Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (7): 1444-1458.doi: 10.3864/j.issn.0578-1752.2020.07.013

• HORTICULTURE • Previous Articles     Next Articles

Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines

Min LIU1,2,Yulin FANG1,3   

  1. 1. College of Enology, Northwest A&F University, Yangling 712100, Shaanxi;
    2. College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi
    3. Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, Shaanxi
  • Received:2019-08-27 Accepted:2019-10-30 Online:2020-04-01 Published:2020-04-14

Abstract: 【Objective】 The objective of this research was to study the effects of heat stress on physiological indexes and ultrastructure of grapevines, and to explore the physiological response mechanism of grapevines to heat stress. 【Method】 One-year cutting seedlings of Vitis vinifera L. cv. Cabernet Sauvignon and Vitis davidii Foex. cv. Junzi 1were used as test materials, which were treated at 35℃, 40℃ and 45℃ for 48 h, with the plants at 25℃ as the control. Relative electrolyte leakage, relative water content, total chlorophyll content, antioxidant enzyme activity, malondialdehyde/super oxygen anion/hydrogen peroxide content, chlorophyll fluorescence and photosynthetic parameters of grape leaves were detected. By the scanning electron microscopy (SEM) and transmission electron microscopy (TEM), stomatal morphology and chloroplast ultrastructure were observed. 【Result】 After heat treatment at 35℃ and 40℃, the plant morphology, relative electrolyte leakage, relative water content, total chlorophyll content and chlorophyll fluorescence of Cabernet Sauvignon and Junzi 1 showed no significant changes, but net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) were significantly reduced. After heat treatment at 45℃, Cabernet Sauvignon and Junzi 1 appeared stress symptoms, with relative electrolyte leakage increasing, and relative water content, total chlorophyll content, Fv/Fm, ΦPSII, Pn, Tr and Gs decreasing. The change range of each parameter in Junzi 1 was greater than that in Cabernet Sauvignon. With the increase of temperature, malondialdehyde/superoxide anion/hydrogen peroxide content, SOD and POD activities in grape leaves increased continuously, while CAT activity was the highest under moderate heat stress. The increase of SOD and CAT activities in Cabernet Sauvignon leaves was greater than that in Junzi 1. By SEM, it was found that at room temperature, the stomatal density of Cabernet Sauvignon was higher than that of Junzi 1; after heat treatment, the stomatal opening of grape leaves decreased, but the stomatal size did not change significantly. By TEM, it was found that after heat treatment, the chloroplast became large and round; the chloroplast membrane disintegrated; many giant starch grains appeared; a large number of plastoglobules were observed in the chloroplast of Junzi 1. 【Conclusion】 In Cabernet Sauvignon, stomatal density was high, chloroplast structure was stable, and SOD and CAT activities highly increased after heat treatment, which were the important reasons for its high heat resistance.

Key words: Cabernet Sauvignon, Vitis davidii Foex. cv. Junzi 1, heat stress, photosynthesis, antioxidant enzyme, chloroplast

Fig. 1

Effects of heat treatment on grapevines morphology A: Cabernet Sauvignon; B: Junzi 1"

Fig. 2

Changes of grape leaves during heat treatment A: Cabernet Sauvignon; B: Junzi 1"

Fig. 3

Effects of heat treatment on relative electrolyte leakage, relative water content and total chlorophyll content of grape leaves Different small letters mean significant differences (P<0.05). The same as below"

Fig. 4

Effects of heat treatment on antioxidases activities and MDA content in grape leaves"

Fig. 5

$O_{2^{\frac{}{.}}}$ staining of leaves after heat treatments for 48 h"

Fig. 6

H2O2 staining of leaves after heat treatments for 48 h"

Fig. 7

Effects of heat treatment on chlorophyll fluorescence parameters of grapevines"

Fig. 8

Effects of heat treatment on photosynthetic parameters of grapevines"

Fig. 9

Effects of heat treatment at 45℃ on the stomatal morphology of grape leaves"

Table 1

Effects of heat treatment at 45℃ on the stomatal characteristics of grape leaves"

Time after treatment (h)
Degree of stomatal opening (μm)
Stomatal length (μm)
Stomatal width (μm)
Stomatal density (No./mm2)
Cabernet Sauvignon
0 3.44±0.97a 16.59±1.32a 7.23±1.46a 187.35±20.65a
24 2.11±0.78b 16.52±1.54a 6.33±1.03ab 177.60±17.31a
君子1号Junzi 1 0 1.97±0.54b 15.51±2.06ab 5.82±0.75ab 132.71±7.81b
24 1.22±0.77c 13.98±1.42b 5.48±1.10b 122.95±17.31b

Fig. 10

Effects of heat treatment at 45℃ on the chloroplast ultrastructure of grape leaves A: Cabernet Sauvignon; B: Junzi 1. Chl: Chloroplast; S: Starch grain; P: Plastoglobule"

Table 2

Effects of heat treatment at 45℃ on chloroplast and starch grain of grape leaves"

Time (h)
叶绿体Chloroplast 淀粉粒Starch grain
Length (μm)
Width (μm)
Length (μm)
Width (μm)
Cabernet Sauvignon
0 h 6.4±1.9a 5.83±0.63a 3.03±0.24b 0.6±0.5b 1.21±0.25b 0.68±0.14c
24 h 5.0±2.2a 5.42±0.98a 3.91±0.76a 1.1±0.8a 1.83±0.54a 1.06±0.21b
Junzi 1
0 h 6.3±1.4a 5.41±0.96a 2.46±0.37c 0.7±0.6b 0.87±0.09b 0.42±0.05d
24 h 5.7±0.8a 5.39±0.75a 4.32±0.48a 1.2±0.9a 2.13±0.62a 1.36±0.40a
[1] 蒯传化, 刘三军, 吴国良, 杨朝选, 陈勇朋, 王鹏, 刘崇怀, 于巧丽 . 葡萄日灼病阈值温度及主要影响因子分析. 园艺学报, 2009,36(8):1093-1098.
KUAI C H, LIU S J, WU G L, YANG C X, CHEN Y P, WANG P, LIU C H, YU Q L . Analysis of the main factors and threshold temperature on Vitis berry sunburn. Acta Horticulturae Sinica, 2009,36(8):1093-1098. (in Chinese)
[2] LIU X Z, HUANG B R . Heat stress injury in relation to membrane lipid peroxidation in creeping bent grass. Crop Science, 2000,40(2):503-510.
[3] RUELLAND E, ZACHOWSKI A . How plants sense temperature. Environmental & Experimental Botany, 2010,69(3):225-232.
[4] 张俊环, 黄卫东 . 葡萄幼苗在温度逆境交叉适应过程中活性氧及抗氧化酶的变化. 园艺学报, 2007,34(5):1073-1080.
ZHANG J H, HUANG W D . Changes of active oxygen and antioxidant enzymes in leaves of young grape plants during cross adaptation to temperature stress. Acta Horticulturae Sinica, 2007,34(5):1073-1080. (in Chinese)
[5] 查倩, 奚晓军, 蒋爱丽, 田益华, 黄健 . 高温胁迫对葡萄幼树叶绿素荧光特性和抗氧化酶活性的影响. 植物生理学报, 2016,52(4):525-532.
ZHA Q, XI X J, JIANG A L, TIAN Y H, HUANG J . Effects of heat stress on chlorophyll fluorescence characteristics and antioxidant activity in grapevines ( Vitis vinifera L. cv. Xiahei). Plant Physiology Journal, 2016,52(4):525-532. (in Chinese)
[6] ZHANG J, JIANG F W, YANG P, LI L, YAN G J, HU L Y . Responses of canola ( Brassica napus L.) cultivars under contrasting temperature regimes during early seedling growth stage as revealed by multiple physiological criteria. Acta Physiologiae Plantarum, 2015,37(2):7-17.
[7] MAXWELL K, JOHNSON G N . Chlorophyll fluorescence-A practical guide. Journal of Experimental Botany, 2000,51:659-668.
[8] BAKER N R, ROSENQVIST E . Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany, 2004,403:1607-1621.
[9] FENG B, LIU P, LI G, DONG S T, WANG F H, KONG L A, ZHANG J W . Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. Journal of Agronomy and Crop Science, 2014,200(2):143-155.
[10] JIANG C D, JIANG G M, WANG X Z, LI L H, BISWAS D K, LI Y G . Increased photosynthetic activities and thermostability of photosystem II with leaf development of ELM seedlings ( Ulmus pumila) probed by the fast fluorescence rise OJIP. Environmental and Experimental Botany, 2006,58(1-3):261-268.
[11] MURATA N, TAKAHASHI S, NISHIYAMA Y, ALLAKHVERDIEV S I . Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta, 2007,1767(6):414-421.
[12] TAKAHASHI S, MURATA N . How do environmental stresses accelerate photoinhibition. Trends in Plant Science, 2008,13(4):178-182.
[13] YAN K, CHEN P, SHAO H B, SHAO C Y, ZHAO S J, BRESTIC M . Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS ONE, 2013,8(5):e62100.
[14] 罗海波, 马苓, 段伟, 李绍华, 王利军 . 高温胁迫对‘赤霞珠’葡萄光合作用的影响. 中国农业科学, 2010,43(13):2744-2750.
LUO H B, MA L, DUAN W, LI S H, WANG L J . Influence of heat stress on photosynthesis in Vitis vinifera L. cv. Cabernet Sauvignon. Scientia Agricultura Sinica, 2010,43(13):2744-2750. (in Chinese)
[15] 孙永江, 付艳东, 杜远鹏, 翟衡 . 不同温度/光照组合对‘赤霞珠’葡萄叶片光系统II功能的影响. 中国农业科学, 2013,46(6):1191-1200.
SUN Y J, FU Y D, DU Y P, ZHAI H . Effects of different temperature and light treatments on photosynthetic system II in Vitis vinifera L. cv. Cabernet Sauvignon. Scientia Agricultura Sinica, 2013,46(6):1191-1200. (in Chinese)
[16] 徐洪国 . 葡萄耐热性评价及不同耐热性葡萄转录组研究[D]. 北京: 中国农业大学, 2014.
XU H G . Evaluation of grape heat tolerance and transcriptome of different heat tolerance of grape[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[17] ZOU M Q, YUAN L Y, ZHU S D, LIU S, GE J T, WANG C G . Effects of heat stress on photosynthetic characteristics and chloroplast ultrastructure of a heat-sensitive and heat-tolerant cultivar of wucai ( Brassica campestris L.). Acta Physiologiae Plantarum, 2017,39(1):1-10.
[18] 田治国, 王飞, 张文娥, 赵秀明 . 高温胁迫对孔雀草和万寿菊不同品种生长和生理的影响. 园艺学报, 2011,38(10):1947-1954.
TIAN Z G, WANG F, ZHANG W E, ZHAO X M . Effects of heat stress on growth and physiology of marigold cultivars. Acta Horticulturae Sinica, 2011,38(10):1947-1954. (in Chinese)
[19] ZHOU R, KONG L P, YU X Q, OTTOSEN C O, ZHAO T M, JIANG F L, WU Z . Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiologiae Plantarum, 2019,41:1-11.
[20] 孙军利, 赵宝龙, 郁松林 . 外源水杨酸(SA)对高温胁迫下葡萄幼苗耐热性诱导研究. 水土保持学报, 2014,28(3):290-294.
SUN J L, ZHAO B L, YU S L . Study of exogenous salicylic acid (SA) on the heat tolerance in grape seedlings under high temperature stress. Journal of Soil and Water Conservation, 2014,28(3):290-294. (in Chinese)
[21] YANG G, GUO Y K, LIN S H, FANG Y Y, BAI J G . Hydrogen peroxide pretreatment alters the activity of antioxidant enzymes and protects chloroplast ultrastructure in heat-stressed cucumber leaves. Scientia Horticulturae, 2010,126(1):20-26.
[22] HUANG Y W, ZHOU Z Q, YANG H X, WEI C X, WAN Y Y, WANG X J, BAI J G . Glucose application protects chloroplast ultrastructure in heat-stressed cucumber leaves through modifying antioxidant enzyme activity. Biologia Plantarum, 2015,59(1):131-138.
[23] 韩晓, 王海波, 王孝娣, 冀晓昊, 史祥宾, 王宝亮, 郑晓翠, 王志强, 刘凤之 . 不同砧木对‘87-1’葡萄光合特性及荧光特性的影响. 中国农业科学, 2018,51(10):1972-1981.
HAN X, WANG H B, WANG X D, JI X H, SHI X B, WANG B L, ZHENG X C, WANG Z Q, LIU F Z . Effects of different rootstocks on ‘87-1’ grape photosynthetic and chlorophyll fluorescence characteristics. Scientia Agricultura Sinica, 2018,51(10):1972-1981. (in Chinese)
[24] 朱玉, 郝立华, 黄磊, 王贺新, 党承华, 张运鑫, 程东娟, 王利书, 郑云普, 徐国辉 . 不同温度对3种北高丛蓝莓气孔特征和气体交换参数的影响. 中国农业大学学报, 2016,21(7):43-52.
ZHU Y, HAO L H, HUANG L, WANG H X, DANG C H, ZHANG Y X, CHENG D J, WANG L S, ZHENG Y P, XU G H . Effects of temperature on leaf stomatal traits and gas exchange of three north highbush blueberry varieties. Journal of China Agricultural University, 2016,21(7):43-52. (in Chinese)
[25] 王光耀, 刘俊梅, 张仪, 余炳生, 沈征言 . 菜豆四个不同抗热性品种的气孔特性. 农业生物技术学报, 1999,7(3):267-270.
WANG G Y, LIU J M, ZHANG Y, YU B S, SHEN Z Y . Studies on stomatal properties of four common bean cultivars with known different thermoresistance. Journal of Agricultural Biotechnology, 1999,7(3):267-270. (in Chinese)
[26] SUN W, VAN M M, VERBRUGGEN N . Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta, 2002,1577(1):1-9.
[27] 黄磊, 孙耀清, 郝立华, 党承华, 朱玉, 王贺新, 程东娟, 张运鑫, 郑云普 . 高温对北高丛越橘叶片结构和生理代谢的影响. 园艺学报, 2016,43(6):1044-1056.
HUANG L, SUN Y Q, HAO L H, DANG C H, ZHU Y, WANG H X, CHENG D J, ZHANG Y X, ZHENG Y P . Effects of high temperatures on leaf structures and physiological metabolism of north highbush blueberry. Acta Horticulturae Sinica, 2016,43(6):1044-1056. (in Chinese)
[28] 秦玲, 康文怀, 齐艳玲, 蔡爱军 . 盐胁迫对酿酒葡萄叶片细胞结构及光合特性的影响. 中国农业科学, 2012,45(20):4233-4241.
QIN L, KANG W H, QI Y L, CAI A J . Effects of salt stress on mesophyll cell structures and photosynthetic characteristics in leaves of wine grape (Vitis spp.). Scientia Agricultura Sinica, 2012,45(20):4233-4241. (in Chinese)
[29] 张洁, 李天来 . 日光温室亚高温对番茄光合作用及叶绿体超微结构的影响. 园艺学报, 2005,32(4):614-619.
ZHANG J, LI T L . Effects of daytime sub-high temperature on photosynthesis and chloroplast ultrastructure of tomato leaves in greenhouse. Acta Horticulturae Sinica, 2005,32(4):614-619. (in Chinese)
[30] ZHANG R, WISE R R, STRUCK K R, SHARKEY T D . Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynthesis Research, 2010,105(2):123-134.
[1] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[2] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[3] XIE YiTong,ZHANG Fei,SHI Jie,FENG Li,JIANG Li. Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C [J]. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656.
[4] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[5] WAN HuaQin,GU Xu,HE HongMei,TANG YiFan,SHEN JianHua,HAN JianGang,ZHU YongLi. Effect of CO2 Like Fertilization on Rice Growth by HCO3- in Biogas Slurry [J]. Scientia Agricultura Sinica, 2022, 55(22): 4445-4457.
[6] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[7] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[8] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[9] LIU RuiYao,HUANG GuoHong,LI HaiYan,LIANG MinMin,LU MingHui. Screening and Functional Analysis in Heat-Tolerance of the Upstream Transcription Factors of Pepper CaHsfA2 [J]. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209.
[10] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[11] HU YaLi,NIE JingZhi,WU Xia,PAN Jiao,CAO Shan,YUE Jiao,LUO DengJie,WANG CaiJin,LI ZengQiang,ZHANG Hui,WU QiJing,CHEN Peng. Effect of Salicylic Acid Priming on Salt Tolerance of Kenaf Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708.
[12] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[13] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[14] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[15] ZONG YuZheng,ZHANG HanQing,LI Ping,ZHANG DongSheng,LIN Wen,XUE JianFu,GAO ZhiQiang,HAO XingYu. Effects of Elevated Atmospheric CO2 Concentration and Temperature on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism in Flag Leaves and Yield of Winter Wheat in North China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4984-4995.
Full text



No Suggested Reading articles found!