Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (1): 58-70.doi: 10.3864/j.issn.0578-1752.2021.01.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Elevated Temperature and CO2 on the Photosynthetic Characteristics of Intercropping Maize

WANG Fei(),SUN ZengGuang,YIN Fei,GUO BinBin,LIU Ling,JIAO NianYuan()   

  1. College of Agriculture, Henan University of Science and Technology/Dryland Agricultural Engineering Technology Research Center of Henan, Luoyang 471023, Henan
  • Received:2020-03-07 Accepted:2020-05-26 Online:2021-01-01 Published:2021-01-13
  • Contact: NianYuan JIAO E-mail:1216677627@qq.com;jiaony1@163.com

Abstract:

【Objective】The aim of this study was to clarify effects of elevated temperature and CO2 concentration on the photosynthetic characteristics of maize under intercropping with peanut, so as to provide the theoretical basis for the green high-yield and high-efficient cultivation of maize intercropping peanut (maize||peanut) under the condition of climate change in the future.【Method】In this study, maize intercropping peanut 2﹕4 pattern was taken as the research object. In 2018, ambient temperature ambient CO2 concentration (TC) and elevated temperature and CO2 (+T+C) were set up in the experiment, and elevated temperature ambient CO2(+TC) was added in 2019 to conduct the experiment, under two phosphorus levels of P0 (0) and P180 (180 kg P2O5·hm-2), respectively. The effects of elevated temperature and CO2 on photosynthetic pigment content, SPAD value, and photosynthetic response curves to light intensity and CO2 concentration and the related parameters of intercropped maize were studied.【Result】 (1) Compared with TC, +TC increased the content of chlorophyll b and chlorophyll a+b of intercropping maize at 34 days after seedlings, while this treatment reduced the chlorophyll a/b value. Under the condition of phosphorus application at 55 days after seedling, SPAD value, AQY, CE, Amax, Vc,max, Jmax, and TPU of maize were increased by 7.80%, 18.18%, 18.86%, 13.34%, 13.33%, and 20.14%, respectively, and maize grain yield increased by 19.2% to 28.1%. Compared with +TC, +T+C improved the AQY, but reduced LCP of intercropping maize at 55 and 65 days after seedling; The CE, Amax, Vc,max, Jmax, and TPU of intercropping maize were increased by 13.58%-32.96%, 21.31%-11.61%, 9.35%-14.5%, 9.52%-15.13% and 8.82%-26.16% at 55 days after seedling, respectively; The yield were increased by 5.25%-18.70%. All reached significant difference levels (P<0.05). (2) Compared with TC, +T+C increased the SPAD value of intercropping maize at big bell mouth and filling stages, which were increased by 4.68%-12.91% and 7.88%-18.37%, respectively, while decreased by 8.63%-12.72% at dough stage; chlorophyll a, b, and a+b of intercropping maize increased by 17.58%-19.54%, 52.55%-59.55%, and 26.08%-28.47%, respectively, at 35 days after seedlings; chlorophyll a/b were decreased by 23.04%-25.18%; AQY and LSPn were increased by 30.30%-75.76% and 16.87%-19.44%, respectively, at 55 days after seedlings; CE, Amax, Vc,max, Jmax and TPU increased by 15.72%-36.78%, 24.91%-32.66%, 20.77%-29.83%, 20.93%-30.48%, and 27.16%-30.74%, respectively; The yield increased by 7.24%-52.0%. All reached significant difference levels. (3) Compared with no phosphorus application, phosphorus application increased the content of chlorophyll b of intercropping maize under TC, +TC and +T+C by 24.15%, 18.64% and 22.04%, respectively, at 85 days after seedling; LSPn was increased by 13.30%, 17.0% and 9.86%, respectively, at 34 days after seedling; and the yield was increased by 24.2%-67.2%, 55.6% and 27.8%-38.0%, respectively. All reached significant difference levels. 【Conclusion】 Elevated temperature or elevated temperature and CO2 could increase chlorophyll content and net photosynthetic rate of intercropping maize at early growth stage, showing a positive synergy, while elevated CO2 could alleviate the negative effects of elevated temperature at the middle and late growth stage. Elevated temperature and CO2 could increase the yield of intercropping maize, the key lies in the improvement of chlorophyll content, carboxylation efficiency, maximum electron transfer rate and triose phosphate utilization rate at the early and middle growth stage. The supply of phosphorus had an obvious positive effect.

Key words: climatic change, elevated temperature and CO2 concentration, intercropping maize, carboxylation efficiency, photochemical efficiency, yield

Table 1

Environmental conditions during the whole growing seasons"

处理Treatment 2018 2019
相比于TC处理CO2浓度差
CO2 concentration elevated relative to CT treatment (μmol·mol-1)
+TC 12 (2.7) 15 (3.2)
+T+C 312 (50) 319 (38)
相比于TC处理温度差
Temperature elevated relative to CT treatment (℃)
+TC 1.8 (0.8) 1.9 (0.9)
+T+C 1.9 (0.5) 2.1 (0.3)
日平均CO2浓度Daily CO2 concentration (μmol·mol-1) TC 376 (38) 389 (45)
日平均温度Daily air temperature (℃) TC 22.9 (5.0) 22.86 (5.1)
日最高温度Daily maximum temperature (℃) TC 37.1 36.4
日最低温度Daily minimum temperature (℃) TC 20.0 17.5

Fig. 1

Effects of elevated temperature and CO2 on SPAD value in intercropping maize P0: 0; P180: 180 kg P2O5·hm-2. TC: Ambient temperature+ambient CO2 concentration; +TC: Elevated temperature (+(2±0.5)℃)+ambient CO2 concentration; +T+C: Elevated temperature (+(2±0.5)℃)+elevated CO2 concentration ((700±50) μmol CO2·mol-1). Different lowercase letters mean significant difference among treatments at 0.05 level. The same as below"

Table 2

Effects of elevated temperature and CO2 in chlorophyll component on intercropping maize (2019)"

苗后天数
Days after seedling (d)
磷水平
P level
处理
Treatment
叶绿素a
Chlorophyll a (mg·g-1)
叶绿素b
Chlorophyll b (mg·g-1)
叶绿素a+b
Chlorophyll a+b (mg·g-1)
叶绿素a/b
Chlorophyll a/b
35 P0 TC 1.56b 0.442d 2.00c 3.53a
+TC 1.64b 0.560c 2.20b 2.93bc
+T+C 1.86a 0.707b 2.57a 2.64cd
P180 TC 1.62b 0.520c 2.14bc 3.12b
+TC 1.65b 0.568c 2.18b 2.90bc
+T+C 1.90a 0.794a 2.70a 2.40d
85 P0 TC 1.23ab 0.530c 1.76bc 2.31b
+TC 1.13c 0.413d 1.54e 2.74a
+T+C 1.18abc 0.499c 1.68cd 2.37b
P180 TC 1.26a 0.658b 1.91a 1.91c
+TC 1.15bc 0.490c 1.64de 2.35b
+T+C 1.20abc 0.609a 1.81b 1.97c

Fig. 2

Effects of elevated temperature and CO2 on photosynthetic response curve to light intensity of intercropping maize A and E, B and F, C and G, and D and H indicate 34 (big bell mouth stage), 55 (filling stage), 65 (milk stage) and 82 days (dough stage) after seedling in 2019, respectively. The same as below"

Table 3

Effects of elevated temperature and CO2 on the parameters of photosynthetic response curve to light intensity of intercropping maize"

年份
Year
苗后天数
Days after seedling (d)
磷水平
P level
处理
Treatment
表观量子效率
AQY
(μmol·mol -1)
光饱和时净
光合速率LSPn
(μmol CO2·m-2·s-1)
光饱和点
LSP
(μmol·m-2·s-1)
光补偿点
LCP
(μmol·m-2·s-1)
2018 59 P0 TC 0.036b 31.7b 1958b 80.5a
+T+C 0.039ab 33.8b 2179ab 56.4b
P180 TC 0.039ab 36.8a 2138ab 89.9a
+T+C 0.043a 38.4a 2236a 82.7a
2019 34 P0 TC 0.047a 37.6c 1810a 97.5b
+TC 0.048a 40.0bc 1865a 92.1c
+T+C 0.050a 42.6abc 1880a 76.2d
P180 TC 0.048a 45.5ab 2007a 101a
+TC 0.051a 46.8ab 2018a 93.8c
+T+C 0.051a 49.3a 2123a 90.7c
55 P0 TC 0.033d 28.8c 2150a 96.4b
+TC 0.036b 31.9bc 1941ab 68.7d
+T+C 0.043b 34.4ab 2150a 65.4e
P180 TC 0.033d 33.2bc 2054ab 138a
+TC 0.039bc 36.9ab 2353a 90.5c
+T+C 0.058a 38.8a 2407b 70.6d
65 P0 TC 0.029cd 25.5bc 47.0d
+TC 0.025d 23.3c 67c
+T+C 0.045b 28.2b 47.2d
P180 TC 0.033c 28.7b 86.2a
+TC 0.029cd 26.1bc 87.8a
+T+C 0.053a 35.2a 83.0b
82 P0 TC 0.038b 24.9ab 62.3c
+TC 0.031c 18.7c 66.2b
+T+C 0.038b 22.9ab 85.6d
P180 TC 0.057a 26.8a 62.0c
+TC 0.038b 21.4bc 46.8d
+T+C 0.038b 23.7ab 48.9d

Fig. 3

Effect of elevated temperature and CO2 on photosynthetic response curve to CO2 concentration of intercropping maize"

Table 4

Effect of elevated temperature and CO2 on the parameters of photosynthetic response curve to CO2 concentration of intercropping maize"

年份
Year
苗后天数
Days after seedling
(d)
磷水平
P level
处理
Treatment
羧化效率
CE
CO2饱和时
净光合速率
Amax
(μmol CO2·m-2·s-1)
Rubisco最大
羧化速率
Vc,max
(μmol·mol-1)
最大电子
传递速率
Jmax
(μmol·mol-1)
磷酸丙糖利用率TPU
(μmol·mol-1)
2018 59 P0 TC 0.133d 29.0d 80.0c 88.0c 8.40b
+T+C 0.170c 30.9c 93.3b 103b 8.75b
P180 TC 0.198b 34.0b 101a 112a 9.85a
+T+C 0.206a 35.4a 102a 113a 9.95a
2019 34 P0 TC 0.145d 29.4e 88.2d 97.0d 8.52d
+TC 0.153cd 32.1d 90.5d 99.6d 9.29d
+T+C 0.196b 38.0b 113b 125b 10.9bc
P180 TC 0.149d 35.8c 101.4c 111c 10.3c
+TC 0.163c 39.1b 99.9c 109c 11.5ab
+T+C 0.220a 41.8a 127.8a 141a 11.8a
55 P0 TC 0.159d 26.9e 86.2d 95.1d 7.51d
+TC 0.162c 27.7e 95.2c 105c 7.57d
+T+C 0.184b 33.6c 104.1b 115b 9.55b
P180 TC 0.174bc 29.7d 95.2c 105c 8.49c
+TC 0.179bc 35.3b 107.9b 119b 10.2b
+T+C 0.238a 39.4a 123.6a 137a 11.1a
65 P0 TC 0.090c 22.7e 47.1d 51.1c 5.99cd
+TC 0.078f 22.1e 37.1e 41.1d 5.50d
+T+C 0.122b 24.6d 50.5d 54.9c 6.52c
P180 TC 0.095d 28.0b 84.6b 104a 7.86b
+TC 0.087e 25.9c 60.2c 93.0b 7.52b
+T+C 0.149a 30.4a 93.7a 105a 8.52a
82 P0 TC 0.090a 19.9d 48.2b 51.6a 5.42b
+TC 0.069d 17.8e 36.5d 39.6c 4.94d
+T+C 0.084c 18.5e 38.0cd 40.6c 4.98d
P180 TC 0.099b 27.0a 51.6a 54.4a 6.54a
+TC 0.085bc 21.1c 40.0cd 42.3bc 5.67b
+T+C 0.086bc 22.2b 41.6c 44.7b 5.79b

Fig. 4

Effects of elevated temperature and CO2 on yield of intercropping maize"

[1] IPCC: Summary for policymakers//EDENHOFER O, PICHS M R, SOKONA Y. Climate Change 2014. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 25, 77-78.
[2] 房世波, 沈斌, 谭凯炎, 高西宁. 大气[CO2]升高和温度升高对农作物生理及生产的影响. 中国生态农业学报, 2010,18(5):1116-1124.
FANG S B, SHEN B, TAN K Y, GAO X N. Effect of elevated CO2 concentration and increased temperature on physiology and production of crops. Chinese Journal of Eco-Agriculture, 2010,18(5):1116-1124. (in Chinese)
[3] 石元豹, 曹兵. CO2浓度倍增对宁夏枸杞叶绿素荧光参数的影响. 经济林研究, 2015(3):108-111.
SHI Y B, CAO B. Effects of doubled CO2 concentration on chlorophyll fluorescence parameters in Lycium barbarum leaves. Nonwood Forest Research, 2015(3):108-111. (in Chinese)
[4] 叶子飘, 段世华, 康华靖. 不同CO2浓度下大豆叶片的水分利用效率比较. 核农学报, 2019,33(5):1006-1015.
YE Z P, DUAN S H, KANG H J. Comparison of water use efficiency for Glycine max leaves under different CO2 concentration. Journal of Nuclear Agricultural Sciences, 2019,33(5):1006-1015. (in Chinese)
[5] ZHENG Y P, LI F, HAO L H, ARSHAD A S, GUO L L, MA C, HUANG B R. The optimal CO2 concentrations for the growth of three perennial grass species. BMC Plant Biology, 2018,18:27.
pmid: 29402224
[6] 王秋兰, 靳鲲鹏, 曹晋军. 大气CO2浓度升高对玉米叶片光合生理指标及其产量的影响. 山西农业科学, 2018,46(12):2051-2061.
WANG Q L, JIN K P, CAO J J. Effects of atmospheric CO2 concentration enhancement on photosynthetic physiological indexes and yield of maize leaves. Journal of Shanxi Agricultural Sciences, 2018,46(12):2051-2061. (in Chinese)
[7] HATFIELD J L, BOOTE K J, KIMBALL B A, ZISKA L H, LZAURRALD R C. Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 2011,103:351-370.
[8] CAI C, YIN X Y, HE S Q, JIANG W Y, SI C F, STRUIC P C, LUO W H. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 2016,22:856-874.
doi: 10.1111/gcb.13065
[9] ZISKA L H, MANALO P A, ORDONEZ R A. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: Growth and yield response of 17 cultivars. Journal of Experimental Botany, 1996,47:1353-1359.
[10] 陈金, 田云录, 董文军, 侯立刚, 马巍, 徐志宇, 张卫健. 东北水稻生长发育和产量对夜间升温的响应. 中国水稻科学, 2013,27(1):84-90.
CHEN J, TIAN Y L, DONG W J, HOU L G, MA W, XU Z Y, ZHANG W J. Responses of rice growth and grain yield to nighttime warming in northeast China. Chinese Journal of Rice Science, 2013,27(1):84-90. (in Chinese)
[11] NAM H S, KWAK J H, LIM S S, CHOI W J, LEE S L, LEE D S, LEE K S, KIM H Y, LEE S, MMIWA M. Fertilizer N uptake of paddy rice in two soils with different fertility under experimental warming with elevated CO2. Plant and Soil, 2013,369:563-575.
[12] AINSWORTH E A, ROGERS A. The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions. Plant, Cell and Environment, 2007,30(3):258-270.
[13] DARBAH J N, KUBISKA M E, NELSON N. Impacts of elevated atmospheric CO2 and O3 on paper brch (Betula papyrifera): Reproductive fitness. The Scientific World Journal, 2007,7(1):240-246.
[14] SAGE R F, SHARKEY T D, SEMAN J R. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiology, 1989(89):590-596.
[15] 李菲, 刘亮, 张浩, 王清涛, 郭丽丽, 郝丽华, 张茜茜, 曹旭, 梁伟佳, 郑云普. CO2浓度对大豆叶片气孔特征和气体交换参数的影响. 作物学报, 2018,44(8):1212-1220.
LI F, LIU L, ZHANG H, WANG Q T, GUO L L, HAO L H, ZHANG Q Q, CAO X, LIANG W J, ZHENG Y P. Effects of CO2 concentrations on stomatal traits and gas exchange in leaves of soybean. Acta Agronomica Sinica, 2018,44(8):1212-1220. (in Chinese)
[16] 焦念元, 陈明灿, 付国占, 宁堂原, 王黎明, 李增嘉. 玉米花生间作复合群体的光合物质积累与叶面积指数变化. 作物杂志, 2007(1):34-35.
JIAO N Y, CHEN M C, FU G Z, NING T Y, WANG L M, LI Z J. Photosynthetic matter accumulation and leaf area index change in the intercropping compound population of maize and peanut. Crops, 2007(1):34-35. (in Chinese)
[17] 焦念元, 李亚辉, 杨潇, 尹飞, 马超, 齐付国, 刘领, 熊瑛. 玉米/花生间作行比和施磷对玉米光合特性的影响. 应用生态学报, 2016,27(9):2959-2967.
JIAO N Y, LI Y H, YANG X, YIN F, MA C, QI F G, LIU L, XIONG Y. Effects of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chinese Journal of Applied Ecology, 2016,27(9):2959-2967. (in Chinese)
[18] 郝树芹, 束靖, 段曦, 秦旭. 不同秸秆复配基质对丝瓜幼苗形态指标、光合色素、光合特性及根系活力的影响. 北方园艺, 2019(14):6-11.
HAO S Q, SHU J, DUAN X, QIN X. Effects of mixed substrate of different straws on morphological index photosynthetic pigments, photosynthetic characteristics and root activity on towel gourd seedling. Northern Horticulture, 2019(14):6-11. (in Chinese)
[19] 周宁, 景立权, 王云霞, 朱建国, 杨连新, 王余龙. 开放式空气中CO2浓度和温度增高对水稻叶片叶绿素含量和SPAD值的动态影响. 中国水稻科学, 2017,31(5):524-532.
ZHOU N, JING L Q, WANG Y X, ZHU J G, YANG L X, WANG Y L. Effects of elevated atmospheric CO2 and temperature on dynamics of leaf chlorophyll contents and SPAD value of rice in open-air field conditions. Chinese Journal Rice Science, 2017,31(5):524-532. (in Chinese)
[20] HAQUE M M, HAMID A, KHANAM M, BISWAS D K, KARIM M A, KHALIQ Q A, HOSSAIN M A, UPERTY D C. The effect of elevated CO2 concentration on leaf chlorophyll and nitrogen contents in rice during post-flowering phases. Biologia Plantarum, 2006,50(1):69-73.
[21] 孟军, 陈温福, 徐正进, 李磊鑫, 周淑清. 水稻剑叶净光合速率与叶绿素含量的研究初报. 沈阳农业大学学报, 2001,32(4):247-249.
MENG J, CHEN W F, XU Z J, LI L X, ZHOU S Q. Study on photosynthetic rate and chlorophyll content. Journal of Shenyang Agricultural University, 2001,32(4):247-249. (in Chinese)
[22] 谢立勇, 孙雪, 赵洪亮, 冯永祥, 姜乐. FACE条件下水稻生育后期剑叶光合色素含量及产量构成的响应研究. 中国生态农业学报, 2015,23(4):425-431.
XIE L Y, SUN X, ZHAO H L, FENG Y X, JIANG L. Responses of flag-leaf photosynthetic pigments at late growth stage and rice yield components to elevated CO2 under FACE system. Chinese Journal of Eco-Agriculture, 2015,23(4):425-431. (in Chinese)
[23] 彭博, 王文晶, 周可新, 陈法军. CO2浓度升高对转Bt水稻生理指标的影响. 生态学杂志, 2014,33(12):3254-3261.
PENG B, WANG W J, ZHOU K X, CHEN F J. Effect of elevated CO2 on physiological indexes of transgenic Bt rice. Chinese Journal of Ecology, 2014,33(12):3254-3261. (in Chinese)
[24] DONG W, CHEN J, ZHANG B, TIAN Y L, ZHANG W J. Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China. Field Crops Research, 2011,123(3):259-265.
[25] 许大全. 光合作用及有关过程对长期高CO2浓度的响应. 植物生理学通讯, 1994,30(2):81-87.
XU D Q. Responses of photosynthesis and related processes to long-term high CO2 concentration. Plant Physiology Communications, 1994,30(2):81-87. (in Chinese)
[26] FAROUHAR G D, CAMMER S V, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980,149(1):78-90.
[27] LONG S P, BERNACCHI C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? procedures and sources of error. Journal of Experimental Botany, 2003,54(392):2393-2401.
doi: 10.1093/jxb/erg262
[28] 王建林, 温学发, 赵风华, 房全孝, 杨新民. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响. 植物生态学报, 2012,36(5):438-446.
WANG J L, WEN X F, ZHAO F H, FANG Q X, YANG X M. Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species. Chinese Journal of Plant Ecology, 2012,36(5):438-446. (in Chinese)
[29] 郑云普, 李菲, 侯毅凯, 郭丽丽, 张茜茜, 马超, 曹旭, 郝丽华. 大气CO2浓度增加对作物光合性能及叶片水分利用效率的影响. 农业工程学报, 2019,35(10):91-98.
ZHENG Y P, LI F, HOU Y K, GUO L L, ZHANG Q Q, MA C, CAO X, HAO L H. Effect of increasing CO2 concentration on photosynthesis and leaf water use efficiency of crops. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(10):91-98. (in Chinese)
[30] DA M, SUTER D, ALMUIDA J P F, LSOPP H, HARTWIG U A, FREHNER M, BLUM H, NOSBERGAR J, LUSCHER A. Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biology, 2000,6(7):805-816.
[31] BLOOM A J, SMART D R, NGUYAN D T, SEARLES P S. Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proceedings of the National Academy of Sciences of the USA, 2002,99(3):1730-1735.
[32] LAM S K, HAO X Y, LIN E D, LIN E, HAN X, NORTON R, MOSIER A R, SENEWEERA S, CHEN D. Effect of elevated carbon dioxide on growth and nitrogen fixation of two soybean cultivars in northern China. Biology and Fertility of Soils, 2012,48(2):603-606.
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[8] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[9] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[10] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!