Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4802-4812.doi: 10.3864/j.issn.0578-1752.2020.23.007

• PLANT PROTECTION • Previous Articles     Next Articles

The Structure Characteristics and Biological Functions on Regulating Trehalose Metabolism of Two NlTret1s in Nilaparvata lugens

YU WeiDong1,2(),PAN BiYing1,QIU LingYu1,HUANG Zhen2,ZHOU Tai2,YE Lin2,TANG Bin1,WANG ShiGui1()   

  1. 1College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036
    2Zhejiang Dingyi Biotechnology Co., LTD, Quzhou 324100, Zhejiang
  • Received:2020-07-18 Accepted:2020-09-03 Online:2020-12-01 Published:2020-12-09
  • Contact: ShiGui WANG E-mail:hzyuweidong@hotmail.com;sgwang@hznu.edu.cn

Abstract:

【Objective】 Trehalose is the main blood sugar substance in insects and plays an important role in insect development and physiological activities. Among them, trehalose transporter (Tret) plays a key role in the transportation of trehalose from trehalose-producing tissues (such as fat body) to trehalose-consuming tissues. The objective of this study is to explore the biological functions of these two NlTret1s in brown planthopper (Nilaparvata lugens) by analyzing the sequence structure of two NlTret1s and further suppressing the expression of NlTret1s. 【Method】Taking these two NlTret1 sequences as the research object, the protein structure and homology with other insects were analyzed by bioinformatics technology. The RNA interference (RNAi) technology was used to inject the synthetic exogenous dsRNA (double-stranded RNA) into the laboratory feeding population of N. lugens, to inhibit the expression of the NlTret1s. The total RNA was extracted to synthesize the first-strand cDNA using reverse transcription Kit, qRT-PCR (quantitative real-time PCR) technology was used to detect the RNAi effect of dsNlTret1s and the expression of related genes in the trehalose metabolism pathway in N. lugens after RNAi, and finally glucose, trehalose and glycogen content as well as trehalase enzyme activity were determined. 【Result】 Bioinformatics analysis showed that the open reading frames of NlTret1-like X1 and NlTret1-2 X1 are 1 920 and 1 578 bp in length, encoding 639 and 525 amino acids, respectively. The predicted protein molecular weights are 69.29 and 58.71 kD, and the isoelectric points are 8.32 and 8.36, respectively. The secondary structure of NLTret1-like X1 and NLTret1-2 X1 is mainly composed of helix and coil. Conservative domain analysis showed that they all belong to the MFS family. The results of evolutionary analysis showed that Tret1 of different insects had high homology, and N. lugens was closely related to other hemiptera insects. Compared with the dsGFP group, the target gene was inhibited significantly after injection with dsNlTret1-like X1 or dsNlTret1-2 X1. Furthermore, the content of glycogen and glucose in N. lugens did not change significantly, but unlike the dsNlTret1-2 X1 group, the trehalose content of N. lugens was significantly increased with the injection of dsNlTret1-like X1. Meanwhile, the expression of the TPS1, TPS2, TRE1-1, TRE1-2 and TRE2 in N. lugens was significantly down-regulated after the NlTret1-like X1 knocked down for 48 h. The expression of TPS1, TPS2 and TRE1-1 in N. lugens also decreased significantly after injection with dsNlTret1-2 X1 for 48 h, while TRE1-2 and TRE2 showed a very significant upward trend. Moreover, after injection of dsNlTret1-like X1, the activities of soluble trehalase and membrane-bound trehalase were significantly reduced, but there was no significant change after injection with dsNlTret1-2 X1. 【Conclusion】These two Tret1s of N. lugens play different functions in different tissues, among which NlTret1-like X1 plays a more significant role in the specific transport of trehalose involved in energy supply. The results are helpful to explore the regulatory mechanism of Tret1 regulating the balance of trehalose metabolism in insects or invertebrates, and provide a theoretical basis for the future control of pests by regulating blood sugar balance, such as N. lugens.

Key words: brown planthopper (Nilaparvata lugens), trehalose transporter (Tret), structure, trehalose metabolism, RNAi

Table 1

Primer sequence used for qRT-PCR and dsNlTret1s, dsGFP"

引物名称 Primer name 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′) 产物长度 Length (bp)
dsNlTret1-like X1 GCAAACAACAGCGAGCAA CCAAGAGGCACCCATCC 472
dsNlTret1-like X1-T7 T7-GCAAACAACAGCGAGCAA T7-CCAAGAGGCACCCATCC 552
dsNlTret1-2 X1 CTTCGTTCACCAGCACCT CAAATGGCACTTATTATCGTC 547
dsNlTret1-2 X1-T7 T7-CTTCGTTCACCAGCACCT T7-CAAATGGCACTTATTATCGTC 597
dsGFP AAGGGCGAGGAGCTGTTCACCG CAGCAGGACCATGTGATCGCGC 657
dsGFP-T7 T7-AAGGGCGAGGAGCTGTTCACCG T7-CAGCAGGACCATGTGATCGCGC 707
qNl18S CGCTACTACCGATTGAA GGAAACCTTGTTACGACTT 165
qNlTret1-like X1 GTGGGAATCGTGAACATGGG ATGGTCATGAGTGTGCTGGA 101
qNlTret1-2 X1 TATGTGTCGGCTGGGTTCTT CTCTGAGCCAGCACAATGAC 190
qNlTPS1 AAGACTGAGGCGAATGGT AAGGTGGAAATGGAATGTG 154
qNlTPS2 AGAGTGGACCGCAACAACA TCAACGCCGAGAATGACTT 161
qNlTRE1-1 GCCATTGTGGACAGGGTG CGGTATGAACGAATAGAGCC 132
qNlTRE1-2 GATCGCACGGATGTTTA AATGGCGTTCAAGTCAA 178
qNlTRE2 TCACGGTTGTCCAAGTCT TGTTTCGTTTCGGCTGT 197

Fig. 1

Amino acid sequences and structural analysis of NlTret1s GenBank登录号为XP_022183984.1(NlTret1-like X1)和XP_022195528.1(NlTret1-2 X1)Initiation and termination GenBank accession numbers: XP_022183984.1 (NlTret1-like X1) and XP_022195528.1 (NlTret1-2 X1)。A:NlTret1二级结构预测Prediction of the secondary structure of NlTret1s;B:NlTret1结构域分析(蓝色方块表示跨膜结构,粉色方块表示低复杂区域)Analysis of domain of NlTret1s (Blue blocks represent transmembrane region and pink blocks represent low complexity region);C:NlTret1三级结构预测Prediction of the tertiary structure of NlTret1s"

Fig. 2

Phylogenetic tree of NlTret1s and Tret1 proteins from other insect species based on the amino acid sequence (neighbor- joining method) Tret1蛋白来源物种及其GenBank登录号 Source species of Tret1 proteins and their GenBank accession numbers。豌豆蚜Acyrthosiphon pisum:ApTret1 (XP_001943832.1)、ApTret1 X1 (XP_003247868.1);桃蚜Myzus persicae:MpTret1-like (XP_022175298.1)、MpTret1-like X1 (XP_022168826.1);高粱蚜Melanaphis sacchari:MsTret1-like (XP_025205275.1)、MsTret1-like X1 (XP_025193454.1);玉米缢管蚜Rhopalosiphum maidis:RmTret1-like (XP_026817841.1)、RmTret1-like X1 (XP_026807124.1);棉蚜Aphis gossypii:AgTret1-like (XP_027847026.1)、AgTret1-like X1 (XP_027852240.1);黑豆蚜Aphis craccivora:AcTret1-like (KAF0773727.1);黄蔗蚜Sipha flava:SfTret1-like (XP_025415984.1)、SfTret1-like X1 (XP_025419752.1);褐飞虱Nilaparvata lugens:NlTret1-2 X1 (XP_022195528.1)、NlTret1-like X1 (XP_022183984.1);臭虫Cimex lectularius:ClTret1-like (XP_014254493.1);茶翅蝽Halyomorpha halys:HhTret1-like (XP_014285740.1);湿木白蚁Zootermopsis nevadensis:ZnTret1-like (XP_021920751.1);第二隐白蚁Cryptotermes secundus:CsTret1 X1 (XP_023724429.1);埃及伊蚊Aedes aegypti:AaTret1 (XP_001654366.1);猫虱Ctenocephalides felis:CfTret1-like (XP_026477563.1);菜粉蝶Pieris rapae:PrTret1-like (XP_022131116.1);麦茎蜂Cephus cinctus:CcTret1 X1 (XP_015587164.1);瘿蜂Belonocnema treatae:BtTret1-like (XP_033208929.1);汗蜂Dufourea novaeangliae:DnTret1 (KZC12919.1);彩带蜂Nomia melanderi:NmTret1-like X1 (XP_031847112.1);银额果蝇Drosophila albomicans:DaTret1 X1 (XP_034103480.1);铜绿蝇Lucilia cuprina:LcTret1 X1 (XP_023292603.1);德国小蠊Blattella germanica:BgTret1 (PSN42188.1);柑橘木虱Diaphorina citri:DcTret1-like (XP_026682851.1)"

Fig. 3

Relative expression level of NlTret1-like X1 and NlTret1-2 X1 after injection for 48 h in N. lugens"

Fig. 4

Relative expression level of regulated genes of trehalose metabolic pathway in N. lugens after RNAi"

Fig. 5

Contents of trehalose, glucose and glycogen in N. lugens after RNAi N.S. indicates no significant difference. The same as below"

Fig. 6

Enzyme activity of trehalase in N. lugens after RNAi"

[1] 徐春春, 纪龙, 陈中督, 方福平 . 2017年我国水稻产业形势分析及2018年展望. 中国稻米, 2018,24(2):1-3.
XU C C, JI L, CHEN Z D, FANG F P . Analysis of China’s rice industry in 2017 and the outlook for 2018. China Rice, 2018,24(2):1-3. (in Chinese)
[2] CHENG X Y, ZHU L L, HE G C . Towards understanding of molecular interactions between rice and the brown planthopper. Molecular Plant, 2013,6(3):621-634.
doi: 10.1093/mp/sst030
[3] LU G, ZHANG T, HE Y, ZHOU G . Virus altered rice attractiveness to planthoppers is mediated by volatiles and related to virus titre and expression of defense and volatile-biosynthesis genes. Scientific Reports, 2016,6:38581.
doi: 10.1038/srep38581 pmid: 27924841
[4] BODDUPALLY D, TAMIRISA S, GUNDRA S R, VUDEM D R, KHAREEDU V R . Expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic rice plants imparts resistance against multiple insect pests. Scientific Reports, 2018,8:8458.
doi: 10.1038/s41598-018-26881-9 pmid: 29855556
[5] 吴碧球, 黄所生, 黄凤宽 . 环境因素对水稻品种抗褐飞虱的影响研究概况. 植物保护, 2015,41(1):1-6.
WU B Q, HUANG S S, HUANG F K . A review on factors affecting resistance of rice varieties to the rice brown planthopper. Plant Protection, 2015,41(1):1-6. (in Chinese)
[6] TANAKA K, ENDO S, KAZANO H . Toxicity of insecticides to predators of rice planthoppers: Spiders, the mirid bug and the dryinid wasp. Applied Entomology and Zoology, 2000,35(1):177-187.
doi: 10.1303/aez.2000.177
[7] ROLA A C, PINGALI P L . Pesticides, Rice Productivity, and Farmers’ Health: An Economic Assessment. Manila, Philippines: International Rice Research Institute, 1993.
[8] NAUEN R, DENHOLM I . Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Archives of Insect Biochemistry and Physiology, 2005,58(4):200-215.
doi: 10.1002/arch.20043 pmid: 15756698
[9] WANG H Y, YANG Y, SU J Y, SHEN J L, GAO C F, ZHU Y C . Assessment of the impact of insecticides on Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymanidae), an egg parasitoid of the rice planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Crop Protection, 2008,27(3/5):514-522.
doi: 10.1016/j.cropro.2007.08.004
[10] BOTTRELL D G, SCHOENLY K G . Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. Journal of Asia-Pacific Entomology, 2012,15(1):122-140.
doi: 10.1016/j.aspen.2011.09.004
[11] BECKER A, SCHLÖDER P, STEELE J E, WEGENER G . The regulation of trehalose metabolism in insects. Experientia, 1996,52(5):433-439.
doi: 10.1007/BF01919312 pmid: 8706810
[12] ELBEIN A D, PAN Y T, PASTUSZAK I, CARROLL D . New insights on trehalose: A multifunctional molecule. Glycobiology, 2003,13(4):17R-27R.
doi: 10.1093/glycob/cwg047 pmid: 12626396
[13] IORDACHESCU M, IMAI R . Trehalose biosynthesis in response to abiotic stresses. Journal of Integrative Plant Biology, 2008,50(10):1223-1229.
doi: 10.1111/j.1744-7909.2008.00736.x
[14] TANG B, CHEN J, YAO Q, PAN Z Q, XU W H, WANG S G, ZHANG W Q . Characterization of a trehalose-6-phosphate synthase gene from Spodoptera exigua and its function identification through RNA interference. Journal of Insect Physiology, 2010,56(7):813-821.
doi: 10.1016/j.jinsphys.2010.02.009 pmid: 20193689
[15] SHUKLA E, THORAT L J, NATH B B, GAIKWAD S M . Insect trehalase: Physiological significance and potential applications. Glycobiology, 2015,25(4):357-367.
doi: 10.1093/glycob/cwu125 pmid: 25429048
[16] AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G . Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 2006,6:109.
doi: 10.1186/1471-2148-6-109 pmid: 17178000
[17] TANG B, WANG S, WANG S G, WANG H J, ZHANG J Y, CUI S Y . Invertebrate trehalose-6-phosphate synthase gene: Genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology, 2018,9:30.
doi: 10.3389/fphys.2018.00030 pmid: 29445344
[18] 刘贻聪 . 丽蚜小蜂取食糖分对寄生烟粉虱的影响及糖转运蛋白诱导表达分析[D]. 北京: 中国农业科学院, 2018.
LIU Y C . Effects of sugar diets on the parasitism of Encarsia formosa on Bemisia tabaci and analysis of induced expression of sugar transporter gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[19] 郭婧, 范宇鸿, 宋立猛 . 葡萄糖转运蛋白-1在肿瘤中的表达及意义. 国际检验医学杂志, 2019,40(16):2009-2011, 2034.
GUO J, FAN Y H, SONG L M . Expression and significance of glucose transporter-1 in tumors. International Journal of Laboratory Medicine, 2019,40(16):2009-2011, 2034. (in Chinese)
[20] 杨泽众 . Q烟粉虱与内共生细菌互作机制及B烟粉虱糖转运蛋白超家族注释与功能研究[D]. 长沙: 湖南农业大学, 2017.
YANG Z Z . Symbiotic relationship between Bemisia tabaci B and its endosymbionts and annotation and function research of sugar transporter superfamily of Bemisia tabaci B[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[21] KIKAWADA T, SAITO A, KANAMORI Y, NAKAHARA Y, IWATA K, TANAKA D, WATANABE M, OKUDA T . Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(28):11585-11590.
doi: 10.1073/pnas.0702538104 pmid: 17606922
[22] KIKUTA S, NAKAMURA Y, HATTORI M, SATO R, KIKAWADA T, NODA H . Herbivory-induced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 2015,64:60-67.
doi: 10.1016/j.ibmb.2015.07.015 pmid: 26226652
[23] PRICE D R, WILKINSON H S, GATEHOUSE J A . Functional expression and characterisation of a gut facilitative glucose transporter, NlHT1, from the phloem-feeding insect Nilaparvata lugens (rice brown planthopper). Insect Biochemistry and Molecular Biology, 2007,37(11):1138-1148.
doi: 10.1016/j.ibmb.2007.07.001
[24] KIKUTA S, KIKAWADA T, HAGIWARA-KOMODA Y, NAKASHIMA N, NODA H . Sugar transporter genes of the brown planthopper, Nilaparvata lugens: A facilitated glucose/fructose transporter. Insect Biochemistry and Molecular Biology, 2010,40(11):805-813.
doi: 10.1016/j.ibmb.2010.07.008
[25] PRICE D R, KARLEY A J, ASHFORD D A, ISAACS H V, POWNALL M E, WILKINSON H S, GATEHOUSE J A, DOUGLAS A E . Molecular characterisation of a candidate gut sucrase in the pea aphid, Acyrthosiphon pisum. Insect Biochemistry and Molecular Biology, 2007,37(4):307-317.
doi: 10.1016/j.ibmb.2006.12.005
[26] YOON J S, MOGILICHERLA K, GURUSAMY D, CHEN X, CHEREDDY S C, PALLI S R . Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(33):8334-8339.
doi: 10.1073/pnas.1809381115 pmid: 30061410
[27] XI Y, PAN P L, YE Y X, YU B, XU H J, ZHANG C X . Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015,24(1):29-40.
doi: 10.1111/imb.12133 pmid: 25224926
[28] ZHAO L N, YANG M M, SHEN Q D, SHI Z K, WANG S G, TANG B . Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Scientific Reports, 2016,6:27841.
doi: 10.1038/srep27841 pmid: 27328657
[29] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[30] ZHANG L, QIU L Y, YANG H L, WANG H J, ZHOU M, WANG S G, TANG B . Study on the effect of wing bud chitin metabolism and its developmental network genes in the brown planthopper, Nilaparvata lugens, by knockdown of TRE gene. Frontiers in Physiology, 2017,8:750.
doi: 10.3389/fphys.2017.00750 pmid: 29033849
[31] KANAMORI Y, SAITO A, HAGIWARA-KOMODA Y, TANAKA D, MITSUMASU K, KIKUTA S, WATANABE M, CORNETTE R, KIKAWADA T, OKUDA T . The trehalose transporter 1 gene sequence is conserved in insects and encodes proteins with different kinetic properties involved in trehalose import into peripheral tissues. Insect Biochemistry and Molecular Biology, 2010,40(1):30-37.
doi: 10.1016/j.ibmb.2009.12.006
[32] ULDRY M, THORENS B . The SLC2 family of facilitated hexose and polyol transporters. European Journal of Physiology, 2004,447(5):480-489.
doi: 10.1007/s00424-003-1085-0 pmid: 12750891
[33] SAIER M H . Genome archeology leading to the characterization and classification of transport proteins. Current Opinion in Microbiology, 1999,2(5):555-561.
doi: 10.1016/s1369-5274(99)00016-8 pmid: 10508720
[34] PRENTICE K, CHRISTIAENS O, PERTRY I, BAILEY A, NIBLETT C, GHISLAIN M, GHEYSEN G, SMAGGHE G . RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae). Pest Management Science, 2017,73(1):44-52.
doi: 10.1002/ps.4337 pmid: 27299308
[35] LOU Y H, PAN P L, YE Y X, CHENG C, XU H J, ZHANG C X . Identification and functional analysis of a novel chorion protein essential for egg maturation in the brown planthopper. Insect Molecular Biology, 2018,27(3):393-403.
doi: 10.1111/imb.12380 pmid: 29465791
[36] XI Y, PAN P L, ZHANG C X . The β-n-acetylhexosaminidase gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015,24(6):601-610.
doi: 10.1111/imb.12187 pmid: 26304035
[37] LI J X, CAO Z, GUO S, TIAN Z, LIU W, ZHU F, WANG X P . Molecular characterization and functional analysis of two trehalose transporter genes in the cabbage beetle, Colaphellus bowringi. Journal of Asia-Pacific Entomology, 2020,23(3):627-633.
doi: 10.1016/j.aspen.2020.05.011
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[3] XIAO LuTing,LI XiuHong,LIU LiJun,YE FaYin,ZHAO GuoHua. Effects of Starch Granule Size on the Physical and Chemical Properties of Barley Starches [J]. Scientia Agricultura Sinica, 2022, 55(5): 1010-1024.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[6] CHEN ChunYu,CHEN SongLing,HAN YanYu,REN LiJun,ZOU HongTao,ZHANG YunLong. Preparation and Properties of Bionic Modified Water-Based Polymer Coated Urea [J]. Scientia Agricultura Sinica, 2022, 55(20): 3970-3982.
[7] GUAN RuoBing,LI HaiChao,MIAO XueXia. Commercialization Status and Existing Problems of RNA Biopesticides [J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960.
[8] YIN Fei,LI ZhenYu,SAMINA Shabbir,LIN QingSheng. Expression and Function Analysis of Cytochrome P450 Genes in Plutella xylostella with Different Chlorantraniliprole Resistance [J]. Scientia Agricultura Sinica, 2022, 55(13): 2562-2571.
[9] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[10] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[11] CHEN ErHu,MENG HongJie,CHEN Yan,TANG PeiAn. Cuticle Protein Genes TcCP14.6 and TcLCPA3A are Involved in Phosphine Resistance of Tribolium castaneum [J]. Scientia Agricultura Sinica, 2022, 55(11): 2150-2160.
[12] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[13] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[14] LI Hao,WEI BenHui,HUANG JinLing,LI ZhiGang,WANG LingQiang,LIANG XiaoYing,LI SuLi. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane [J]. Scientia Agricultura Sinica, 2021, 54(3): 522-532.
[15] NIU HongZhuang,LIU Yang,LI XiaoPing,HAN YuXuan,WANG KeKe,YANG Yan,YANG QianHui,MIN DongHong. Effects of Physicochemical Properties of Wheat (Triticum aestivum L.) Starch with Different HMW-GSs Combinations on Dough Stability [J]. Scientia Agricultura Sinica, 2021, 54(23): 4943-4953.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!