Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 1017-1028.doi: 10.3864/j.issn.0578-1752.2021.05.013

• HORTICULTURE • Previous Articles     Next Articles

Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress

XianMin MENG1(),YanHai JI1,2,WangWang SUN3,ZhanHui WU1,2,ZhaoSheng CHU1,MingChi LIU1,2()   

  1. 1Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
    2Key Laboratory of North China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Beijing 100097
    3Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
  • Received:2020-05-21 Accepted:2020-08-18 Online:2021-03-01 Published:2021-03-09
  • Contact: MingChi LIU E-mail:1475102978@qq.com;liumingchi@nercv.org

Abstract:

【Objective】 The chloroplast ultrastructure and photosynthetic physiological characteristics of two tomato cultivars under low light were studied to reveal the difference of the response of different tomato cultivars to low light and explore the potential of Solanum lycopersicum tolerance to low light. 【Method】 The Dutch low-light tolerance cultivar Glorioso and the Chinese low-light sensitive cultivar Jingdan No. 1 were selected as experimental materials, they exposed to normal light (CK, light intensity 300-350 μmol·m -2·s-1) and 50% normal light (low light, light intensity 70-80 μmol·m -2·s-1) for fifteen days. The plant chlorophyll fluorescence imaging, chlorophyll fluorescence and photosynthetic parameters of leaves were detected. We also observed stomatal morphology and chloroplast ultrastructure of leaves after treatment by the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). 【Result】 Compared with the control, the Pn, qP_Lss, the content of chl. (a+b), SOD activity, stomatal density and spatial scale of regular stomatal distribution of the two cultivars leaves were decreased, which also led to the decrease of dry weight and healthy index, the leaves NPQ_Lss, MDA content increased with plant height and maximum internode spacing. The variation range of Jingdan No. 1 was significantly larger than Glorioso, the QY_Lss, QY (ΦPSⅡ) and chloroplast structure of Glorioso remained unchanged, its Pn in leaves was significantly higher than Jingdan No. 1. In addition, the Glorioso improved the regular distribution of stomata by reducing the value of L(d) between stomata, chl.b content increased and chl.a/b decreased under low light. While the chl.b content of Jingdan No. 1 decreased, chl.a/b increased, the spatial scale and regularity of stomatal regular distribution reduced and the leaves were seriously affected by low light. To sum up, Glorioso has stronger light-harvesting ability than Jingdan No. 1 under low light, and uses more light energy absorbed by photosynthetic pigments for photochemistry transfer, reduced heat dissipation and improves the actual photochemistry rate, light energy conversion rate of PSII, so as to maintain operation of photosynthetic system under low light, which photosynthetic capacity and output are slightly higher than Jingdan No. 1, and has strong low light tolerance.【Conclusion】 The differences of response to low light between the two tomato cultivars were mainly reflected in chl.b content, stomatal spatial distribution pattern, chloroplast structure, SOD activity and photosynthetic fluorescence characteristics, which made the Dutch cultivar Glorioso maintain high photosynthesis efficiency under low light.

Key words: tomato, low light, photosynthetic fluorescence characteristics, stomata, chloroplast

Fig. 1

Effects of low light on ultra-structures of leaf chloroplast"

Table 1

Effects of low light on stomatal characteristics of leaves"

处理
Treatment
气孔特征 Stomatal characteristics
密度Density
(Number/mm2)
面积
A (μm2)
周长
P (μm)
长度
Length (μm)
宽度
Width (μm)
形状指数
S
佳西娜
Glorioso
对照 CK 306.22±92.15a 20.04±2.05a 31.41±6.54a 14.72±2.98a 1.77±0.59b 1.21±0.68a
弱光Low light 161.10±57.27b 17.14±1.41a 28.54±2.99a 12.93±1.33a 1.42±0.35bc 1.04±0.20a
京丹1号
Jingdan No.1
对照 CK 303.15±97.72a 25.93±5.27a 30.51±1.35a 13.72±1.16a 2.43±0.61a 1.37±0.41a
弱光Low light 147.81±52.42b 14.03±2.18a 24.89±2.39a 12.53±3.30a 1.45±0.47bc 0.84±0.63a

Fig. 2

Scanning electron photographs of individual stoma of leaves"

Fig. 3

Effect of low light on spatial distribution pattern of stomata A, B are CK and low light treatment of Glorioso; C, D are CK and low light treatment of Jingdan No.1, respectively. The upper and lower dashed lines represent the upper and lower boundaries of 95% confidence intervals, the red line represents the K(d) value, and the green line represents the corresponding spatial scale and L(d) value when stomatal distribution on leaves changed from regular to random. L(d) is the minimum neighborhood distance, when L(d) value is less than 95% confidence interval, the stomata distribution is regular in this scale, and the smaller of L(d), the more regular the spatial distribution of stomata"

Fig. 4

Effects of low light on SOD activity and MDA content in leaves Different lower-case letters indicate significant differences among treatments (P<0.05). The same as below"

Table 2

Effects of low light on the content of photosynthetic pigments in leaves"

处理
Treatment
叶绿素a
Chl.a (mg·g-1 FW)
叶绿素b
Chl.b (mg·g-1 FW)
Chl.(a+b)
(mg·g-1 FW)
Chl.a/b
佳西娜
Glorioso
对照 CK 2.01±0.12a 0.62±0.04ab 2.63±0.15a 3.25±0.02a
弱光Low light 1.25±0.02b 0.66±0.09a 1.91±0.07b 1.99±0.33b
京丹1号
Jingdan No.1
对照 CK 1.88±0.07ab 0.63±0.03ab 2.50±0.08a 2.30±0.15a
弱光Low light 1.28±0.01b 0.48±0.02b 1.76±0.03b 2.67±0.07a

Table 3

Effects of low light on photosynthesis indexes of leaves"

处理
Treatment
净光合速率
Pn (μmol·m-2·s-1)
气孔导度
Gs (mol·m-2·s-1)
胞间CO2浓度
Ci (μmol·mol-1)
蒸腾速率
Tr (mmol·m-2·s-1)
佳西娜
Glorioso
对照 CK 18.16±1.30a 0.41±0.24a 333.00±5.92a 8.19±0.43a
弱光Low light 12.05±1.38b 0.35±0.08ab 359.44±34.45a 7.14±1.52ab
京丹1号
Jingdan No.1
对照 CK 17.09±2.17a 0.40±0.18a 346.35±36.94a 7.49±1.84a
弱光Low light 6.68±2.57c 0.24±0.08b 316.84±13.03b 5.42±1.36b

Fig. 5

Effects of low light on chlorophyll fluorescence parameters of leaves The blue and red lines represent CK and low light treatment respectively. A, C are Glorioso; B, D are Jingdan No.1. A, B are photoquantum yield parameters; C, D are fluorescence quenching parameters"

Fig. 6

Chlorophyll fluorescence imaging of leaves"

Table 4

Effects of low light on growth index of tomato"

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
叶面积
Leaf area
(cm2)
最大节间距
Maximum pitch spacing (cm)
单株干重
Dry weight of single plant (g)
壮苗指数
Healthy index
佳西娜
Glorioso
对照 CK 14.67±0.26d 4.29±0.09a 44.36±2.18b 1.56±0.14d 0.60±0.03b 0.176±0.09a
弱光Low light 28.58±0.62b 3.93±0.07bc 49.39±2.16ab 7.08±0.38b 0.55±0.09b 0.077±0.09b
京丹1号
Jingdan No.1
对照 CK 16.50±0.99c 4.20±0.17a 43.99±2.25b 2.22±0.18c 0.80±0.09a 0.175±0.09a
弱光Low light 33.92±0.66a 3.72±0.08c 53.55±2.49a 10.33±0.56a 0.44±0.02c 0.048±0.02b

Fig. 7

Growth status of tomato under low light A:佳西娜 Glorioso;B:京丹1号 Jingdan No. 1"

[1] SHU S, TANG Y Y, YUAN Y H, SUN J, ZHONG M, GUO S R. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiology and Biochemistry, 2016,107:344-353.
doi: 10.1016/j.plaphy.2016.06.021 pmid: 27362298
[2] ZHU H F, LI X F, ZHAI W, LIU Y, GAO Q Q, LIU J P, REN L, CHEN H Y, ZHU Y Y. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). PLoS ONE, 2017,12(6), e0179305.
doi: 10.1371/journal.pone.0179305 pmid: 28609452
[3] 孙建磊, 王崇启, 肖守华, 高超, 李利斌, 曹齐卫, 王晓, 董玉梅, 焦自高. 弱光对黄瓜幼苗光合特性及Rubisco酶的影响. 核农学报, 2017,31(6):1200-1209.
SUN J L, WANG C Q, XIAO S H, GAO C, LI L B, CAO Q W, WANG X, DONG Y M, JIAO Z G. Effect of low light on photosynthesis and Rubisco of cucumber seedlings. Journal of Nuclear Agricultural Sciences, 2017,31(6):1200-1209. (in Chinese)
[4] 闫文凯. 日光温室人工补光对番茄光合作用及生长的影响[D]. 北京: 中国农业科学院, 2018.
YAN W K. Effects of artificial lighting on photosynthesis and growth of tomato in Chinese solar greenhouse[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[5] 刘铭, 张英杰, 吕英民. 荷兰设施园艺的发展现状. 农业工程技术(温室园艺), 2010(8):24-33.
LIU M, ZHANG Y J, LÜ Y M. The development and present situation of Dutch horticulture. Agriculture Engineering Technology (Greenhouse & Horticulture), 2010(8):24-33. (in Chinese)
[6] 蒋卫杰, 邓杰, 余宏军. 设施园艺发展概况、存在问题与产业发展建议. 中国农业科学, 2015,48(17):3515-3523.
doi: 10.3864/j.issn.0578-1752.2015.17.017
JIANG W J, DENG J, YU H J. Development situation, problems and suggestions on industrial development of protected horticulture. Scientia Agricultura Sinica, 2015,48(17):3515-3523. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.17.017
[7] ALIFERIS K A, CHRYSAYI-TOKOUSBALIDES M, FASSEAS C. Physiological and ultrastructural changes in “green islands” on Avena sterilis leaves caused by (8R, 16R) - (-) -pyrenophorin. Plant Physiology and Biochemistry, 2006,44(11/12):851-856.
[8] 艾希珍, 郭延奎, 马兴庄, 邢禹贤. 弱光条件下日光温室黄瓜需光特性及叶绿体超微结构. 中国农业科学, 2004,37(2):268-273.
AI X Z, GUO Y K, MA X Z, XING Y X. Photosynthetic Characteristics and ultrastructure of chloroplast of cucumber under low light intensity in solar greenhouse. Scientia Agricultura Sinica, 2004,37(2):268-273. (in Chinese)
[9] MURCHIE E H, HUBBART S, PENG S, HORTON P. Acclimation of photosynthesis to high irradiance in rice: gene expression and interactions with leaf development. Journal of Experimental Botany, 2005,56(411):449-460.
pmid: 15647315
[10] 王学文, 王玉珏, 付秋实, 赵冰, 郭仰东. 弱光逆境对番茄幼苗形态、生理特征及叶片超微结构的影响. 华北农学报, 2009,24(5):144-149.
WANG X W, WANG Y J, FU Q S, ZHAO B, GUO Y D. Effects of low light stress on morphological trait, physiological characters and leaf ultrastructure of tomato(Lycopersicon esculentum L.) seedlings. Acta Agriculturae Boreali-Sinica, 2009,24(5):144-149. (in Chinese)
[11] KANAZAWA S, SANO S, KOSHIBA T, USHIMARU T. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Physiologia Plantarum, 2010,109(2):211-216.
[12] 李翔, 桑勤勤, 束胜, 孙锦, 郭世荣. 外源油菜素内酯对弱光下番茄幼苗光合碳同化关键酶及其基因的影响. 园艺学报, 2016,43(10):2012-2020.
LI X, SANG Q Q, SHU S, SUN J, GUO S R. Effects of epibrassinolide on the activities and gene expression of photosynthetic enzymes in tomato seedlings under low light. Acta Horticulturae Sinica, 2016,43(10):2012-2020. (in Chinese)
[13] 杨柳燕, 陈菁菁, 陈年来. 甜瓜叶片光合产物输出能力对弱光的响应. 中国农业科学, 2018,51(13):2561-2569.
YANG L Y, CHEN J J, CHEN N L. Responses of leaf assimilate export to lowlight stress in melon. Scientia Agricultura Sinica, 2018,51(13):2561-2569. (in Chinese)
[14] 秦玉芝, 邢铮, 邹剑锋, 何长征, 李炎林, 熊兴耀. 持续弱光胁迫对马铃薯苗期生长和光合特性的影响. 中国农业科学, 2014,47(3):537-545.
QIN Y Z, XING Z, ZOU J F, HE C Z, LI Y L, XIONG X Y. Effects of sustained weak light on seedling growth and photosynthetic characteristics of potato seedlings. Scientia Agricultura Sinica, 2014,47(3):537-545. (in Chinese)
[15] APPLE M E, OLSZYK D M, ORMROD D P, LEWIS J, SOUTHWORTH D, TINGEY D T. Morphology and stomatal function of douglas fir needles exposed to climate change: Elevated CO2 and temperature. International Journal of Plant Sciences, 2000,161(1):127-132.
pmid: 10648202
[16] ZHENG Y P, XU M, HOU R X, SHEN R C, QIU S, OUYANG Z. Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.). Ecology and Evolution, 2013,3(9):3095-3111.
pmid: 24101997
[17] 郭丽丽, 郝立华, 贾慧慧, 李菲, 张茜茜, 曹旭, 徐明, 郑云普. NaCl胁迫对两种番茄气孔特征、气体交换参数和生物量的影响. 应用生态学报, 2018,29(12):3949-3958.
GUO L L, HAO L H, JIA H H, LI F, ZHANG Q Q, CAO X, XU M, ZHENG Y P. Effects of NaCl stress on stomatal traits, leaf gas exchange parameters, and biomass of two tomato cultivars. Chinese Journal of Applied Ecology, 2018,29(12):3949-3958. (in Chinese)
[18] WANG Y W, ZHANG B, KAI C. Design and development of intelligent LED plant light supplement system based on solar - powered for facility agriculture. Applied Mechanics and Materials, 2014(672/674):26-29.
[19] DAVIS P A, BURNS C. Photobiology in protected horticulture. Food and Energy Security, 2016,5(4):223-238.
[20] LIU X Y, GUO S R, XU Z G, JIAO X L, TAKAFUMI T. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves and morphology of stomata of cherry tomato by different light irradiations of LEDs. Hortscience, 2011,46(2):217-221.
[21] 刘增鑫. 特种蔬菜无土栽培. 北京: 中国农业出版社. 2000.
LIU Z X. Soilless Cultivation of Special Vegetables. Beijing: China Agriculture Press, 2000. (in Chinese)
[22] 郭世荣. 无土栽培学. 北京: 中国农业出版社. 2011.
GUO S R. Soilless Culture. Beijing: China Agriculture Press. 2011. (in Chinese)
[23] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 1998.
LI H S. Principle and Technology of Plant Physiology and Biochemistry Experiment. Beijing: Higher Education Press, 1998. (in Chinese)
[24] CAKMAK I, MARSCHNER H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 1992,98:1222-1227.
pmid: 16668779
[25] ARNON D L. Copper enzymes in isolated chloroplasts, polyphenol oxidase in Brat vulgaris. Plant Physiology, 1949,24(1):1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[26] 黄磊, 孙耀清, 郝立华, 党承华, 朱玉, 王贺新, 程东娟, 张运鑫, 郑云普. 高温对北高丛越橘叶片结构和生理代谢的影响. 园艺学报, 2016,43(6):1044-1056.
HUANG L, SUN Y Q, HAO L H, DANG C H, ZHU Y, WANG H X, CHENG D J, ZHANG Y X, ZHENG Y P. Effects of high temperatures on leaf structures and physiological metabolism of north highbush blueberry. Acta Horticulturae Sinica, 2016,43(6):1044-1056. (in Chinese)
[27] REN B Z, ZHANG J W, DONG S T, LIU P, ZHAO B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS ONE, 2016,11(9):e0161424.
pmid: 27583803
[28] CORNAH J E, TERRY M J, SMITH A G. Green or red: What stops the traffic in the tetrapyrrole pathway? Trends in Plant Science, 2003,8(5):224-230.
pmid: 12758040
[29] CHU H A, NGUYEN A P, DEBUS R J. Site-directed photosystem II mutants with perturbed oxygen-evolving properties. 1. instability or inefficient assembly of the manganese cluster in vivo. Biochemistry, 1994,33(20):6150-6157.
[30] MENG Z J, LU T, ZHANG G X, QI M F, TANG W, LI L L, LIU Y F, LI T L. Photosystem inhibition and protection in tomato leaves under low light. Scientia Horticulturae, 2017,217:145-155.
[31] 安玉艳, 张丽颖, 冯新新, 田凡, 李洁, 汪良驹. 5-氨基乙酰丙酸对苹果叶片耐弱光能力的影响. 西北植物学报, 2016,36(5):987-995.
AN Y Y, ZHANG L Y, FENG X X, TIAN F, LI J, WANG L J. Effects of 5-aminolevulinic acid on low light tolerance of apple leaves. Acta Botanica Boreali-Occidentalia Sinica, 2016,36(5):987-995. (in Chinese)
[32] RÜDIGER W. Biosynthesis of chlorophyll b, and the chlorophyll cycle. Photosynthesis Research, 2002,74(2):187-193.
pmid: 16228557
[33] 吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊, 于天一. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响. 植物生态学报, 2014,38(7):740-748.
WU Z F, SUN X W, WANG C B, ZHENG Y P, WAN S B, LIU J H, ZHENG Y M, WU J X, FENG H, YU T Y. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Acta Phytoecologica Sinica, 2014,38(7):740-748. (in Chinese)
[34] 姚允聪, 王绍辉, 孔云. 弱光条件下桃叶片结构及光合特性与叶绿体超微结构变化. 中国农业科学, 2007,40(4):855-863.
YAO Y C, WANG S H, KONG Y. Characteristics of photosynthesis machinism in different peach species under low light intensity. Scientia Agricultura Sinica, 2007,40(4):855-863. (in Chinese)
[35] CASSON S, GRAY J E. Influence of environmental factors on stomatal development. New Phytologist, 2008,178(1):9-23.
[36] 朱玉, 黄磊, 党承华, 王贺新, 姜国斌, 李根柱, 张自川, 娄鑫, 郑云普. 高温对蓝莓叶片气孔特征和气体交换参数的影响. 农业工程学报, 2016,32(1):218-225.
ZHU Y, HUANG L, DANG C H, WANG H X, JIANG G B, LI G Z, ZHANG Z C, LOU X, ZHENG Y P. Effects of high temperature on leaf stomatal traits and gas exchange parameters of blueberry. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(1):218-225. (in Chinese)
[37] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982,33:317-345.
[38] 张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999,16(4):444-448.
ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany, 1999,16(4):444-448. (in Chinese)
[39] GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects, 1989,990(1):87-92.
[40] 艾希珍, 王秀峰, 崔志峰, 王振林. 钙对弱光亚适温下黄瓜光合作用的影响. 中国农业科学, 2006,39(9):1865-1871.
AI X Z, WANG X F, CUI Z F, WANG Z L. Effect of calcium on photosynthesis of cucumber under low light intensity and sub-optimal temperature. Scientia Agricultura Sinica, 2006,39(9):1865-1871. (in Chinese)
[41] 孙德智, 韩晓日, 彭靖, 范富, 张庆国. 外源NO对Ca(NO3)2胁迫下番茄幼苗PSII功能及光能分配利用的影响. 核农学报, 2016,30(12):2451-2459.
SUN D Z, HAN X R, PENG J, FAN F, ZHANG Q G. Effect of exogenous nitric oxide on PSII function and distribution and utilization of luminous energy in tomato seedlings under stress of Ca(NO3)2. Journal of Nuclear Agricultural Sciences, 2016,30(12):2451-2459. (in Chinese)
[42] KORNYEYEV D, LOGAN B A, PAYTON P, ALLEN R D, HOLADAY A S. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiologia Plantarum, 2001,113(3):323-331.
doi: 10.1034/j.1399-3054.2001.1130304.x
[43] 程亚娇, 谌俊旭, 王仲林, 范元芳, 陈思宇, 李泽林, 刘沁林, 李中川, 杨峰, 杨文钰. 光强和光质对大豆幼苗形态及光合特性的影响. 中国农业科学, 2018,51(14):2655-2663.
CHENG Y J, SHEN J X, WANG Z L, FAN Y F, CHEN S Y, LI Z L, LIU Q L, LI Z C, YANG F, YANG W Y. Effects of light intensity and light quality on morphological and photosynthetic characteristics of soybean seedlings. Scientia Agricultura Sinica, 2018,51(14):2655-2663. (in Chinese)
[1] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[2] XIE YiTong,ZHANG Fei,SHI Jie,FENG Li,JIANG Li. Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C [J]. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656.
[3] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[4] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[5] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[6] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[7] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[8] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[9] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[10] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[11] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[12] WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276.
[13] XU ZiYi,CHENG Xing,SHEN Qi,ZHAO YaNan,TANG JiaYu,LIU Xi. Identification and Gene Functional Analysis of Yellow Green Leaf Mutant ygl3 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(15): 3149-3157.
[14] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[15] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!