Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3355-3368.doi: 10.3864/j.issn.0578-1752.2021.15.018

• RESEARCH NOTES • Previous Articles    

Fluorescence Characteristics Study of Nitrogen in Alleviating Premature Senescence of Spring Wheat at High Temperature After Anthesis

JIAN TianCai(),WU HongLiang(),KANG JianHong(),LI Xin,LIU GenHong,CHEN Zhuo,GAO Di   

  1. School of Agriculture, Ningxia University, Yinchuan 750021
  • Received:2020-09-25 Accepted:2021-02-01 Online:2021-08-01 Published:2021-08-10
  • Contact: HongLiang WU,JianHong KANG E-mail:jiantiancai2017@163.com;nxuwu@163.com;kangjianhong@163.com

Abstract:

【Objective】 The aim of this study was to investigate the influence mechanism of nitrogen on the fluorescence characteristics of spring wheat under high temperature, and to clarify the internal mechanism of nitrogen regulation of light reaction center, so as to formulate the nitrogen fertilizer operation measures to alleviate the harm of high temperature.【Method】 The experiment was carried out in 2019 and 2020, using the split-plot trial design. The main zones were 5 nitrogen application, including 0 (N0), 75 kg·hm-2(N1), 150 kg·hm-2(N2), 225 kg·hm-2 (N3), and 300 kg·hm-2(N4), and the sub-zones were temperatures of 25℃±2℃ (CK) and 35℃±2℃(HT). The interrelationships between nitrogen application and leaf nitrogen content, chlorophyll, PSⅡreaction center activity parameters, PSⅡJ phase variable fluorescence (VJ), PSⅡenergy allocation rate, PI, Fv/F0, and Fv/Fm at high post-flower temperatures were analyzed. 【Result】 The results showed that the effects of nitrogen application and temperature on leaf nitrogen, chlorophyll a, chlorophyll b, ABS/RC, DI0/RC, VJ, φE0 and φD0 and yield were significant. With the increase of nitrogen application, the yield increased first and then decreased, and reached at the highest yield under N3 with normal and high temperature treatments, which was 9.03 t·hm-2(CK) and 8.37 t·hm-2(HT). The difference between high temperature and normal temperature was obvious under different temperature treatment with the same nitrogen application, and the chlorophyll a, ABS/RC, ET0/RC, TR0/RC, PI, Fv/F0, Fv/Fm and yield decreased after high temperature treatment, which indicated that the effects of high temperature on fluorescence parameters and PSⅡactivity had negative effect. Under the treatments of different nitrogen application at the same temperature, the chlorophyll content and ABS/RC, ET0/RC, PI, Fv/F0, Fv/Fm of spring wheat increased first and then decreased, while the DI0/RC and VJ decreased first and then increased, and reached the peak at N3(225 kg·hm-2), indicating that the effects of nitrogen application on chlorophyll fluorescence parameters and PSⅡactivity had compensatory effect, and the appropriate nitrogen application amount could effectively enhance its activity. The effects of temperature on ABS/RC, TR0/RC, ET0/RC, Fv/F0 and Fv/Fm was not significant, but the interaction between nitrogen application and temperature reached significant level (P<0.05) and extremely significant level (P<0.01). 【Conclusion】 To sum up, the effects of nitrogen application and temperature on the fluorescence characteristics and yield of spring wheat was interactive, in which the dominant factor was temperature, while the amount of nitrogen application had a compensatory effect on it. A reasonable amount of nitrogen application could effectively increase the nitrogen content, chlorophyll content and PSⅡreaction center activity of wheat flag leaves, increase the capture, absorption, transformation and maximum photochemical efficiency of light energy by plants, and reduce the energy dissipation rate, so as to resist the damage caused by high temperature stress to the photosynthetic system of spring wheat. According to this test condition, the nitrogen application amount of N3 could effectively resist high temperature stress and increase the yield of spring wheat. The yield of high spring wheat could provide theoretical basis and technical support for high and stable yield of local spring wheat.

Key words: spring wheat, nitrogen application, post-flower high temperature, fluorescence characteristics, yield

Table 1

Variation of daily average temperature and light intensity during temperature treatment period"

年份
Year
测定指标
Indicator for determination
处理
Treatment
处理时间段内各指标的平均值 Average of indicators in the processing period
1 d 2 d 3 d
2019 气温 Temperature (℃) CK 26.63 27.17 25.29
HT 35.13 35.28 35.03
光照强度 Light intensity (LX) CK 73487.5 73970.8 72680.2
HT 69309.5 69154.2 68734.4
2020 气温 Temperature (℃) CK 25.32 25.59 26.33
HT 36.15 35.92 35.83
光照强度 Light intensity (LX) CK 75164.3 79542.4 70158.0
HT 70535.9 70135.2 67384.3

Table 2

Calculation formulate and implications of the indicators"

参数Indicator 说明Illustration
F0 初始荧光产量Initial fluorescence yield
Fm 最大荧光产量Maximum fluorescence yield
PI 所有荧光参数的综合指标 Synthesis of all fluorescence parameters
Fv/Fm 最大光化学效率Maximum photochemical efficiency
Fv/F0 捕获光能与热耗散能量的比值 Ratio of captured light energy to heat dissipated energy
VJ 电子经过质体醌A(Q)时的能量耗散比率Energy dissipation ratio of electrons passing through plastid quinone A (Q)
ψ0=ET0 /TR0= 1-VJ 反应中心捕获的激子中用来推动电子传递到电子传递链中超过QA的其他电子受体的激子占用来推动QA还原激子的比率
Rate of excitonic occupancy in excitons captured by reaction centers that push electrons to transfer to electron transport chains that exceed QA of other electron acceptors
φE0=[1-(F0/Fm)]×ψ0 吸收的能量用于电子传递的量子产额Quantum yield of absorbed energy for electron transfer
φD0=1-φP0=F0/Fm 用于热耗散的量子比率 Quantum ratios for heat dissipation
ABS/RC=M0×(1/VJ) ×(1 /φP0) 单位反应中心吸收的光能 Light energy absorbed by the unit reaction center
TR0/RC=M0×(1/VJ) 单位反应中心捕获的用于还原QA的能量 Energy captured by the unit reaction center for reducing QA
ET0 /RC=M0×(1/Vj) ×ψ0 单位反应中心捕获的用于电子传递的能量 Energy captured by a unit reaction center for electron transfer
DI0 /RC=(ABS/RC)–( TR0 / RC) 单位反应中心耗散掉的能量 Energy dissipated in the unit reaction center

Fig. 1

The nitrogen content and Rubisco activity in flag leaf of spring wheat treated by different nitrogen fertilizers and temperatures Different lowercase letters of the same temperature treatment indicate significant differences between different nitrogen treatments at P<0.05, the different capital letters indicate that the same time after flower HT compared with CK is significant at P<0.05. The same as below"

Fig. 2

Effects of different nitrogen and temperature treatments on chlorophyll a and chlorophyll b in spring wheat"

Fig. 3

Effects of different nitrogen fertilizer and temperature treatment on PSⅡ activity parameters of spring wheat"

Table 3

Effects of different nitrogen fertilizer and temperature treatments on VJ,ψ0,φE0 and φD0 of spring wheat"

年份 温度
Temperature
氮肥
Nitrogenous
花后不同时间的荧光参数 Fluorescence parameters at different time after flowering
VJ ψ0 φE0 φD0
25 d 30 d 25 d 30 d 25 d 30 d 25 d 30 d
2019 CK N0 0.69ab 0.79ab 0.22b 0.10c 0.20b 0.11d 0.33b 0.55a
N1 0.74ab 0.78ab 0.26b 0.22b 0.24b 0.12d 0.32b 0.43b
N2 0.79a 0.72bc 0.31ab 0.28ab 0.27ab 0.20b 0.34b 0.30c
N3 0.63b 0.67c 0.37a 0.33a 0.30a 0.25a 0.20d 0.24d
N4 0.67b 0.72bc 0.33ab 0.28ab 0.24b 0.19b 0.26c 0.30c
HT N0 0.82a 0.87a 0.18b 0.23b 0.09d 0.15c 0.39a 0.37bc
N1 0.79a 0.85a 0.20b 0.15bc 0.13c 0.17bc 0.37a 0.57a
N2 0.69ab 0.81a 0.30ab 0.19bc 0.22b 0.13cd 0.26c 0.35bc
N3 0.67b 0.69bc 0.33ab 0.30a 0.26ab 0.22b 0.22d 0.28cd
N4 0.68b 0.82a 0.32ab 0.18bc 0.26ab 0.11d 0.26c 0.39bc
2020 CK N0 0.58bc 0.60d 0.22c 0.20d 0.24c 0.20b 0.20e 0.25d
N1 0.70a 0.68bc 0.30c 0.32b 0.16e 0.23ab 0.28c 0.29b
N2 0.58bc 0.64c 0.40ab 0.36a 0.30ab 0.27a 0.32b 0.30c
N3 0.48c 0.54d 0.42a 0.30b 0.32a 0.25a 0.25d 0.20e
N4 0.57bc 0.65c 0.43a 0.31b 0.27b 0.26a 0.16f 0.24d
HT N0 0.61b 0.84a 0.29c 0.18d 0.28b 0.12c 0.27d 0.28b
N1 0.68b 0.73b 0.38b 0.21cd 0.19d 0.19b 0.29c 0.30c
N2 0.62b 0.70b 0.38b 0.30b 0.27b 0.21ab 0.21e 0.35a
N3 0.48c 0.64c 0.42a 0.36a 0.34a 0.27a 0.39a 0.25d
N4 0.62b 0.68bc 0.38b 0.26c 0.21c 0.20b 0.26d 0.32a
2019 方差分析
Variance analysis
温度 Temperature (T) ** ** ** **
施氮量 Nitrogenous (N) NS NS NS **
温度×施氮量 T×N * ** ** **
2020 方差分析
Variance analysis
温度 Temperature (T) ** ** ** **
施氮量 Nitrogenous (N) NS * NS **
温度×施氮量 T×N * ** ** **

Table 4

Effects of different nitrogen fertilizer and temperature treatments on PI, Fv/F0, Fv/Fm and Rubisco in spring wheat banner leaf"

年份 温度
Temperature
氮肥
Nitrogenous
花后不同时间的荧光参数 Fluorescence parameters at different time after flowering
PI Fv/F0 Fv/Fm Rubisco
(mmol CO2·min-1·mL-1)
25 d 30 d 25 d 30 d 25 d 30 d 25 d 30 d
2019 CK N0 1.54d 0.44cd 1.98de 0.92d 0.53b 0.44bc 0.33e 0.23d
N1 1.92cd 0.62bc 2.18d 1.30cd 0.58b 0.54b 0.51d 0.38c
N2 2.03cd 0.78bc 2.46cd 2.37b 0.63ab 0.66ab 0.62c 0.49b
N3 4.91a 1.53a 4.02a 3.10a 0.75a 0.76a 0.87a 0.62a
N4 3.06b 1.03b 2.78c 2.44b 0.73a 0.68ab 0.79b 0.42c
HT N0 0.26f 0.23d 0.98f 0.66e 0.44c 0.31c 0.11f 0.06e
N1 0.32f 0.18e 1.24e 0.74e 0.74a 0.44bc 0.35e 0.22d
N2 1.01e 0.21d 2.86c 1.95c 0.78a 0.65ab 0.52d 0.41c
N3 2.96b 0.96b 3.52b 2.58b 0.79a 0.71a 0.58c 0.50b
N4 1.86cd 0.28d 3.60b 1.45cd 0.67ab 0.48bc 0.51d 0.33cd
2020 CK N0 2.15c 0.84d 2.51d 1.51c 0.48c 0.40c 0.39e 0.28e
N1 2.31b 0.97d 2.80c 1.94b 0.50c 0.46b 0.66c 0.44c
N2 3.44b 1.21cd 3.03b 1.85b 0.61a 0.54ab 0.68c 0.42c
N3 5.83a 2.39a 3.50a 2.36a 0.62a 0.58a 1.02a 0.69a
N4 3.41b 1.50c 3.40a 1.98b 0.56bc 0.59a 0.82b 0.40cd
HT N0 0.83e 0.45f 1.59f 0.54f 0.32d 0.15d 0.19f 0.10f
N1 1.21d 0.88d 2.04e 1.06e 0.46c 0.39c 0.14f 0.09f
N2 2.06cd 1.33cd 2.53d 1.31d 0.55bc 0.40c 0.43e 0.31e
N3 3.20bc 1.92b 3.05b 1.83b 0.58a 0.49b 0.50d 0.38d
N4 2.16c 0.67e 2.63cd 1.59c 0.50b 0.47b 0.62c 0.51b
2019 方差分析
Variance analysis
温度 Temperature (T) * NS NS **
施氮量 Nitrogenous (N) ** ** ** *
温度×施氮量 T×N * * * *
2020 方差分析
Variance analysis
温度 Temperature (T) NS NS NS **
施氮量 Nitrogenous (N) ** * ** *
温度×施氮量 T×N * * * *

Fig. 4

Effects of different nitrogen and temperature treatments on yield of spring wheat"

Table 5

Correlation between yield and chlorophyll, leaf nitrogen and fluorescence indexes"

年份
Year
指标
Indicator
叶片含氮量
Leaf nitrogen
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
ABS/RC TR0/RC ET0/RC DI0/RC PI Fv/Fm Fv/F0
2019 产量
Yield
0.683* 0.453* 0.529* 0.836** 0.857** 0.728** -0.883** 0.608** 0.825** 0.749**
2020 0.468** 0.552** 0.324* 0.633* 0.415** 0.941* -0.682** 0.711** 0.693** 0.675**

Table 6

Variance analysis of yield, chlorophyll, leaf nitrogen and fluorescence indexes under different treatments"

年份Year 变异来源
Source of variance
产量
Yield
叶片含氮量Leaf nitrogen 叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
ABS/RC TR0/RC ET0/RC DI0/RC
2019 温度Temperature (T) ** NS ** ** NS NS NS **
施氮量Nitrogen application rate (N) ** ** ** ** ** ** ** **
氮肥×温度(N×T) ** * ** ** * * ** **
2020 温度Temperature (T) ** * ** ** NS NS NS *
施氮量Nitrogen rate (N) ** ** ** ** ** ** ** **
氮肥×温度(N×T) ** * ** ** * NS * *
[1] 中国科学技术协会. 2011-2012作物学学科发展报告. 北京: 中国科学技术出版社 2012.
China Association of Science and Technology. Crop Discipline Development Report in 2011-2012. Beijing: Science and technology of China press, 2012. (in Chinese)
[2] MEEHL G A, STOCKER T F, COLLINS W D, FRIEDLINGSTEIN P, GAYE A T, GREGORY J M, KITOH A, KNUTTI R, MURPHY J M, NODA A. Global climate projections climate change 2007: The physical science basis. Computational Geometry, 2007, 18(2):95-123.
doi: 10.1016/S0925-7721(01)00003-7
[3] NIU S L, WAN S Q. Warming changes plant competitive hierarchy in a temperate steppe in northern China. Journal of Plant Ecology, 2008, 1(2):103-110.
doi: 10.1093/jpe/rtn003
[4] 喇永昌, 李丽平, 张磊. 宁夏灌区春小麦干热风灾害的时空特征. 麦类作物学报, 2016, 36(4):516-522.
LA Y C, LI L P, ZHANG L. Spatial and temporal characteristics of dry-hot wind disaster for spring wheat in the irrigated areas of Ningxia. irrigation area. Journal of Triticeae Crops, 2016, 36(4):516-522. (in Chinese)
[5] 王文林, 万寅婧, 刘波, 王国祥, 唐晓燕, 陈昕, 梁斌, 庄巍. 土壤逐渐干旱对菖蒲生长及光合荧光特性的影响. 生态学报, 2013, 33(13):3933-3940.
WANG W L, WAN Y J, LIU B, WANG G X, TANG X Y, CHEN X, LIANG B, ZHUANG W. Influence of soil gradual drought stress on acorus calamus growth and photosynthetic fluorescence characteristics. Acta Ecologica Sinica, 2013, 33(13):3933-3940. (in Chinese)
[6] LIN Y C, HU Y G, REN C Z, GUO L C, WANG C L, JIANG Y, WANG X J, PHENDUKANI H, ZENG Z H. Effects of nitrogen application on chlorophyll fluorescence parameters and lef gas exchange in naked oat. Journal of Integrative Agriculture, 2013, 12(12):2164-2171.
doi: 10.1016/S2095-3119(13)60346-9
[7] 费立伟, 初金鹏, 郑飞娜, 孙立臣, 代兴龙, 贺明荣. 迟播对冬小麦灌浆后期高温胁迫下旗叶光合能力和产量的影响. 麦类作物学报, 2020(1):1-11.
FEI L W, CHU J P, ZHENG F N, SUN L C, DAI X L, HE M R. Effect of late sowing on photosynthetic capacity and yield of flag leaves under high temperature stress in late winter wheat grouting. Journal of Triticeae Crops, 2020(1):1-11. (in Chinese)
[8] 杜尧东, 李键陵, 王华, 唐湘如, 胡飞. 高温胁迫对水稻剑叶光合和叶绿素荧光特征的影响. 生态学杂志, 2012, 31(10):2541-2548.
DU Y D, LI J L, WANG H, TANG X R, HU F. Effects of high temperature stress on the flag leaf photosynthesis and chlorophyll fluorescence parameters of rice. Chinese Journal of Ecology, 2012, 31(10):2541-2548. (in Chinese)
[9] 费立伟, 代兴龙, 张秀, 初金鹏, 李梅, 郑飞娜, 贺明荣. 花后高温胁迫下晚播对冬小麦灌浆特性和粒重的影响. 植物生理学报, 2020, 56(3):479-488.
FEI L W, DAI X L, ZHANG X, CHU J P, LI M, ZHENG F N, HE M R. Effect of late sowing on grain filling characteristics and grain weight in winter wheat under heat stress after flowering. Plant Physiology Journal, 2020, 56(3):479-488. (in Chinese)
[10] 张姗, 邵宇航, 石祖梁, 田中伟, 姜东, 戴廷波. 施镁对花后高温胁迫下小麦干物质积累转运和籽粒灌浆的影响. 麦类作物学报, 2017, 37(7):963-969.
ZHANG S, SHAO Y H, SHI Z L, TIAN Z W, JIANG D, DAI T B. Effect of magnesium fertilization on dry matter accumulation and translocation and grain filling under post-anthesis heat stress in winter wheat. Journal of Triticeae Crops, 2017, 37(7):963-969. (in Chinese)
[11] 马清, 管超, 夏曾润, 王茜, 王锁民. 高等植物氮素转运蛋白研究进展. 兰州大学学报(自然科学版), 2015, 51(2):217-227.
MA Q, GUAN C, XIA Z R, WANG X, WANG S M. Membrane proteins mediating nitrogen transport in higher plants. Journal of Lanzhou University(Natural Sciences), 2015, 51(2):217-227. (in Chinese)
[12] 刘国欢, 周蓓蓓, 侯亚玲, 段曼莉, 宁松瑞, 王全九. 施氮对缓解冬小麦盐分胁迫的影响. 灌溉排水学报, 2019, 38(S1):36-40.
LIU G H, ZHOU B B, HOU Y L, DUAN M L, NING S R, WANG Q J. Effects of nitrogen on winter wheat growth under different salt stress. Journal of Irrigation and Drainage, 2019, 38(S1):36-40. (in Chinese )
[13] 赵长星, 马东辉, 王月福, 林琪, 吴钢, 邵宏波, CHERUTH A J. 施氮量和花后土壤含水量对优质强筋小麦产量和品质的影响. 生态学报, 2008, 28(9):4396-4404.
ZHAO C X, MA D H, WANG Y F, LIN Q, WU G, SHAO H B, CHERUTH A J. Effects of nitrogen fertilizer rate and post-anthesis soil water content on yield and quality of high-quality strong gluten wheat. Acta Ecologica Sinica, 2008, 28(9):4396-4404. (in Chinese)
[14] 刘新宇, 巨晓棠, 张丽娟, 李鑫, 袁丽金, 刘楠. 不同施氮水平对冬小麦季化肥氮去向及土壤氮素平衡的影响. 植物营养与肥料学报, 2010, 16(2):296-303.
LIU X Y, JU X T, ZHANG L J, LI X, YUAN L J, LIU N. Effects of different N rates on fate of N fertilizer and balance of soil N of winter wheat. Journal of Plant Nutrition and Fertilizers, 2010, 16(2):296-303. (in Chinese)
[15] 谭雪莲, 郭天文, 张国宏, 张绪成, 王引权. 氮素对小麦不同叶位叶片叶绿素荧光参数的调控效应. 麦类作物学报, 2009, 29(3):437-441.
TAN X L, GUO T W, ZHANG G H, ZHANG X C, WANG Y Q. Regulation of nitrogen level on chlorophyll fluorescence of wheat leaves at different positions. Journal of Triticeae Crops, 2009, 29(3):437-441. (in Chinese)
[16] 张彦群, 王建东, 龚时宏, 隋娟. 滴灌条件下冬小麦施氮增产的光合生理响应. 农业工程学报, 2015, 31(6):170-177.
ZHANG Y Q, WANG J D, GONG S H, SUI J. Photosynthetic response of yield enhancement by nitrogen fertilization in winter wheat fields with drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6):170-177. (in Chinese)
[17] 朱荣, 慕宇, 康建宏, 赵晶晶, 吴宏亮. 不同施氮量对花后高温春小麦叶绿素含量及荧光特性的影响. 南方农业学报, 2017, 48(4):609-615.
ZHU R, MU Y, KANG J H, ZHAO J J, WU H L. Effects of different nitrogen application rates on chlorophyll content and fluorescence characteristics of spring wheat under high temperature after anthesis. Journal of Southern Agriculture, 2017, 48(4):609-615. (in Chinese)
[18] 米美多, 慕宇, 代晓华, 赵晶晶, 康建宏. 花后高温胁迫下不同施氮量对春小麦抗氧化特性的影响. 江苏农业科学, 2017, 45(1):52-56.
MI M D, MU Y, DAI X H, ZHAO J J, KANG J H. Effect of nitrogen application on antioxidant characteristics of spring wheat under high temperature stress after flowering. Jiangsu Agricultural Sciences, 2017, 45(1):52-56. (in Chinese)
[19] 慕宇, 米美多, 孙立影, 朱荣, 康建宏. 氮肥基追比对花后高温胁迫的春小麦光合特性影响. 西南农业学报, 2017, 30(5):1027-1034.
MU Y, MI M D, SUN L Y, ZHU R, KANG J H. Effect of nitrogen dressing ratios on its photosynthesis after anthesis of spring wheat under high temperature. Southwest China Journal of Agricultural Sciences, 2017, 30(5):1027-1034. (in Chinese)
[20] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
GAO J F. Guidance on Plant Physiology Experiments. Beijing: Higher Education Press, 2006. (in Chinese)
[21] 范佩佩, 冯芳, 刘超, 孙文娟, 于凌飞, 柯浩楠, 陈书涛, 胡正华. 不同CO2浓度升高水平对粳稻叶片荧光特性的影响. 应用生态学报, 2019, 30(11):3735-3744.
FAN P P, FENG F, LIU C, SUN W J, YU L F, KE H N, CHEN S T, HU Z H. Effect of different levels of elevated CO2 concentration on leaf chlorophyll fluorescence cha-racteristics of Japonica rice. Chinese Journal of Applied Ecology, 2019, 30(11):3735-3744. (in Chinese)
[22] 鲍士旭. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2000.
BAO S X. Soil Agrochemical Analysis. 3rd ed. Beijing: China Agricultural Press, 2000. (in Chinese)
[23] 李升东, 毕香君, 韩伟, 王宗帅, 冯波, 王法宏, 司纪升, 石军萍. 氮素精准管理对小麦产量和氮素利用的影响. 麦类作物学报, 2020, 40(2):195-201.
LI S D, BI X J, HAN W, WANG Z S, FENG B, WANG F H, SI J S, SHI J P. Effect of precision management of nitrogen fertilizer on wheat yield and nitrogen utilization. Journal of Triticeae Crops, 2020, 40(2):195-201. (in Chinese)
[24] 魏花朵, 李悦, 陈忠林, 徐苏男, 于宁, 张利红. 氮肥对镉胁迫下结缕草光合和叶绿素荧光特性的影响. 中国土壤与肥料, 2015(4):88-92.
WEI H D, LI Y, CHEN Z L, XU S N, YU N, ZHANG L H. Effects of nitrogen fertilizer on photosynthetic and fluorescent characteristics of Zoysia japonica under cadmium stress. Soils and Fertilizers Sciences in China, 2015(4):88-92. (in Chinese)
[25] 李树斌, 周丽丽, 伍思攀, 孙敏, 丁国昌, 林思祖. 不同氮素形态对干旱胁迫杉木幼苗养分吸收和分配的影响. 植物营养与肥料学报, 2020, 26(1):156-166.
LI S B, ZHOU L L, WU S P, SUN M, DING G C, LIN S Z. Effects of different nitrogen forms on nutrient uptake and distribution of Cunninghamia lanceolata plantlets under drought stress. Journal of Plant Nutrition and Fertilizers, 2020, 26(1):156-166. (in Chinese)
[26] 刘连涛, 李存东, 孙红春, 张永江, 白志英, 冯丽肖. 氮素营养水平对棉花衰老的影响及其生理机制. 中国农业科学, 2009, 42(5):1575-1581.
LIU L T, LI C D, SUN H C, ZHANG Y J, BAI Z Y, FENG L X. Effects of nitrogen on cotton senescence and the corresponding physiological mechanisms. Scientia Agricultura Sinica, 2009, 42(5):1575-1581. (in Chinese)
[27] 邓世媛, 陈建军. 干旱胁迫下氮素营养对作物生长及生理代谢的影响. 河南农业科学, 2005(11):24-26.
DENG S Y, CHEN J J. Effect of nitrogen nutrition on plant growth under arid stress. Journal of Henan Agricultural Sciences, 2005(11):24-26. (in Chinese)
[28] PLYUSNINA T Y, KLRUSCHEV S S, RIZNICHENKO G Y, RUBIN A B. An analysis of the chlorophyll fluorescence transient by spectral multi-exponential approximation. Biophysics, 2015, 60(3):392-399.
doi: 10.1134/S000635091503015X
[29] 李学孚, 倪智敏, 吴月燕, 李美芹, 刘蓉, 饶慧云. 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响. 生态学报, 2015, 35(13):4436-4444.
LI X F, NI Z M, WU Y Y, LI M Q, LIU R, RAO H Y. Effects of salt stress on photosynthetic characteristics and leaf cell structure of ‘Yinhong’ grape seedlings. Acta Ecologica Sinica, 2015, 35(13):4436-4444. (in Chinese)
[30] 杜琪, 王宁, 赵新华, 沙德剑, 张艳正, 赵凯能, 党现什, 于海秋. 低钾胁迫对玉米苗期光合特性和光系统Ⅱ性能的影响. 核农学报, 2019, 33(3):592-599.
DU Q, WANG N, ZHAO X H, SHA D J, ZHANG Y Z, ZHAO K N, DANG X S, YU H Q. Effects of potassium deficiency on photosynthesis and performance of photosystemⅡ in maize seedling stage. Journal of Nuclear Agricultural Sciences, 2019, 33(3):592-599. (in Chinese)
[31] SANTOS C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae, 2004, 103(1):93-99.
doi: 10.1016/j.scienta.2004.04.009
[32] 黄建, 祁通, 王治国, 王勤良, 付彦博, 孟阿静. 盐环境下盐角草叶绿素荧光光系统对氮素的响应. 新疆农业科学, 2018, 55(10):1936-1942.
HUANG J, QI T, WANG Z G, WANG Q L, FU Y B, MENG A J. Response of Saliconia-europea L. chlorophyll fluorescence system to nitrogen in salt environment. Xinjiang Agricultural Sciences, 2018, 55(10):1936-1942. (in Chinese)
[33] 杨鑫, 张启超, 孙淑雲, 陈开宁. 水深对苦草生长及叶片PS Ⅱ光化学特性的影响. 应用生态学报, 2014, 25(6):1623-1631.
YANG X, ZHANG Q C, SUN S Y, CHEN K N. Effects of water depth on the growth of Vallisneria natans and photosynthetic systemⅡ photochemical characteristics of the leaves. Chinese Journal of Applied Ecology, 2014, 25(6):1623-1631. (in Chinese)
[34] 陈歆, 刘贝贝, 韩丙军, 周兆德, 彭黎旭, 杨福孙. 土壤水分胁迫对槟榔幼苗叶绿素荧光动力学参数的影响. 热带作物学报, 2012, 33(2):230-237.
CHEN X, LIU B B, HAN B J, ZHOU Z D, PENG L X, YANG F S. Effects of different water stress on chlorophyll fluorescence parameters of Areca catechu L. seedling. Chinese Journal of Tropical Crops, 2012, 33(2):230-237. (in Chinese)
[35] 吴佩, 崔金霞, 杨志峰, 张文博. 外源一氧化氮对低温下黄瓜幼苗光系统Ⅱ原初光化学反应及光合机构活性的影响. 植物生理学报, 2019, 55(6):745-755.
WU P, CUI J X, YANG Z F, ZHANG W B. Effect of exogenous nitric oxide on primary photochemical reaction and photosynthetic activity of photosystemⅡin cucumber seedlings under chilling stress. Plant Physiology Journal, 2019, 55(6):745-755. (in Chinese)
[36] 姜丽莉, 张忠学, 郑恩楠. 不同氮肥条件下水稻产量和叶片荧光参数差异性分析. 灌溉排水学报, 2018, 37(10):75-80.
JIANG L L, ZHANG Z X, ZHENG E N. Effects of different fertilizations on chlorophyll fluorescence characteristics and the yield of rice in black soils in cold region. Journal of Irrigation and Drainage, 2018, 37(10):75-80. (in Chinese)
[37] MAKINO A, NAKANO H, MAE T. Effects of growth temperature on the responses of Ribulose-1,5-Biphosphate carboxylase, electron transport components, and sucrose synthesis enzymes to leaf nitrogen in rice, and their relationships to photosynthesis. Plant Physiology, 1994, 105(4):1231-1238.
doi: 10.1104/pp.105.4.1231
[38] 薛伟, 李向义, 林丽莎, 王迎菊, 李磊. 短时间热胁迫对疏叶骆驼刺光系统Ⅱ、Rubisco活性和活性氧化剂的影响. 植物生态学报, 2011, 35(4):441-451.
doi: 10.3724/SP.J.1258.2011.00441
XUE W, LI X Y, LIN L S, WANG Y J, LI L. Effects of short time heat stress on photosystemⅡ, Rubisco activities and oxidative radicals in Alhagi sparsifolia. Chinese Journal of Plant Ecology, 2011, 35(4):441-451. (in Chinese)
doi: 10.3724/SP.J.1258.2011.00441
[39] 王仁雷, 李霞, 陈国祥, 华春, 魏锦城. 氮肥水平对杂交稻汕优63剑叶光合速率和RuBP羧化酶活性的影响. 作物学报, 2001, 27(6):930-934.
WANG R L, LI X, CHEN G X, HUA C, WEI J C. Effect of N-fertilizer levels on photosynthetic rate and RuBP carboxylase activity in flag leaves of hybrid rice Shanyou 63. Acta Agronomica Sinica, 2001, 27(6):930-934. (in Chinese)
[40] 姜丽娜, 张雅雯, 朱娅林, 赵凌霄. 施氮量对不同品种小麦物质积累、转运及产量的影响. 作物杂志, 2019(5):151-158.
JIANG L N, ZHANG Y W, ZHU Y L, ZHAO L X. Effects of nitrogen application on dry matter accumulation, transport and yield in different wheat varieties. Crops, 2019(5):151-158. (in Chinese)
[41] 赵晶晶. 花后高温胁迫下不同施氮量对春小麦产量形成的影响机理[D]. 银川: 宁夏大学, 2015.
ZHAO J J. Effect mechanism of different nitrogen application on yield formation of spring wheat under high temperature stress after flowering[D]. Yinchuan: Ningxia University, 2015. (in Chinese)
[42] 郝代成, 高国华, 朱云集, 郭天财, 叶优良, 王晨阳, 谢迎新. 施氮量对超高产冬小麦花后光合特性及产量的影响. 麦类作物学报, 2010, 30(2):346-352.
HAO D C, GAO G H, ZHU Y J, GUO T C, YE Y L, WANG C Y, XIE Y X. Effects of nitrogen application rate on photosynthesis characteristics after anthesis and high grain yield of winter wheat. Journal of Triticeae Crops, 2010, 30(2):346-352. (in Chinese)
[43] 陈天鑫, 王艳杰, 张燕, 常旭虹, 陶志强, 王德梅, 杨玉双, 朱英杰, 刘阿康, 石书兵, 赵广才. 不同施氮量对冬小麦光合生理指标及产量的影响. 作物杂志, 2020(2):88-96.
CHEN T X, WANG Y J, ZHANG Y, CHANG X H, TAO Z Q, WANG D M, YANG Y S, ZHU Y J, LIU A K, SHI S B, ZHAO G C. Effects of different nitrogen rates on photosynthetic and physiological indexes and yield of winter wheat. Crops, 2020(2):88-96. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!