Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (12): 2581-2594.doi: 10.3864/j.issn.0578-1752.2021.12.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil

JI BingJie(),LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun()   

  1. College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi
  • Received:2020-08-11 Accepted:2020-09-10 Online:2021-06-16 Published:2021-06-24
  • Contact: XueYun YANG E-mail:ji.bj@nwafu.edu.cn;xueyunyang@hotmail.com

Abstract:

【Objective】Synthetic phosphorus fertilizers may vary in their behavior when applied to soil because of their inherent differences in nature. In order that the phosphate fertilizers could well match the crops’ P requirement, the selection of appropriate types of P sources are of paramount importance in practice. To achieve this, it is necessary to make a thorough investigation on phosphorus distribution among different soil P fractions and their bioavailability when P applied to soil in various varieties of synthetic phosphate fertilizers. 【Method】We conducted a pot experiment on a calcareous tier soil with a lower Olsen P level, which was collected from a plot without P addition for 20 years. Eight treatments were established: (1) no phosphate fertilizer (Control); (2) superphosphate (SSP); (3) calcium magnesium phosphate (CaMg P); (4) mono-ammonium phosphate (MAP); (5) di-ammonium phosphate (DAP); (6) ammonium poly-phosphate (Poly P); (7) Urea phosphate (Urea P); (8) superphosphate plus ammonium sulfate (SSP+ASA). A maize variety ‘Zhengdan 958’ was used as a test crop. We analyzed the correlations between P uptake in above-ground biomass of maize, soil Olsen P and the content of soil P fractions, which were determined with a P fractionation method modified by Jiang & Gu. 【Result】Results showed that the contents of soil available P (Olsen P) and its dynamics varying with treatments. The average Olsen P contents followed an order of DAP>Urea P≥Poly P>MAP>SSP+ASA>SSP>CaMg P>Control based on their statistical significance during the experimental period of two months. Compared with the control treatment, all treatments receiving P significantly increased the above-ground biomass, phosphorus uptake and phosphorus use efficiency of maize by 64.8%-221.3%, 114.1%-593.0% and 2.1%-11.0%, respectively. The largest increase was observed in treatments receiving DAP and poly P. Both the phosphorus uptake and above-ground biomass of maize were positively and significantly correlated with soil Olsen P. Phosphorus fractions of Ca2-P, Ca8-P, Al-P and Fe-P were enhanced by 36.9%-610.0%, 21.7%-85.5%, 57.2%-83.0%, 28.5%-77.8% in all phosphorus application treatments except O-P and Ca10-P, which remained unchanged except in CaMg P treatment. Of which, the greatest increases in Ca2-P and Ca8-P were observed in treatments given MAP, DAP, poly P and Urea P; the largest increases in Al-P and Fe-P were found in SSP+ASA and SSP treatments; significant increases in O-P and Ca10-P were only obtained in CaMg P treatment. The Poly P treatment had the significantly greater Ca2-P than MAP and Urea P treatments, only lower that DAP treatment, but it contained a significantly lower Ca8-P relative to DAP, MAP and Urea P treatments. Compared with SSP, SSP+ASA significantly increased the contents of Ca2-P and Al-P by 24.9% and 11.9%, respectively, and the available phosphorus content increased by 11.4%. The inorganic P fractions of Ca2-P, Ca8-P and Al-P showed a significant and positive correlations with soil available phosphorus and phosphorus uptake by plants. 【Conclusion】Under the tested soil conditions, DAP had a lower phosphorus fixation and thus a greater available phosphorus pool. Poly P inhibited the transformation of Ca2-P to Ca8-P and therefore reduced the precipitation of phosphorus. The results suggested that Poly P is equivalent to DAP in bioavailability, and these two varieties of phosphate fertilizers could be used where there is an urgent need to improve and maintain soil Olsen P. The application of physiological acidic fertilizer ammonium sulfate combined with SSP in calcareous soil not only increased the content of available phosphorus, but also reduced the fixation of phosphorus.

Key words: variety of synthetic phosphate fertilizer, tier soil, maize, inorganic phosphorus fractions, soil available phosphorus

Table 1

Characteristics and application amount of fertilizer in the pot experiment"

磷肥品种
Phosphorus fertilizer varieties
酸碱性
pH
溶解性
Solubility
N
(%)
P2O5
(%)
肥料用量
Fertilizer rate(g/pot)
过磷酸钙SSP 酸性Acidic 水溶性(80%-95%) Water-soluble 0 16.3 4.91
钙镁磷肥CaMg P 碱性Alkaline 弱酸溶性 Weak acid soluble 0 12.3 6.54
磷酸一铵MAP 酸性Acidic 水溶性 Water-soluble 12.0 58.6 1.37
磷酸二铵DAP 碱性Alkaline 水溶性 Water-soluble 15.0 40.4 1.98
聚磷酸铵Poly P 中性Neutral 水溶性 Water-soluble 18.0 58.6 1.37
磷酸脲Urea P 酸性Acidic 水溶性 Water-soluble 17.0 43.3 1.85
硫酸铵ASA 酸性Acidic 水溶性 Water-soluble 21.0 0 0.83

Fig. 1

Dynamics of Olsen P in soils subjected to different varieties of phosphorus fertilizers"

Table 2

Effects of different varieties of phosphorus fertilizers on above-ground biomass, P uptake of maize, and P use efficiency"

处理
Treatment
干物质量
Biomass (g/plant)
植株吸磷量
P uptake of plant (mg/plant)
磷肥利用率PUE (%)
差减法 Subtraction method 平衡法 Balanced method
Control 3.70±0.06 e 3.24±0.27 e
SSP 10.83±0.48 c 15.05±1.14 c 6.75 c 8.60 c
CaMg P 6.09±0.43 d 6.93±0.02 d 2.11 d 3.96 d
MAP 11.01±0.27 bc 18.97±0.99 b 8.99 b 10.84 b
DAP 11.73±0.60 ab 22.43±0.06 a 10.97 a 12.82 a
Poly P 11.88±0.74 a 22.23±1.87 a 10.85 a 12.70 a
Urea P 10.40±0.26 c 15.35±1.33 c 6.92 c 8.77 c
SSP+ASA 10.73±0.27 c 15.47±0.69 c 6.99 c 8.84 c

Fig. 2

The correlations between soil Olsen P concentration and P uptake and above-ground biomass of maize The data presented are obtained from soils sampled at the 60th day of the pot experiment. The same as below"

Fig. 3

Effect of different varieties of phosphorus fertilizers on the forms of inorganic P in soils Different lowercase letters for different P fractions mean significant difference between the treatments (P<0.05)"

Fig. 4

Percentage of phosphorus fractions in soils treated with different varieties of phosphorus fertilizers Different lowercase letters inside the bars with the same color mean significant difference in that P fraction between the treatments (P<0.05)"

Fig. 5

The relationship between Olsen P concentrations and P fractions in soils treated with different varieties of phosphorus fertilizers"

Fig. 6

The relationship between P uptake by plant and P fractions in soils treated with different varieties of phosphorus fertilizers"

[1] 杨毅, 赵文婷. 不同施肥制度对北方石灰性土壤无机磷形态影响研究. 灌溉排水学报, 2015,34(7):28-33.
YANG Y, ZHAO W T. Influences of inorganic phosphorus forms on calcareous soil under different fertilization systems in northern China. Journal of Irrigation and Drainage, 2015,34(7):28-33. (in Chinese)
[2] TETIANA M, DIRK F, THOMAS R. Changes in soil phosphorus balance and phosphorus-use efficiency under long-term fertilization conducted on agriculturally used Chernozem in Germany. Canadian Journal of Soil Science, 2018,98(4):650-662.
doi: 10.1139/cjss-2018-0061
[3] HEDLEY M, MCLAUGHLIN M. Reactions of phosphate fertilizers and by products in soils. Phosphorus: Agriculture and the Environment, 2005, 181-252.
[4] 李川, 乔江方, 朱卫红, 黄璐, 代书桃, 刘京宝. 不同磷肥处理对夏玉米干物质积累量及磷素吸收量的影响. 江苏农业科学, 2019,47(12):107-114.
LI C, QIAO J F, ZHU W H, HUANG L, DAI S T, LIU J B. Effects of different phosphorus fertilizer treatments on dry matter accumulation and phosphorus absorption of summer maize. Jiangsu Agricultural Sciences, 2019,47(12):107-114. (in Chinese)
[5] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008,45(5):915-924. (in Chinese)
[6] ZHU Q C, VRIES W D, LIU X J, HAO T X, ZENG M F, SHEN J B, ZHANG F S. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980-2010. Science of the Total Environment, 2018,618:1497-1505.
doi: 10.1016/j.scitotenv.2017.09.289
[7] 秦永林, 田艳花, 樊明寿, 石晓华, 贾立国, 陈杨, 于静. 磷肥种类对石灰性土壤马铃薯产量和磷肥利用率的影响. 中国蔬菜, 2019(5):70-75.
QIN Y L, TIAN Y H, FAN M S, SHI X H, JIA L G, CHEN Y, YU J. Effect of different phosphorous fertilizer kinds on potato yield and phosphorus use efficiency in calcareous soil. China Vegetables, 2019(5):70-75. (in Chinese)
[8] 朱宏斌, 王晓波, 蒋光月, 房运喜, 郭志彬, 何传龙. 不同品种磷肥运筹对砂姜黑土玉米生长及产量的影响. 中国农学通报, 2014,30(30):209-212.
ZHU H B, WANG X B, JIANG G Y, FANG Y X, GUO Z B, HE C L. Influences of different varieties of phosphate management on corn growth and yield in Shajiang Black Soil. Chinese Agricultural Science Bulletin, 2014,30(30):209-212. (in Chinese)
[9] 刘世亮, 介晓磊, 李有田, 谭金芳, 安志装. 不同磷源在石灰性土壤中的供磷能力及形态转化. 河南农业大学学报, 2002,36(4):370-373.
LIU S L, JIE X L, LI Y T, TAN J F, AN Z Z. Study on bio-availability and transformation of different phosphates in calcareous soils. Journal of Henan Agricultural University, 2002,36(4):370-373. (in Chinese)
[10] 王少仁, 夏培桢. 石灰性土壤上三种磷肥不同用量的磷肥利用率及其缓效率. 土壤通报, 2008,39(6):1363-1368.
WANG S R, XIA P Z. The use efficiency and slow-release rate of various P fertilizers with different application rates on calcareous soil. Chinese Journal of Soil Science, 2008,39(6):1363-1368. (in Chinese)
[11] 邹茸, 王秀斌, 霍文敏, 迟克宇, 范洪黎. 不同磷肥品种对苋菜镉累积的影响. 中国土壤与肥料, 2018(1):37-42.
ZOU R, WANG X B, HUO W M, CHI K Y, FAN H L. Effects of different phosphorus fertilizers on cadmium accumulation in Amaranshus mangostanus L. Soil and Fertilizer Sciences in China, 2018(1):37-42. (in Chinese)
[12] 张皓禹, 张君, 张凤麟, 刘地, 危常州. 滴灌条件下不同磷肥品种对土壤磷有效性及玉米产量的影响. 水土保持学报, 2019,33(2):189-195.
ZHANG H Y, ZHANG J, ZHANG F L, LIU D, WEI C Z. Effects of different phosphorus fertilizer soil phosphorus availability and maize yield under drip irrigation. Journal of Soil and Water Conservation, 2019,33(2):189-195. (in Chinese)
[13] 蒋柏藩. 磷肥在土壤中的形态转化及其有效性. 土壤学进展, 1981(2):1-11.
JIANG B F. Form transformation and availability of phosphate fertilizer in soil. Progress in Soil Science, 1981(2):1-11. (in Chinese)
[14] OPALA P A, OKALEBO J R, OTHIENO C O, KISINYO P. Effect of organic and inorganic phosphorus sources on maize yields in an acid soil in western Kenya. Nutrient Cycling in Agroecosystems, 2010,86(3):317-329.
doi: 10.1007/s10705-009-9294-3
[15] WANG X, TANG C, GUPPY C N, SALE P W G. Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. Plant and Soil, 2008,312:117-128.
doi: 10.1007/s11104-008-9589-1
[16] WANG Y, MARSCHNER P, ZHANG F S. Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant and Soil, 2012,354(1/2):283-298.
doi: 10.1007/s11104-011-1065-7
[17] TERRY J R, BINGAH H, ZED R. Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant and Soil, 2010,326(1/2):159-170.
doi: 10.1007/s11104-009-9990-4
[18] BOL R, JULICH D, BRODLIN D, SIEMENS J, KAISER K, DIPPOLD M A. Dissolved and colloidal phosphorus fluxes in forest ecosystems-Analmost blind spot in ecosystem research. Journal of Plant Nutrition and Soil Science, 2016(179):425-438.
[19] 蒋柏藩, 顾益初. 石灰性土壤无机磷分级体系的研究. 中国农业科学, 1989,22(3):58-66.
JIANG B F, GU Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Scientia Agricultura Sinica, 1989,22(3):58-66. (in Chinese)
[20] 沈仁芳, 蒋柏藩. 石灰性土壤无机磷的形态分布及其有效性. 土壤学报, 1992,29(1):80-86.
SHEN R F, JIANG B F. Distribution and availability of various forms inorganic phosphorus in calcareous soils. Acta Pedologica Sinica, 1992,29(1):80-86. (in Chinese)
[21] 蒋柏藩. 石灰性土壤无机磷有效性的研究. 土壤, 1992(2):61-64.
JIANG B F. Study on availability of inorganic phosphorus in calcareous soils. Soils, 1992(2):61-64. (in Chinese)
[22] 李新乐, 侯向阳, 穆怀彬, 李西良, 郭丰辉. 连续6年施磷肥对土壤磷素积累、形态转化及有效性的影响. 草业学报, 2015,24(8):218-224.
LI X L, HOU X Y, MU H B, LI X L, GUO F H. P fertilization effects on the accumulation, transformation and availability of soil phosphorus. Acta Prataculturae Sinica, 2015,24(8):218-224. (in Chinese)
[23] 杨学云, 孙本华, 古巧珍, 李生秀, 张树兰. 长期施肥对塿土磷素状况的影响. 植物营养与肥料学报, 2009,15(4):837-842.
YANG X Y, SUN B H, GU Q Z, LI S X, ZHANG S L. The effects of long term fertilization on soil phosphorus status in manural loessial soil. Journal of Plant Nutrition and Fertilizers, 2009,15(4):837-842. (in Chinese)
[24] 姚珊, 张东杰, Batbayar Javkhlan, 刘琳, 李若楠, 周江香, 张树兰, 杨学云. 冬小麦-夏玉米体系磷效率对塿土磷素肥力的响应. 植物营养与肥料学报, 2018,24(6):1640-1650.
YAO S, ZHANG D J, BATBAYAR J, LIU L, LI R N, ZHOU J X, ZHANG S L, YANG X Y. Responses of phosphorus use efficiency to soil phosphorus fertility under winter wheat-summer maize cropping in loess soil. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1640-1650. (in Chinese)
[25] 金欣, 姚珊, Batbayar Javkhlan, 贾丽洁, 张树兰, 杨学云. 冬小麦—夏休闲体系作物产量和土壤磷形态对长期施肥的响应. 植物营养与肥料学报, 2018,24(6):1660-1671.
JIN X, YAO S, BATBAYAR J, JIA L J, ZHANG S L, YANG X Y. Response of wheat yield and soil phosphorus fractions to long-term fertilization under rainfed winter wheat-summer fallow cropping system. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1660-1671. (in Chinese)
[26] 贾莉洁, 李玉会, 孙本华, 杨学云. 不同管理方式对土壤无机磷及其组分的影响. 土壤通报, 2013,44(3):612-616.
JIA L J, LI Y H, SUN B H, YANG X Y. Effect of diverse soil managements on inorganic phosphorus and its fractions in a loess soil from a long-term experiment. Chinese Journal of Soil Science, 2013,44(3):612-616. (in Chinese)
[27] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. (in Chinese)
[28] WANG J, CHU G X. Phosphate fertilizer form and application strategy affect phosphorus mobility and transformation in a drip-irrigated calcareous soil. Journal of Plant Nutrition and Soil Science, 2015,178:914-922.
doi: 10.1002/jpln.201500339
[29] MCBEATH T M, SMERNIK R J, LOMBI E, MCLAUGHLIN M J. Hydrolysis of pyrophosphate in a highly calcareous soil. Soil Science Society of America Journal, 2006,70(3):856-862.
doi: 10.2136/sssaj2005.0184
[30] HAMILTON J G, HILGER D, PEAK D. Mechanisms of tripolyphosphate adsorption and hydrolysis on goethite. Journal of Colloid and Interface Science, 2017,491:190-198.
doi: 10.1016/j.jcis.2016.12.036
[31] TORRES-DORANTE L O, CLAASSEN N, STEINGROBE B, OLFS H W. Fertilizer use efficiency of different inorganic polyphosphate sources: effects on soil P availability and plant P acquisition during early growth of corn. Journal of Plant Nutrition and Soil Science, 2006,169(4):509-515.
doi: 10.1002/jpln.v169:4
[32] GAO Y J, WANG X W, SHAH J A, CHU G X. Polyphosphate fertilizers increased maize (Zea mays L.) P, Fe, Zn, and Mn uptake by decreasing P fixation and mobilizing microelements in calcareous soil. Journal of Soils and Sediments, 2019,20(1):1-11.
doi: 10.1007/s11368-019-02375-7
[33] 李书田, 黄德明. 磷酸一铵与磷酸二铵在石灰性土壤上的行为. 土壤肥料, 1994(4):33-35.
LI S T, HUANG D M. Behavior of monoammonium phosphate and diammonium phosphate in calcareous soil. Soils and Fertilizers, 1994(4):33-35. (in Chinese)
[34] 金亮, 周健民, 王火焰, 陈小琴, 杜昌文. 石灰性土壤肥际磷酸一铵的转化及其机制探讨. 中国土壤与肥料, 2008(6):5-10.
JIN L, ZHOU J M, WANG H Y, CHEN X Q, DU C W. Transformation and translocation of fertilizer-P with monoammonium phosphate application in fertisphere in calcareous soil. Soil and Fertilizer Sciences in China, 2008(6):5-10. (in Chinese)
[35] KHAN A, LU G Y, AY AZ, ZHANG H T, WANG R J, LV F L, YANG X Y, SUN B H, ZHANG S L. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agriculture, Ecosystems and Environment, 2018, ( 256):1-11.
[36] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, WEI Q, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013,372(1/2):27-37.
doi: 10.1007/s11104-013-1696-y
[37] THOMSON C J, MARSCHNER H, ROMHELD V. Effect of nitrogen fertilizer form on pH of the bulk soil and rhizosphere, and on the growth, phosphorus, and micronutrient uptake of bean. Journal of Plant Nutrition, 1993,16(3):493-506.
doi: 10.1080/01904169309364548
[38] CHIEN S H, GEARHART M M, VILLAGARCIA S. Comparison of ammonium sulfate with other nitrogen and sulfur fertilizers in increasing crop production and minimizing environmental impact: a review. Soil Science, 2011,176(7):327-335.
doi: 10.1097/SS.0b013e31821f0816
[39] LI G H, LI H G, LEFFELAAR P A, SHEN J B, ZHANG F S. Dynamics of phosphorus fractions in the rhizosphere of fababean (Vicia faba L.) and maize (Zea mays L.) grown in calcareous and acid soils. Crop and Pasture Science, 2015,66(11):1151-1160.
doi: 10.1071/CP14370
[40] 黄致华, 王娟, 李言言, 侯建伟, 李留仁, 危常州. 复配酸化对滴灌条件下石灰性土壤pH、磷有效性及玉米吸收的影响. 新疆农业科学, 2017,54(4):660-666.
HUANG Z H, WANG J, LI Y Y, HOU J W, LI L R, WEI C Z. Effects of complex acidic materials application on the growth of maize,soil pH and available P in alcareous soil under drip irrigation. Xinjiang Agricultural Sciences, 2017,54(4):660-666. (in Chinese)
[41] 黄运湘, 曾希柏, 张杨珠, 林志灵, 孙楠, 王道龙. 湖南省丘岗茶园土壤的酸化特征及其对土壤肥力的影响. 土壤通报, 2010,41(3):633-638.
HUANG Y X, ZENG X B, ZHANG Y Z, LIN Z L, SUN N, WANG D L. Tea garden soil acidification and its impact on soil fertility in hillock of hunan province. Chinese Journal of Soil Science, 2010,41(3):633-638. (in Chinese)
[42] 周雨舟, 曹胜, 黄兰, 刘双, 甘思铭, 苏婷. 湖南省柑橘园土壤酸度与交换性氢、铝的关系. 浙江农业科学, 2019,60(7):1120-1122.
ZHOU Y Z, CAO S, HUANG L, LIU S, GAN S M, SU T. Relationship between soil acidity and exchangeable hydrogen and aluminum in Citrus Orchards of Hunan Province. Journal of Zhejiang Agricultural Sciences, 2019,60(7):1120-1122. (in Chinese)
[43] 周雨舟, 刘沛, 谭洁, 曹胜, 黄兰. 湖南柑橘园土壤无机磷素组分及其生物有效性. 湖南农业科学, 2019(7):55-57, 60.
ZHOU Y Z, LIU P, TAN J, CAO S, HUANG L. Inorganic phosphorus components of soil and bioavailability in citrus orchard of Hunan Province. Hunan Agricultural Sciences, 2019(7):55-57, 60. (in Chinese)
[44] 王永刚. 我国北方土壤速效磷测定值与植物吸收的相关性研究[D]. 临汾: 山西师范大学, 2010.
WANG Y G. Study on correlation of measured values of soil available phosphorus and plant uptake in northern China[D]. Linfen: Shanxi Normal University, 2010. (in Chinese)
[45] 张立花, 张辉, 黄玉芳, 叶优良, 张占胜, 詹宗立. 施磷对玉米吸磷量、产量和土壤磷含量的影响及其相关性. 中国生态农业学报, 2013,21(7):801-809.
ZHANG L H, ZHANG H, HUANG Y F, YE Y L, ZHANG Z S, ZHAN Z L. Effect of phosphorus application on soil available phosphorus and maize phosphorus uptake and yield. Chinese Journal of Eco-Agriculture, 2013,21(7):801-809. (in Chinese)
[46] 范晓晖, 刘芷宇. 根际pH环境与磷素利用研究进展. 土壤通报, 1992,23(5):238-241.
FAN X H, LIU Z Y. Advances in Rhizosphere pH environment and phosphorus utilization. Chinese Journal of Soil Science, 1992(5):238-241. (in Chinese)
[47] 赵靓, 侯振安, 柴颖, 张扬, 黄婷, 毛家双. 长期施磷对灰漠土无机磷形态的影响. 水土保持学报, 2014,28(3):236-242.
ZHAO J, HOU Z A, CHAI Y, ZHANG Y, HUANG T, MAO J S. Effects of P rate on soil inorganic phosphorus forms in grey desert soil. Journal of Soil and Water Conservation, 2014,28(3):236-242. (in Chinese)
[48] 吕家珑, 刘文革, 王旭东, 李祖荫. 长期施肥对土壤无机磷形态组成的影响. 西北农业大学学报, 1995,23(3):51-54.
LÜ J L, LIU W G, WANG X D, LI Z Y. Effects of long term fertilization on inorganic-P form composition in soil. Acta University Agriculture Boreali-Occidentalis 1995,23(3):51-54. (in Chinese)
[49] 匡晓静. 利用黄磷尾气窑炉法生产钙镁磷肥技术. 磷肥与复肥, 2018,33(1):20-22.
KUANG X J. Production technology of FCMP by kiln process with yellow phosphorus tail gas. Phosphate & Compound Fertilizer, 2018,33(1):20-22. (in Chinese)
[50] PHILEN O D, LEHR J R. Reactions of ammonium polyphosphates with soil minerals. Soil Science Society of America Journal, 1967,31(2):196-199.
doi: 10.2136/sssaj1967.03615995003100020017x
[51] MCBEATH T M, LOMBI E, MCLAUGHLIN M J, BUNEMANN E. Pyrophosphate and orthophosphate addition to soils: sorption, cation concentrations, and dissolved organic carbon. Soil Research, 2007,45(45):237-245.
doi: 10.1071/SR07014
[52] 陈小娟, 陈煜林, 林净净, 杨依彬, 胡克纬, 张承林. 不同聚合度的聚磷酸铵对土壤磷动态转化及有效性的影响. 浙江农业学报, 2019,31(10):1681-1688.
CHEN X J, CHEN Y L, LIN J J, YANG Y B, HU K W, ZHANG C L. Conversion dynamics and effectiveness of ammonium polyphosphate with different polymerization degrees to soil phosphorus. Acta Agriculturae Zhejiangensis, 2019,31(10):1681-1688. (in Chinese)
[53] 高艳菊, 亢龙飞, 褚贵新. 不同聚合度和聚合率的聚磷酸磷肥对石灰性土壤磷与微量元素有效性的影响. 植物营养与肥料学报, 2018,24(5):1294-1302.
GAO Y J, KANG L F, CHU G X. Polymerization degree and rate of polyphosphate fertilizer affected the availability of phosphorus, Fe, Mn and Zn in calcareous soil. Journal of Plant Nutrition and Fertilizers, 2018,24(5):1294-1302. (in Chinese)
[54] 林治安, 谢承陶, 张振山, 张雪瑶. 旱作农田石灰性土壤磷素形态、转化与施肥. 土壤肥料, 1996(6):26-28.
LIN Z A, XIE C T, ZHANG Z S, ZHANG X Y. Forms, transformation and fertilization of phosphorus in calcareous soil of dryland. Soils and Fertilizers, 1996(6):26-28. (in Chinese)
[55] 冯固, 杨茂秋, 白灯莎, 黄全生. 用32P示踪法研究石灰性土壤中磷素的形态及有效性变化. 土壤学报, 1996,33(3):301-307.
FENG G, YANG M Q, BAI D S, HUANG Q S. Study on changes in fractions and availability of phosphorus in calcareous soil by 32P tracer method. Acta Pedologica Sinica, 1996,33(3):301-307. (in Chinese)
[56] 李若楠, 王政培, BATBAYAR Javkhlan, 张东杰, 张树兰, 杨学云. 等有机质塿土有效磷和无机磷形态的关系. 中国农业科学, 2019,52(21):3852-3865.
LI R N, WANG Z P, BATBAYAR J, ZHANG D J, ZHANG S L, YANG X Y. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019,52(21):3852-3865. (in Chinese)
[57] 张英鹏, 陈清, 李彦, 李国生, 孙明, 刘兆辉. 不同磷水平对山东褐土耕层无机磷形态及磷有效性的影响. 中国农学通报, 2008,24(7):245-248.
ZHANG Y P, CHEN Q, LI Y, LI G S, SUN M, LIU Z H. Effect of phosphorus levels on form and bioavailability of inorganic P in plough layer of cinnamon soil in Shandong province. Chinese Agricultural Science Bulletin, 2008,24(7):245-248. (in Chinese)
[58] 刘世亮. 不同磷源在石灰性土壤作物根际的形态转化与有效性研究[D]. 郑州: 河南农业大学, 2000.
LIU S L. Studies on transformation and availability of different phosphorus in crop rhizosphere in calcareous chao soils[D]. Zhengzhou: Henan Agricultural University, 2000. (in Chinese)
[1] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[4] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[8] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[9] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[10] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[11] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[12] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[13] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie,HAN Kun,ZHAO Bin,LIU GuoLi,LIN DianXu,CHEN GuoQiang,REN Hao,ZHANG JiWang,REN BaiZhao,LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!