 11.11 11.11 11.11 33.33 33.33 8.33 8.33 16.67 16.67 25.00 25.00
6月22日 2 11.11 11.11 11.11 11.11 33.33 33.33 8.33 8.33 16.67 16.67 25.00 25.00
6月30日 3 11.11 11.11 11.11 11.11 33.33 33.33 8.33 8.33 16.67 16.67 25.00 25.00
7月9日 4 11.11 11.11 11.11 11.11 - - 12.50 12.50 8.33 8.33 4.17 4.17
7月18日 5 11.11 11.11 11.11 11.11 - - 12.50 12.50 8.33 8.33 4.17 4.17
7月25日 6 11.11 11.11 11.11 11.11 - - 12.50 12.50 8.33 8.33 4.17 4.17
8月3日 7 11.11 11.11 11.11 11.11 - - 12.50 12.50 8.33 8.33 4.17 4.17
8月12日 8 11.11 11.11 11.11 11.11 - - 12.50 12.50 8.33 8.33 4.17 4.17
8月18日 9 11.11 11.11 11.11 11.11 - - 12.50 12.50 8.33 8.33 4.17 4.17
合计 Total 100 100 100 100 100 100 100 100 100 100 100 100

Table 2

The characteristic value of Logistic model of LAI"

处理
Treatment
2018 2019
K’
(m2·m-2)
t1 (d) t2 (d) Vmax
(m2·m-2·d-1)
T (d) GT K’
(m2·m-2)
t1 (d) t2 (d) Vmax
(m2·m-2·d-1)
T (d) GT
N1 PK-M1 3.38 60 76 0.14 16 2.23 3.33 54 83 0.08 29 2.19
PK-M2 3.90 58 73 0.17 15 2.57 4.03 56 72 0.16 17 2.66
PK-M3 4.04 59 78 0.15 18 2.66 4.07 51 84 0.08 34 2.68
PK-M4 3.61 60 76 0.15 16 2.38 3.66 53 82 0.08 29 2.41
Average 3.73 59 76 0.15 16 2.46 3.77 53 80 0.10 27 2.49
N2 PK-M1 3.50 61 79 0.12 19 2.31 3.55 54 92 0.06 38 2.34
PK-M2 4.01 59 77 0.15 18 2.64 4.00 53 78 0.11 25 2.63
PK-M3 4.23 60 82 0.13 22 2.78 4.25 50 91 0.07 42 2.80
PK-M4 3.75 61 79 0.13 19 2.47 3.74 53 88 0.07 35 2.46
Average 3.87 60 79 0.13 19 2.55 3.89 52 87 0.08 35 2.56
N3 PK-M1 3.65 61 82 0.12 21 2.41 4.18 56 110 0.05 53 2.76
PK-M2 4.18 61 80 0.14 19 2.75 4.28 54 86 0.09 33 2.82
PK-M3 4.52 62 86 0.12 24 2.98 5.31 58 111 0.07 53 3.50
PK-M4 3.93 61 82 0.13 20 2.59 4.34 53 104 0.06 50 2.86
Average 4.07 62 83 0.13 21 2.68 4.53 55 103 0.07 47 2.99
N4 PK-M1 3.11 61 79 0.12 18 2.05 2.74 54 82 0.06 28 1.80
PK-M2 3.55 60 76 0.14 16 2.34 3.78 55 80 0.10 25 2.49
PK-M3 3.65 62 79 0.14 17 2.40 3.95 54 91 0.07 37 2.60
PK-M4 3.33 60 78 0.13 17 2.19 3.38 54 87 0.07 33 2.23
Average 3.41 61 78 0.13 17 2.25 3.46 54 85 0.08 31 2.28

Fig. 1

Coupling effects of nitrogen, phosphorus and potassium on cotton dry matter accumulation (2018 and 2019)"

Fig. 2

Coupling effects of nitrogen, phosphorus and potassium on dry matter distribution (2018)"

Fig. 3

Coupling effects of nitrogen, phosphorus and potassium on dry matter distribution (2019)"

Table 3

Coupling effects of nitrogen, phosphorus and potassium on dynamic changes of reproductive organs (2018)"

氮素处理
N treatment
磷钾处理
PK
treatment
播种后58 d
58 days after sowing
播种后78 d
78 days after sowing
播种后99 d
99 days after sowing
播种后109 d
109 days after sowing
蕾数Square
(×103·hm-2)
蕾数Square
(×103·hm-2)
花数Bloom
(×103·hm-2)
铃数Boll
(×103·hm-2)
蕾数Square
(×103·hm-2)
花数Bloom
(×103·hm-2)
铃数Boll
(×103·hm-2)
蕾数Square
(×103·hm-2)
花数Bloom
(×103·hm-2)
铃数Boll
(×103·hm-2)
N1 PK-M1 807.79bcd 1352.58bcde 272.95efgh 383.45cd 117.14hi 44.20abc 1429.93cd 113.82fgh - 1137.10bc
PK-M2 592.31e 1319.43cde 219.90gh 334.83fg 218.80ef 118.24ab 1605.64bcd 213.27d 7.74a 1285.17ab
PK-M3 858.62abc 1406.73bcd 356.93cdef 398.92bcd 281.79cd 36.47bc 1769.19bc 274.05c 7.74a 1326.06ab
PK-M4 876.30abc 1474.14abc 404.45bcd 419.92abc 135.92ghi 51.94abc 1548.18bcd 131.50efg - 1228.82bc
N2 PK-M1 868.57abc 1467.51abcd 358.04cdef 397.82bcd 159.13gh 88.40abc 1540.44bcd 154.71ef 14.37a 1194.56bc
PK-M2 797.85bcd 1418.88bcd 296.15defgh 348.09ef 394.50b 74.04abc 1858.69ab 383.45b 14.37a 1389.05ab
PK-M3 908.35ab 1490.71abc 423.23bc 418.81abc 561.37a 51.94abc 2091.86a 544.79a 14.37a 1553.70a
PK-M4 949.24a 1617.79a 614.41a 436.49a 235.38de 132.61a 1636.58bcd 228.75d 22.10a 1312.80ab
N3 PK-M1 836.52abcd 1419.99bcd 311.62defg 391.19bcd 132.61ghi 66.30abc 1499.55bcd 129.29efg 7.74a 1183.51bc
PK-M2 740.38d 1383.52bcde 257.48fgh 342.57efg 236.48de 22.10c 1650.94bcd 229.85d 14.37a 1297.33ab
PK-M3 877.41abc 1433.25abcd 392.29bcd 404.45abcd 302.78c 96.14abc 1859.80ab 293.94c - 1417.78ab
PK-M4 900.62ab 1519.44ab 478.49b 424.34ab 159.13gh 80.67abc 1580.22bcd 154.71ef 14.37a 1264.18b
N4 PK-M1 761.38cd 1274.12de 265.21fgh 373.51de 64.09j 66.30abc 1289.59d 62.99i 14.37a 972.44c
PK-M2 438.70f 1196.77e 190.07h 309.41g 104.98ij 58.57abc 1565.86bcd 101.66ghj - 1258.65bc
PK-M3 804.48bcd 1313.90cde 296.15defgh 392.29bcd 174.60fg 88.40abc 1720.56bc 169.07e 7.74a 1305.06ab
PK-M4 832.10bcd 1362.53bcde 379.03bcde 414.39abc 83.98ij 58.57abc 1524.97bcd 81.77hi 7.74a 1173.56bc
N 18.00** 9.80** 13.72** 4.52** 137.90** 0.68 3.63* 169.52** 1.20 3.43*
PK-M 40.27** 5.75** 35.04** 48.36** 135.14** 0.28 9.45** 166.13** 0.09 7.72**
N×PK-M 2.79** 0.11 0.97 0.19 12.84** 1.78 0.27 15.78** 0.02 0.27

Table 4

Coupling effects of nitrogen, phosphorus and potassium on dynamic changes of reproductive organs (2019)"

氮素处理
N treatment
磷钾处理
PK
treatment
播种后65 d
65 days after sowing
播种后88 d
88 days after sowing
播种后107 d
107 days after sowing
播种后120 d
120 days after sowing
蕾数Square
(×103·hm-2)
蕾数Square (×103·hm-2) 花数Bloom (×103·hm-2) 铃数Boll
(×103·hm-2)
蕾数Square (×103·hm-2) 花数Bloom (×103·hm-2) 铃数Boll (×103·hm-2) 蕾数Square (×103·hm-2) 花数Bloom (×103·hm-2) 铃数Boll
(×103·hm-2)
N1 PK-M1 1261.98defg 3251.26bcd 150.55fgh 231.36ef 150.55f 68.63ij 1505.52de 22.14a 58.67ab 1432.46cd
PK-M2 1151.28fg 2967.87cd 344.28ij 106.27h 344.28cd 224.72efg 1750.17abcd - - 1608.47bcd
PK-M3 1436.89bcdef 3450.52abcd 410.70defgh 273.43de 410.70bc 357.56cd 1927.29abc - 14.39b 1772.31abc
PK-M4 1596.29abc 3722.84abc 238.01bcd 349.81bc 238.01ef 159.41fghij 1626.18bcde 14.39a 58.67ab 1550.91bcd
N2 PK-M1 1413.64bcdef 3497.01abcd 231.36cde 292.25cde 231.36ef 174.91efghi 1588.55cde 7.75a 22.14ab 1543.16bcd
PK-M2 1273.05cdefg 3359.75abcd 448.34defgh 251.29ef 448.34b 448.34bc 1808.84abcd 74.17a 44.28ab 1861.97ab
PK-M3 1566.41abcd 3688.52abc 599.99bc 326.57bcd 599.99a 607.74a 2090.02a - - 2095.55a
PK-M4 1856.44a 4057.16a 273.43a 432.84a 273.43de 273.43de 1710.32bcde - 14.39 1639.47bcd
N3 PK-M1 1341.68cdefg 3321.00abcd 195.94defgh 254.61ef 195.94ef 106.27hij 1535.41de - 96.31a 1502.20bcd
PK-M2 1197.77efg 3170.45bcd 378.59hij 193.73fg 378.59bc 281.18de 1771.20abcd 7.75a - 1653.86bcd
PK-M3 1509.95bcde 3582.25abc 468.26cdef 296.68cde 468.26b 501.47b 1966.03ab 7.75a 66.42ab 1863.08ab
PK-M4 1699.25ab 3929.85ab 245.75b 371.95ab 245.75ef 182.66efgh 1670.46bcde 88.56a 14.39b 1583.01bcd
N4 PK-M1 1216.59efg 3073.03cd 47.60hij 101.84h 47.60g 53.14j 1376.00e 52.03a 22.14ab 1291.87d
PK-M2 1026.19g 2781.89d 273.43j 76.38h 273.43de 198.15efgh 1718.06bcde 29.89a 52.03ab 1568.62bcd
PK-M3 1322.87cdefg 3271.19bcd 378.59efgh 111.81h 378.59bc 257.93def 1838.73abcd 66.42a 14.39b 1723.60bc
PK-M4 1524.34bcde 3511.40abcd 192.62cdefg 137.27gh 192.62ef 129.52ghij 1588.55cde 80.81a 14.39b 1527.66bcd
N 4.82** 3.42* 28.94** 78.79** 19.85** 30.66** 1.75 1.27 0.80 3.63**
PK-M 19.19** 7.59** 41.76** 42.40** 76.07** 69.69** 12.90** 0.48 1.18 9.45**
N×PK-M 0.10 0.04 0.71 2.64** 1.13 2.23** 0.10 0.75 1.81 0.27

Fig. 4

Coupling effects of nitrogen, phosphorus and potassium on relative yield (2018 and 2019)"

Table 5

Correlation analysis between relative yield and main factors"

相对产量 Relative yield
2018年播种后天数
Days after sowing in 2018 (d)
2019 年播种后天数
Days after sowing in 2019 (d)
58 78 99 109 119 65 88 107 120 156
叶面积指数 Leaf area index 0.41 0.46 0.50* 0.80** 0.91** 0.4 0.42 0.45 0.81** 0.62**
蕾数 Square number 0.45 0.67** 0.85** 0.85** - 0.42 0.50* 0.81** -0.37 -
花数 Bloom number - 0.48 0.22 0.39 - - 0.81** 0.84** -0.13 -
铃数 Boll number - 0.25 0.80** 0.81** - - 0.64** 0.76** 0.83** -
生殖器官个数 Reproductive organ number 0.45 0.55* 0.84** 0.86** - 0.42 0.73** 0.81** 0.78** -
生殖器官干物质 Dry matter of reproductive organs 0.88** 0.85** 0.91** 0.97** 0.91** 0.87** 0.81** 0.86** 0.89** 0.82**
叶片干物质 Leaf dry matter 0.43 0.43 0.44 0.3 0.34 0.64** 0.46 0.50* 0.51* 0.49*
茎秆干物质 Stem dry matter 0.53* 0.41 0.4 0.38 0.42 0.58* 0.48* 0.45 0.64** 0.48
干物质总量 Aboveground dry matter 0.55* 0.53* 0.65** 0.79** 0.78** 0.62** 0.59* 0.76** 0.82** 0.83**
[1] 王克如, 李少昆, 曹连莆, 宋光杰, 陈刚, 曹栓柱. 新疆高产棉田氮、磷、钾吸收动态及模式初步研究. 中国农业科学, 2003, 36(7):775-780.
WANG K R, LI S K, CAO L P, SONG G J, CHEN G, CAO S Z. A preliminary study on dynamics and models of N, P, K absorption in high yield cotton in Xinjiang. Scientia Agricultura Sinica, 2003, 36(7):775-780. (in Chinese)
[2] 龚江, 李君, 谢海霞, 王海江, 侯振安, 吕新. 膜下滴灌条件水、氮、密度耦合效应对棉花产量的影响. 新疆农业科学, 2010, 47(10):1943-1946.
GONG J, LI J, XIE H X, WANG H J, HOU Z N, LÜ X. Effects of water, nitrogen and density coupling on the yield of hybrid cotton under film drip irrigation. Xinjiang Agricultural Sciences, 2010, 47(10):1943-1946. (in Chinese)
[3] 郭金强, 危常州, 侯振安, 李俊华. 施氮量对膜下滴灌棉花氮素吸收、积累及其产量的影响. 新疆农业科学, 2008, 45(4):691-694.
GUO J Q, WEI C Z, HOU Z A, LI J H. Effect of N rates on N uptake, accumulation and yield of cotton with drip irrigation under membrane. Xinjiang Agricultural Sciences, 2008, 45(4):691-694. (in Chinese)
[4] 李新伟, 吕新, 张泽, 陈剑, 石宏刚, 田敏. 棉花氮素营养诊断与追肥推荐模型. 农业机械学报, 2014, 45(12):209-214.
LI X W, LÜ X, ZHANG Z, CHEN J, SHI H G, TIAN M. Diagnosis of nitrogen nutrition and recommended model of topdressing for cotton. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12):209-214. (in Chinese)
[5] 赖波, 汤明尧, 柴仲平, 陈波浪, 李青军, 董巨河, 王飞, 田长彦. 新疆农田化肥施用现状调查与评价. 干旱区研究, 2014, 31(6):1024-1030.
LAI B, TANG M Y, CHAI Z P, CHEN B L, LI Q J, DONG J H, WANG F, TIAN C Y. Investigation and evaluation of the chemical fertilizer application situation of farmland in Xinjiang. Arid Zone Research, 2014, 31(6):1024-1030. (in Chinese)
[6] 李宗泰, 陈二影, 张美玲, 赵庆龙, 许晓龙, 姬红, 宋宪亮, 孙学振. 施钾方式对棉花叶片抗氧化酶活性、产量及钾肥利用效率的影响. 作物学报, 2012, 38(3):487-494.
LI Z T, CHEN E Y, ZHANG M L, ZHAO Q L, XU X L, JI H, SONG X L, SUN X Z. Effect of potassium application methods on antioxidant enzyme activities, yield, and potassium use efficiency of cotton. Acta Agronomica Sinica, 2012, 38(3):487-494. (in Chinese)
[7] CHEN B L, YANG H K, SONG W C, LIU C Y, XU J A, ZHAO W Q, ZHOU Z G. Effect of N fertilization rate on soil alkali-hydrolyzable N, subtending leaf N concentration, fiber yield, and quality of cotton. The Crop Journal, 2016, 4(4):323-330.
doi: 10.1016/j.cj.2016.03.006
[8] DEEPA G S, ALADAKATTI Y R. Effect of nutrient levels and split application of nitrogen and potassium on yield, economics and fiber quality parameters of interspecific Bt cotton. Journal of Farm Sciences, 2016, 29(2):203-207.
[9] DEEPA G S, ALADAKATTI Y R. Effect of varied nutrient levels and time of application of nitrogen and potassium on uptake of nutrients in interspecific Bt cotton hybrid. Journal of Farm Sciences, 2017, 30(1):56-60.
[10] HU W, ZHAO W Q, YANG J S, OOSTERHUIS D M, LOKA D A, ZHOU Z G. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiology and Biochemistry, 2016, 101:113-123.
doi: 10.1016/j.plaphy.2016.01.019
[11] HU W, COOMER T D, LOKA D A, OOSTERHUIS D M, ZHOU Z G. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiology and Biochemistry, 2017, 115:408-417.
doi: 10.1016/j.plaphy.2017.04.005
[12] ALI S, HAFEEZ A, MA X L, TUNG S A, CHATTHA M S, SHAH A N, LUO D, AHMAD S, LIU J H, YANG G Z. Equal potassium- nitrogen ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium hirsutum L.) in Yangtze River valley of China. Industrial Crops and Products, 2019, 129:231-241.
doi: 10.1016/j.indcrop.2018.12.009
[13] ALI S, HAFEEZ A, MA X L, TUNG S A, YANG G Z. Relative potassium ratio balanced the carbon-nitrogen assimilation in cotton leaf under reducing nitrogen application. Journal of Soil Science and Plant Nutrition, 2020, 20(2):761-774.
doi: 10.1007/s42729-019-00163-3
[14] WANG X X, LIU S L, ZHANG S M, LI H B, MAIMAITIAILI B, FENG G, RENGEL Z. Localized ammonium and phosphorus fertilization can improve cotton lint yield by decreasing rhizosphere soil pH and salinity. Field Crops Research, 2018, 217:75-81.
doi: 10.1016/j.fcr.2017.12.011
[15] 康雅萍, 樊岚蓉, 康艳, 安平. 氮磷钾不同配比对棉花产量的影响. 陕西农业科学, 2010, 56(6):33-34.
KANG Y P, FAN L R, KANG Y, AN P. Effect of different ratio of N, P, K on cotton yield. Shaanxi Journal of Agricultural Sciences, 2010, 56(6):33-34. (in Chinese)
[16] 潘圣刚, 翟晶, 曹凑贵, 蔡明历, 王若涵, 黄胜奇, 李进山. 氮肥运筹对水稻养分吸收特性及稻米品质的影响. 植物营养与肥料学报, 2010, 16(3):522-527.
PAN S G, ZHAI J, CAO C G, CAI M L, WANG R H, HUANG S Q, LI J S. Effects of nitrogen management practices on nutrition uptake and grain qualities of rice. Plant Nutrition and Fertilizer Science, 2010, 16(3):522-527. (in Chinese)
[17] 赵庆鑫, 江燕, 史春余, 司成成, 史文卿, 王新建, 柳洪鹃, 史衍玺. 氮钾互作对甘薯氮钾元素吸收、分配和利用的影响及与块根产量的关系. 植物生理学报, 2017, 53(5):889-895.
ZHAO Q X, JIANG Y, SHI C Y, SI C C, SHI W Q, WANG X J, LIU H J, SHI Y X. Effect of nitrogen-potassium interaction on absorption and translocation of nitrogen and potassium in sweetpotato and the root yield. Plant Physiology Journal, 2017, 53(5):889-895. (in Chinese)
[18] 王永华, 黄源, 辛明华, 苑沙沙, 康国章, 冯伟, 谢迎新, 朱云集, 郭天财. 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响. 中国农业科学, 2017, 50(6):1031-1046.
WANG Y H, HUANG Y, XIN M H, YUAN S S, KANG G Z, FENG W, XIE Y X, ZHU Y J, GUO T C. Effects of the year-round management model of N, P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil. Scientia Agricultura Sinica, 2017, 50(6):1031-1046. (in Chinese)
[19] 武庆慧, 汪洋, 赵亚南, 李瑞珂, 司玉坤, 黄玉芳, 叶优良, 张福锁. 氮磷钾配比对潮土区高产夏播花生产量、养分吸收和经济效益的影响. 中国土壤与肥料, 2019(2):98-104.
WU Q H, WANG Y, ZHAO Y N, LI R K, SI Y K, HUANG Y F, YE Y L, ZHANG F S. Effects of NPK ratio on yield, nutrient absorption and economic benefit of high-yielding summer peanut in a fluvo-aquic soil. Soil and Fertilizer Sciences in China, 2019(2):98-104. (in Chinese)
[20] YANG G Z, TANG H Y, NIE Y C, ZHANG X L. Responses of cotton growth, yield, and biomass to nitrogen split application ratio. European Journal of Agronomy, 2011, 35(3):164-170.
doi: 10.1016/j.eja.2011.06.001
[21] DU X B, CHEN B L, ZHANG Y X, ZHAO W Q, SHEN T Y, ZHOU Z G, MENG Y L. Nitrogen use efficiency of cotton (Gossypium hirsutum L.) as influenced by wheat-cotton cropping systems. European Journal of Agronomy, 2016, 75:72-79.
doi: 10.1016/j.eja.2016.01.001
[22] LUO Z, LIU H, LI W P, ZHAO Q A, DAI J L, TIAN L W, DONG H Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Research, 2018, 218:150-157.
doi: 10.1016/j.fcr.2018.01.003
[23] 张宾, 赵明, 董志强, 李建国, 陈传永, 孙锐. 作物高产群体LAI动态模拟模型的建立与检验. 作物学报, 2007, 33(4):612-619.
ZHANG B, ZHAO M, DONG Z Q, LI J G, CHEN C Y, SUN R. Establishment and test of LAI dynamic simulation model for high yield population. Acta Agronomica Sinica, 2007, 33(4):612-619. (in Chinese)
[24] WELLS R. Soybean growth response to plant density: relationships among canopy photosynthesis, leaf area, and light interception. Crop Science, 1991, 31(3):755-761.
doi: 10.2135/cropsci1991.0011183X003100030044x
[25] LOOMIS R S, WILLIAMS W A. Maximum crop productivity: an Extimate1. Crop Science, 1963, 3(1):67-72.
doi: 10.2135/cropsci1963.0011183X000300010021x
[26] 贾彪, 钱瑾, 马富裕. 氮素对膜下滴灌棉花叶面积指数的影响. 农业机械学报, 2015, 46(2):79-87.
JIA B, QIAN J, MA F Y. Simulating effects of nitrogen on leaf area index of cotton under mulched drip irrigation. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):79-87. (in Chinese)
[27] 刘连涛, 孙红春, 张永江, 李存东. 氮素对棉花群体生理指标的影响. 中国棉花, 2013, 40(4):9-12.
LIU L T, SUN H C, ZHANG Y J, LI C D. Effects of nitrogen to cotton population physiological indices. China Cotton, 2013, 40(4):9-12. (in Chinese)
[28] 戴婷婷, 盛建东, 陈波浪. 磷肥不同用量对棉花干物质及氮磷钾吸收分配的影响. 棉花学报, 2010, 22(5):466-470.
DAI T T, SHENG J D, CHEN B L. Effect of different phosphorus fertilizer rate on dry matter accumulation and the absorption and distribution of nitrogen, phosphorous, potassium of cotton. Cotton Science, 2010, 22(5):466-470. (in Chinese)
[29] 温立玉, 宋希云, 刘树堂. 水肥耦合对夏玉米不同生育期叶面指数和生物量的影响. 中国农学通报, 2014, 30(21):89-94.
WEN L Y, SONG X Y, LIU S T. Effect of water and fertilizer coupling on foliar index and biomass at different growth stages of summer maize. Chinese Agricultural Science Bulletin, 2014, 30(21):89-94. (in Chinese)
[30] 李杰, 马腾飞, 郭蕾, 古力努尔·艾哈塔尔, 郭峰, 张鹏忠, 帕尔哈提·买买提, 娄善伟. 哈密地区棉花品种生长发育特征及产量构成差异研究. 西南农业学报, 2020, 33(3):509-515.
LI J, MA T F, GUO L, AIHATAER G, GUO F, ZHANG P Z, MAIMAITI P, LOU S W. Different characteristics on development and yield composition of cotton varieties in Hami prefecture. Southwest China Journal of Agricultural Sciences, 2020, 33(3):509-515. (in Chinese)
[31] 张学昕, 刘淑英, 王平, 周丽萍. 不同氮磷钾配施对棉花干物质积累、养分吸收及产量的影响. 西北农业学报, 2012, 21(8):107-113.
ZHANG X X, LIU S Y, WANG P, ZHOU L P. Effects of different fertilizations on cotton dry matter accumulation, nutrients uptake and yield. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 21(8):107-113. (in Chinese)
[32] 张凡, 睢宁, 余超然, 刘瑞显, 杨长琴, 宋光雷, 孟亚利, 周治国. 小麦秸秆还田和施钾对棉花产量与养分吸收的效应. 作物学报, 2014, 40(12):2169-2175.
ZHANG F, SUI N, YU C R, LIU R X, YANG C Q, SONG G L, MENG Y L, ZHOU Z G. Effects of wheat straw returning and potassium fertilizer application on yield and nutrients uptake of cotton. Acta Agronomica Sinica, 2014, 40(12):2169-2175. (in Chinese)
[33] 李军宏, 王远远, 李楠楠, 王军, 罗宏海. 水磷供应对棉花根系生长、分布及生物量的影响. 江苏农业科学, 2020, 48(3):95-101.
LI J H, WANG Y Y, LI N N, WANG J, LUO H H. Effects of water and phosphorus supply on cotton root growth, distribution and biomass. Jiangsu Agricultural Sciences, 2020, 48(3):95-101. (in Chinese)
[34] DONG H Z, LI W J, ENEJI A E, ZHANG D M. Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Research, 2012, 126:137-144.
doi: 10.1016/j.fcr.2011.10.005
[35] LI Z Y, FONTANIER C, DUNN B L. Physiological response of potted sunflower (Helianthus annuus L.) to precision irrigation and fertilizer. Scientia Horticulturae, 2020, 270:109417.
doi: 10.1016/j.scienta.2020.109417
[36] 邓忠, 翟国亮, 吕谋超, 冯俊杰, 王晓森, 宗洁, 蔡九茂. 施肥策略对新疆棉花产量、品质与水氮利用的影响. 排灌机械工程学报, 2017, 35(10):897-902.
DENG Z, ZHAI G L, LÜ M C, FENG J J, WANG X S, ZONG J, CAI J M. Effect of fertilization modes on cotton yield, quality, and water-nitrogen utilization in Xinjiang. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(10):897-902. (in Chinese)
[37] 邓忠, 翟国亮, 王晓森, 宗洁, 冯俊杰, 蔡九茂, 吕谋超. 灌溉和施氮策略对滴灌施肥棉花蕾铃脱落的影响. 灌溉排水学报, 2017, 36(8):1-6.
DENG Z, ZHAI G L, WANG X S, ZONG J, FENG J J, CAI J M, LÜ M C. Application schedule of N-P-K in drip fertigation affects abscission of cotton bolls. Journal of Irrigation and Drainage, 2017, 36(8):1-6. (in Chinese)
[38] 张海鹏, 马健, 文俊, 周桃华. 施钾对不同转基因棉花品种光合特性及产量和品质的影响. 棉花学报, 2012, 24(6):548-553.
ZHANG H P, MA J, WEN J, ZHOU T H. Effects of potassium application on the photosynthetic characteristics, yield, and fiber properties of different transgenic cotton varieties. Cotton Science, 2012, 24(6):548-553. (in Chinese)
[39] KHAN A, WANG L S, ALI S, TUNG S A, HAFEEZ A, YANG G Z. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Research, 2017, 214:164-174.
doi: 10.1016/j.fcr.2017.09.016
[40] 董合林, 李鹏程, 刘爱忠, 刘敬然, 李永旗, 王晓茹, 王刚. 河南植棉区施氮量对麦棉两熟产量及氮肥利用率的影响. 棉花学报, 2014, 26(1):73-80.
DONG H L, LI P C, LIU A Z, LIU J R, LI Y Q, WANG X R, WANG G. Effect of nitrogen application rate on yield and nitrogen use efficiency of WheatCotton double cropping in the Henan cotton region. Cotton Science, 2014, 26(1):73-80. (in Chinese)
[41] 李飞, 郭利双, 李景龙, 肖才升. 施氮水平对油棉连作棉花氮磷钾吸收、分配与利用的影响. 华北农学报, 2018, 33(3):196-202.
LI F, GUO L S, LI J L, XIAO C S. Effects of nitrogen application rate on NPK uptake, distribution and utilization of direct seeding cotton after rape harvest. Acta Agriculturae Boreali-Sinica, 2018, 33(3):196-202. (in Chinese)
[42] 董合林, 王润珍, 李鹏程, 刘爱忠. 不同施氮水平及氮磷钾肥配施对棉花产量与氮肥利用率的影响. 中国棉花学会2010年年会论文汇编, 2010: 285-287.
DONG H L, WANG R Z, LI P C, LIU A Z. Effect of N application rates and N, P and K combinations on cotton yield and N utilization. China Society of Cotton Sci-Tech Proceedings of 2010 Annual Meeting of CSCS, 2010: 285-287. (in Chinese)
[43] 张旺锋, 李蒙春, 勾玲, 杜亮. 北疆高产棉花养分吸收特性的研究. 棉花学报, 1998(2):88-95.
ZHANG W F, LI M C, GOU L, DU L. Study on the nutrient absorbtion characters of cotton with higher productivity in north Xinjiang. Acta Gossypii Sinica, 1998(2):88-95. (in Chinese)
[44] 王娇, 佀传亚, 张成, 殷志峰, 徐文修, 马晓勇. 不同施钾量对陆地棉干物质积累、养分吸收和产量的影响. 新疆农业科学, 2012, 49(12):2163-2169.
WANG J, SI C Y, ZHANG C, YIN Z F, XU W X, MA X Y. Effect of different amounts of potassium on dry matter accumulation, nutrient absorption and yield of land cotton. Xinjiang Agricultural Sciences, 2012, 49(12):2163-2169. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[12] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[13] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[14] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!